Advertisement

Link Between Functional and Morphological Changes in the Inner Ear — Functional Changes Produced by Ototoxic Agents and Their Interactions

  • R. D. Brown
  • C. M. Henley
  • J. E. Penny
  • S. Kupetz
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 8)

Abstract

Common potentials used to evaluate cochlear function are the ac cochlear potential (ACCP), N1 and the positive dc endocochlear potential (EP). The ACCP is an electrical analogue of the sound stimulus; its source is the electrical activity of the cochlear hair cells. N1 is a volume conductor recorded action potential of the auditory nerve. The EP is the positive polarization of the middle compartment of the cochlea (scala media) with respect to the other compartments (the scalae tympani and vestibuli); the stria vascularis is apparently responsible for the EP.

Generally, ototoxic drugs and very intense broad-band noise affect the basal portion of the cochlea first and, because of tonotopic organization, the ACCP responses to high frequency pure tones are affected before those to the low frequencies. However, the correlation between the effect of an ototraumatic agent on the ACCP and its effect on cochlear morphology is not always reliable. The correlations between changes in N1 and EP and in cochlear morphology are even less precise.

Also discussed will be the cochlear effects of noise and the ototoxic interactions between drug/drug, noise/drug, and noise/drug/otitis media.

Key words

Aminoglycoside Antibiotics Loop Diuretics Noise Otitis Media Ototoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobbin RP, Guth PS, Mines AB (1976) An examination of an electro-chemical mechanism for noise-induced hair cell loss: noise with aminooxyacetic acid (AOAA). Trans. Amer. Acad. Ophthalmol. Otolaryngol. 82:299–304Google Scholar
  2. Bock GR, Yates GK, Miller JJ, Moorjani P (1983) Effects of N-acetyl-cysteine on kanamycin ototoxicity in the guinea pig. Hearing Res. 9:255–262CrossRefGoogle Scholar
  3. Bosher SK (1980) The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system: I. functional aspects. Acta Otolaryngol. 89:407–418PubMedCrossRefGoogle Scholar
  4. Brown J, Brummett RE, Meikle M, Vernon J (1978) Combined effects of noise and neomycin. Acta Otolaryngol. 86:394–400PubMedGoogle Scholar
  5. Brown J, Brummett RE, Fox K, Bendrick T (1980) Combined effects of noise and kanamycin. Arch. Otolaryngol. 106:744–750PubMedCrossRefGoogle Scholar
  6. Brown RD (1975) Ethacrynic acid and furosemide: possible cochlear sites and mechanisms of ototoxic action. Medikon 4:33–40Google Scholar
  7. Brown RD (1981) Comparisons of the acute effects of i.v. furosemide and bumetanide on the cochlear action potential (N1) and on the a.c. cochlear potential (CM) at 6 kHz in cats, dogs, and guinea pigs. Scand. Audiol. 14 (Suppl): 71–83Google Scholar
  8. Brown RD and Feldman AM (1978) Pharmacology of hearing and ototoxicity. Ann. Rev. Pharmacol. Toxicol. 18:233–252CrossRefGoogle Scholar
  9. Brummett RE (1981) Effects of antibiotic-diuretic interactions in the guinea pig model of ototoxicity. Rev. Infect. Dis. 3 (Suppl): S216–S223PubMedGoogle Scholar
  10. Brummett RE, Fox KE (1982) Studies of aminoglycoside ototoxicity in animal models. In: Whelton A and Neu HC (eds) Marcel Dekker, New York (The Aminoglycosides: Microbiology, Clinical Use, and Toxicology, p 419)Google Scholar
  11. Brummett RE, Hager G, Fox KE, Warchol M, Harpur EA (1984) Erythromycin-induced ototoxicity. Assoc. Res. Otolaryngol. Mid-Winter Meeting 7:25 (Abstract No. 36)Google Scholar
  12. Dallos P (1975) Electrical correlates of mechanical events in the cochlea. Audiology 14:408–418PubMedCrossRefGoogle Scholar
  13. Dallos P (1981) Cochlear physiology. Ann. Rev. Psychol. 32:153–190CrossRefGoogle Scholar
  14. Davis H (1957) Biophysics and physiology of the inner ear. Physiol. Rev. 37:1–49Google Scholar
  15. Davis H, Benson RW, Covell WP, Fernandez C, Goldstein R, Katsuki Y, Legouix J-P, McAuliffe DR, Tasaki I (1953) Acoustic trauma in the guinea pig. J. Acoust. Soc. Amer. 25:1180–1189CrossRefGoogle Scholar
  16. Dayal VS, Kokshanian A, Mitchell DP (1971) Combined effects of noise and kanamycin. Ann. Otol. Rhinol. Laryngol. 80:897–902PubMedGoogle Scholar
  17. Engstrom B (1983) Stereocilia of sensory cells in normal and hearing impaired ears: a morphological, physiological and behavioural study. Scand. Audiol. Suppl. 19:1–34Google Scholar
  18. Engstrom B, Borg E (1981) Lesions to cochlear inner hair cells induced by noise. Arch. Otorhinolaryngol. 230:279–284CrossRefGoogle Scholar
  19. Evans EF, Harrison RV (1975) Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J. Physiol. (London) 256:43P–44P (Abstract)Google Scholar
  20. Fausti SA, Schechter MA, Rappaport BZ, Frey RH, Mass RE (1984) Early detection of cisplatin ototoxicity. Cancer 53:224–231PubMedCrossRefGoogle Scholar
  21. Fleming SM, Peters GM, Weaver AW, Al-Sarraf M, Schumacher ME, Carey MK (1983) Ototoxicity associated with cis-platinum in three chemotherapy multi-drug regimens. Cancer 51:610–613PubMedCrossRefGoogle Scholar
  22. Gargye AK, Dutta DV (1959) Nerve deafness following chloromycetin therapy. Indian J. Pediatr. 26:265–266Google Scholar
  23. Gulick WL, Patterson WC (1964) The effects of chloramphenicol upon the electrical activity of the ear: II. long term data. Ann. Otol. Rhinol. Laryngol. 73: 204–209PubMedGoogle Scholar
  24. Henderson D, Hamernik RP, Salvi RJ, Ahroon WA (1983) Comparison of auditory-evoked potentials and behavioral thresholds in the normal and noise-exposed chinchilla. Audiology 22:172–180PubMedCrossRefGoogle Scholar
  25. Henley CM, Brown RD, Penny JE, Kupetz SA, Hodges KB, Jobe PC (1984) Impairment in cochlear function produced by chloramphenicol and noise. Neuropharmacology 23:197–202PubMedCrossRefGoogle Scholar
  26. Hodges K, Penny JE, Brown RD, Henley CM (1984) SEM of the cochlea in rats with Streptococcus pneumoniae otitis media. Arch. Otolaryngol 110:429–436.Google Scholar
  27. Hunter-Duvar IM (1977) A scanning study of acoustic lesions of the cochlea. In: Portmann M and Aran J-M (eds) INSERM, Paris (Inner Ear Biology, Vol. 68:385–396)Google Scholar
  28. Kisiel DL, Bobbin RP (1981) Miscellaneous ototoxic agents. In: Brown RD and Daigneault EA (eds) John Wiley & Sons, New York (Pharmacology of Hearing: Experimental and Clinical Bases, p 231)Google Scholar
  29. Koide Y, Hata A, Hando R (1966) Vulnerability of the organ of Corti in poisoning. Acta Otolaryngol. 61:332–344PubMedCrossRefGoogle Scholar
  30. Komune S, Snow JB (1981) Potentiating effects of cisplatin and ethacrynic acid in ototoxicity. Arch. Otolaryngol. 107:594–597PubMedCrossRefGoogle Scholar
  31. Kroboth PD, McNeil MA, Kreeger A, Dominguez J, Rault R (1983) Hearing loss and erythromycin pharmacokinetics in a patient receiving hemodialysis. Arch. Int. Med. 143:1263–1265CrossRefGoogle Scholar
  32. Lodhi S, Weiner ND, Mechigian I, Schacht J (1980) Ototoxicity of aminoglycosides correlated with their action on monomolecular films of polyphosphoinositides. Biochem. Pharmacol. 29:597–601Google Scholar
  33. Logan TB, Prazma J, Thomas WG, Fischer ND (1974) Tobramycin ototoxicity. Arch. Otolaryngol. 99:190–193Google Scholar
  34. Marques DM, Clark CS, Hawkins JE (1975) Potentiation of cochlear injury by noise and ototoxic antibiotics in guinea-pigs. J. Acoust. Soc. Amer. 57:S60 (Abstract No. CC1)CrossRefGoogle Scholar
  35. McHaney VA, Thibadoux G, Hayes FA, Green AA (1983) Hearing loss in children receiving cisplatin chemotherapy. J. Pediatr. 102:314–317PubMedCrossRefGoogle Scholar
  36. Miller SM (1982) Erythromycin ototoxicity. Med. J. Austral. 2:242–243PubMedGoogle Scholar
  37. Ohmura M, Yagi N, Kanoh N, Makimoto K (1982) Effect of glycerol on the EP decrease caused by furosemide. Acta Otolaryngol. 94:445–449PubMedCrossRefGoogle Scholar
  38. Penny JE, Hodges KB, Henley CM, Brown RD (1984) The effects of spontaneous otitis media on the rat organ of Corti. Anat. Rec. 208:135A–136AGoogle Scholar
  39. Prazma J (1981) Ototoxicity of aminoglycoside antibiotics. In: Brown RD and Daigneault EA (eds) John Wiley & Sons, New York (Pharmacology of Hearing: Experimental and Clinical Bases, p 153)Google Scholar
  40. Proud GO, Mittelman H, Seiden GD (1968) Ototoxicity of topically applied chloramphenicol. Arch. Otolaryngol. 87:580–587PubMedCrossRefGoogle Scholar
  41. Richner R, Hof E, Prader A (1979) Hearing impairment following therapy of Haemophilus influenzae meningitis. Heiv. Pediatr. Acta 34:443–447Google Scholar
  42. Santi PA, Ruggero MA, Nelson DA, Turner CW (1982) Kanamycin and bumetanide ototoxicity: anatomical, physiological and behavioral correlates. Hearing Res. 7:261–279CrossRefGoogle Scholar
  43. Sato Y (1969) The effect of chloramphenicol upon the oxygen consumption of the membranous cochlea. Laryngoscope 79:295–305PubMedCrossRefGoogle Scholar
  44. Sokabe M, Hayase J, Miyamoto K (1982) Neomycin effect on lysotriphosphoinositide channel as a model for an acute ototoxicity. Proc. Japan Acad. 58:177–180CrossRefGoogle Scholar
  45. Smith CR, Lietman PS (1983) Effect of furosemide on aminoglycoside-induced nephrotoxicity and auditory toxicity in humans. Antimicrob. Agents Chemother. 23:133–137Google Scholar
  46. Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol. 73:235–248PubMedCrossRefGoogle Scholar
  47. Stebbins WC, Miller JM, Johnsson LG, Hawkins JE (1969) Ototoxic hearing loss and cochlear pathology in the monkey. Ann. Otol. Rhinol. Laryngol. 78:1007–1025PubMedGoogle Scholar
  48. Stopp PE (1983) Effects on guinea pig chochlea from exposure to moderately intense broad-band noise. Hearing Res. 11:55–72CrossRefGoogle Scholar
  49. Strauss M, Towfighi J, Lord S, Lipton A, Harvey HA, Brown B (1983) Cis-Platinum ototoxicity: clinical experience and temporal bone histopathology. Laryngoscope 93:1554–1559.PubMedCrossRefGoogle Scholar
  50. Tachibana M, Anniko M, Schacht J (1983) Effects of perilymphatically perfused gentamicin on microphonic potential, lipid labeling and morphology of chochlear tissues. Acta Otolaryngol. 96:31–38PubMedCrossRefGoogle Scholar
  51. Vermorken JB, Kapteijn TS, Hart AAM, Pinedo HM (1983) Ototoxicity of cis-diamminedichloroplatinum (II): influence of dose, schedule and mode of administration. Eur. J. Cancer Clin. Oncol. 19:53–58PubMedCrossRefGoogle Scholar
  52. Vernon J, Brummett R, Brown R (1977) Noise trauma induced in the presence of loop-inhibiting diuretics. Trans. Amer. Acad Ophthalm. Otolaryngol. 84:407–413Google Scholar
  53. Woodford CM, Henderson D, Hamernik RP (1978) Effects of combinations of sodium salicylate and noise on the auditory threshold. Ann. Otol. Rhinol. Laryngol. 87:117–127PubMedGoogle Scholar
  54. Zajic G, Anniko M, Schacht J (1983) Cellular localization of adenylate cyclase in the developing and mature inner ear of the mouse. Hearing Res. 10:249–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. D. Brown
    • 1
  • C. M. Henley
    • 1
  • J. E. Penny
    • 2
  • S. Kupetz
    • 1
  1. 1.Departments of PharmacologyLSU Medical Center ShreveportUSA
  2. 2.AnatomyLSU Medical Center ShreveportLouisianaUSA

Personalised recommendations