Skip to main content

Experimental, Methodological and Analytical Approach to the Study of Microbe-Insecticide Interactions

  • Chapter
Insecticide Microbiology
  • 285 Accesses

Abstract

The heterogenity of biological, chemical and physical properties of microbial environments has presented many problems to understand the microbe-insecticide interactions. In fact, many studies have examined such interactions only under laboratory conditions and thus the scientific literature on this subject is dominated by in vitro studies with pure and mixed cultures of microorganisms (Ware and Roan 1970; Cox 1972; Tu and Miles 1976; Wainright 1978; Lal and Saxena 1980, 1982; Lal 1982; Lal and Dhanaraj 1984). Such studies have considerable scientific value but there has been an unfortunate and undesirable tendency to assume that they also reflect the interaction of insecticides with microorganisms in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal HC, Saxena DM, Lai R (1982) Accumulation and metabolism of DDT and its metabolites by Tetrahymena. Water Air Soil Pollut 18: 441–447

    Article  CAS  Google Scholar 

  • Aoki Y, Takeda M, Uchiyama M (1975) Comparative study of methods for the extraction of eleven organophosphorus pesticides residues in rice. J Assoc Off Anal Chem 58: 1286–1293

    PubMed  CAS  Google Scholar 

  • Anderson JR, Davies PI (1973) Investigations on the extraction of adenosine triphosphate from soil. Bull Ecol Res Commun 17: 271–273

    CAS  Google Scholar 

  • Ault JA, Schofield CM, Johnson LD, Waltz RH (1979) Automated gel permeation chromatographic preparation of vegetables, fruits and crops for organophosphate residue determination utilizing flame photometric detector. J Agric Food Chem 27: 825–828

    Article  PubMed  CAS  Google Scholar 

  • Ausmus BS (1973) The use of ATP in terrestrial decomposition studies. Bull Ecol Res Commun 17: 223–234

    CAS  Google Scholar 

  • Barry AL (1968) The accumulation of 14C-DDT by aquatic fungi. MSc thesis, Univ Salford

    Google Scholar 

  • Bertuzzi PF, Kamp L, Miles CI (1967) Extraction of chlorinated pesticide residues from non- fatty samples of low moisture content. J Assoc Off Anal Chem 50: 623–626

    CAS  Google Scholar 

  • Beynon KS, Elgar KE (1966) The analysis for residues of chlorinated insecticides and acari-cides. Analyst 91: 143–175

    Article  CAS  Google Scholar 

  • Braun HE, Stanek J (1982) Application of the AO AC multi residue method to determination of synthetic pyrethroid residues in celery and animal products. J Assoc Off Anal Chem 65: 685–695

    PubMed  CAS  Google Scholar 

  • Brown MJ (1975) Improved determination of residues of phorate and its principal metabolites. J Agric Food Chem 23: 334–335

    Article  PubMed  CAS  Google Scholar 

  • Burke JA (1971) Development of Food and Drug Administration’s method of analysis for multiple residues of organochlorine pesticide residues in foods and feeds. Residue Rev 34: 59–90

    PubMed  CAS  Google Scholar 

  • Burke JA, Porter ML, Young SJU (1971) Evaluation of two extraction procedures for pesticide residues resulting from foliar application and root absorption. J Assoc Off Anal Chem 54: 142–146

    PubMed  CAS  Google Scholar 

  • Butler B, Hormann WD (1981) High pressure liquid chromatographic determination of cap- tan, captafol and fotpet residues in plant material. J Agric Food Chem 29: 257–260

    Article  Google Scholar 

  • Cox JL (1972) DDT residues in marine phytoplankton. Residue Rev 44: 23–28

    PubMed  CAS  Google Scholar 

  • Dalton SA (1971) Uptake of 14C-DDT by river fungi and the effect of DDT on their growth and respiration. PhD thesis, Univ Salford

    Google Scholar 

  • Doxtader KG (1969) Estimation of microbial biomass in the soil on the basis of adenosine triphosphate measurements. Semin 69th Annu Meet Am Soc Microbiol, Miami, USA

    Google Scholar 

  • Drobnik J (1955) Spiting der Strake durch den enzymatischen Komplex der Boden. Folia Biol (Prague) 1: 29

    Google Scholar 

  • Environmental Protection Agency USA (1974) Manual analytical methods for the analysis of pesticide residues in environmental samples

    Google Scholar 

  • Faucheux LJ (1968) Rapid clean up for carbaryl, using thin layer chromatography. J Assoc Off Anal Chem 31: 676–678

    Google Scholar 

  • Goodwin ES, Goulden R, Raynolds JG (1961) Rapid identification and determination of residues of chlorinated pesticides in crops by gas-liquid chromatography. Analyst 86: 697–709

    Article  CAS  Google Scholar 

  • Goulding KH, Ellis W (1981) The interaction of DDT with two species of fresh water algae. Environ Pollut 25: 271–290

    Article  CAS  Google Scholar 

  • Gregory WW, John KR, Priester LE (1969) Accumulation of parathion and DDT by some algae and protozoa. J Protozool 16: 69–71

    PubMed  CAS  Google Scholar 

  • Griffritt KR, Graun JC (1974) Gel permeation chromatographic system. An evaluation. J Assoc Of T Anal Chem 57: 168–172

    Google Scholar 

  • Gunner HB, Zuckerman BM (1968) Degradation of diazinon by synergistic microbial action. Nature (London) 217: 1183–1184

    Article  CAS  Google Scholar 

  • Gunther FA (1962) Instrumentation in pesticide residue determination. Adv Pest Control Res 5: 191–319

    CAS  Google Scholar 

  • Hank AR, Colvin BM (1981) High performance liquid chromatography. In: Das KG (ed) Pesticide analysis. Dekker, New York Basel

    Google Scholar 

  • Hansen PD (1979) Experiments on the accumulation of lindane (y-BHC) by the primary producer Chlorella Spec, and Chlorella pyrenoidosa. Arch Environ Contam Toxicol 62: 1437–1441

    Google Scholar 

  • Hardin LJ, Starter CT(1962) Comparison of fine extraction procedure for the recovery of DDT residues in field treated collard. J Assoc Off Anal Chem 45: 988–990

    Google Scholar 

  • Hofmann E, Schmidt W (1953) Ãœber das Enzymsystem unserer Kulturbôden. 2 Urease. Bio- chem Z 324: 125–127

    CAS  Google Scholar 

  • Holden ER (1973) Gas chromatographic determination of residues of methyl carbamate insecticides in crop as their 2,4-dinitrophenyl ether derivatives. J Assoc Off Anal Chem 56: 713–717

    PubMed  CAS  Google Scholar 

  • Hopper ML (1981) Gel permeation system for removal of fat during analysis of foods for residues of pesticide and herbicide. J Assoc Off Anal Chem 64: 720–723

    PubMed  CAS  Google Scholar 

  • Johnen BG, Drew EA (1977) Ecological effects of pesticides on soil microorganisms. Soil Science 123: 319–324

    Article  CAS  Google Scholar 

  • Johnson LD, Waltz RH, Ussary JP, Kaiser FE (1976) Automated gel permeation chromatographic clean up of animal and plant extracts for pesticide residue determination. J Assoc Off Anal Chem 59: 174–196

    PubMed  CAS  Google Scholar 

  • Lal R (1982) Accumulation, metabolism and effects of organophosphorus insecticides on microorganisms. Adv Appl Microbiol 28: 149–200

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Dhanaraj PS (1984) Effects of pesticides on microbial nitrogen fixation. Adv Agron 37 (to be published)

    Google Scholar 

  • Lal R, Saxena DM (1980) Cytological and biochemical effects of insecticides on microorganisms. Residue Rev 73: 49–86

    PubMed  CAS  Google Scholar 

  • Lal R, Saxena DM (1982) Accumulation, metabolism and effects of insecticides on microorganisms. Microbiol Rev 46: 95–127

    PubMed  CAS  Google Scholar 

  • Lai R, Saxena DM, Agarwal HC (1981) Uptake and metabolism of DDT by ciliate protozoan Stylonychia notophora. Acta Protozool 20: 109–114

    Google Scholar 

  • Lantos AAJ, Visi E, Csatlos I (1981) General methods for estimation of pesticide residues in sample of plant origin, soil and water. 1. Extraction and clean up. J Assoc Off Anal Chem 64: 783–792

    Google Scholar 

  • Lawrence JF, Turton DA (1978) High performance liquid chromatographic data for 166 pesticides. J Chromatogr 159: 207–226

    Article  CAS  Google Scholar 

  • Lawrence JF, Renault C, Frei RW (1976) Fluorogenic labeling of organophosphonate pesticides with dansyl chloride. J Chromatogr 121: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein EP (1965) In: Chichester LO (ed) Research in pesticides. Academic Press, London New York, pp 199–203

    Google Scholar 

  • Luke MA, Froberg JE, Doosi GM, Masumoto HT (1981) Improved multiresidue gas chromatographic determination of organophosphorus, organonitrogen and organohalogen pesticides in produce using flame photometric and electrolytic conductivity detectors. J Assoc Off Anal Chem 64: 1187–1195

    PubMed  CAS  Google Scholar 

  • Matsumura F, Benezet J, Patil KC (1976) Factors affecting microbial metabolism of y-BHC. J PesticSci 1: 3–8

    Article  CAS  Google Scholar 

  • Mills PA, Oulers JH, Gather RA (1963) Rapid method for chlorinated pesticide residues in non fatty food. J Assoc Off Anal Chem 46: 186–191

    CAS  Google Scholar 

  • Mills PA, Boig BA, Kamps LR, Burke JA (1972) Elution solvent system for florisil column cleanup in organochlorine pesticide residue analysis. J Assoc Off Anal Chem 55: 39–43

    CAS  Google Scholar 

  • Moore-Landecker E, Stotzky CG (1972) Inhibition of the fungal growth and sporulation by volatile metabolites from bacteria. Can J Microbiol 18: 957–965

    Article  PubMed  CAS  Google Scholar 

  • Munnecke DM, Johnson LM, Talbot HW, Barik S (1982) Microbial metabolism and enzymology of selected pesticides. In: Chakrabraty AM (ed) Biodégradation and detoxification of environmental pollutants. CRC Press, Boca Raton, Fla, pp 1–32

    Google Scholar 

  • Nitikin DI, Makarieva ED (1970) Use of electron microscope for estimation of microorganisms in soil suspensions. Sov Soil Sci 1970: 608–612

    Google Scholar 

  • Ohisa N, Yamaguchi M (1978) Degradation of gamma-BHC in flooded soil enriched with peptone. Agrie Biol Chem 42: 1983–1987

    Article  CAS  Google Scholar 

  • Ohisa N, Yamaguchi M, Kurihara N (1980) Lindane degradation by cell free extracts of Clos- terium rectum. Arch Environ Contam Toxicol 125: 221–225

    CAS  Google Scholar 

  • Porter ML, Burke JA (1969) Modification of AO AC method for multiple residues in no fatty food for samples of high sugar content. J Assoc Off Anal Chem 52: 1280–1283

    CAS  Google Scholar 

  • Porter ML, Gajan RJ, Burke JA (1969) Acetonitrile extraction and determination of carbaryl I fruits and vegetables. J Assoc Off Anal Chem 52: 177–181

    CAS  Google Scholar 

  • Ranteiner RA, Hormann WD (1975) Coupling high pressure liquid chromatography with cho linestrase inhibition Auto Analyser for determination of organophosphate and carbamate insecticides Residues. J Chromatogr 104: 438–442

    Article  Google Scholar 

  • Runkles JR, Scott AD, Nakayama FS (1958) Establishment of free living nitrogen-fixing bacteria in the rhizosphere and their effect on maize, tomato and wheat. Plant Soil 19:304–314

    Google Scholar 

  • Saxena DM, Lai R, Reddy BVP (1982) DDT uptake and metabolism in Blepharisma intermedium. Acta Protozool 21: 173–175

    Google Scholar 

  • Sethunathan N, Siddaramappa R, Rajaram KP, Barik S, Wahid PA (1977) Parathion residues in soil and water. Residue Rev 68:91—122 Skujins JJ (1967) In: Mclaren AD, Peterson GH (eds) Enzymes in soil. Dekker, New York, pp 371–414

    Google Scholar 

  • Skujins JJ (1967) In: Mclaren AD, Peterson GH (eds) Enzymes in soil. Dekker, New York, pp 371–414

    Google Scholar 

  • Storherr RW, Ott P, Watts RR (1971) A general method for organophosphorus pesticide residues in non-fatty foods. J Assoc Off Anal Chem 54: 513–524

    PubMed  CAS  Google Scholar 

  • Stotzky G (1965) Microbial respiration. In: Black CA (ed) Methods of soil analysis, part 2. Chemical and microbiological properties. Am Soc Agron, Madison, pp 1550–1572

    Google Scholar 

  • Stotzky G (1972) Activity, ecology and population dynamics of microorganisms. Crit Rev Microbiol 2: 59–137

    Article  CAS  Google Scholar 

  • Suzuki T, Ischikawa K, Sato N, Sakai K (1979) Determination of chlorinated pesticide residues in foods II potassium permanganate oxidation for clean up of some vegetables. J Assoc Off Anal Chem 62: 685–688

    CAS  Google Scholar 

  • Tchan YT (1952) Counting soil algae by direct fluorescent microscopy. Nature (London) 170: 328–329

    Article  CAS  Google Scholar 

  • Tchan YT (1959) Study of soil algae III. Bioassay of soil fertility by algae. Plant Soil 10: 220–231

    Article  Google Scholar 

  • TU CM, Miles JRW (1976) Interaction between insecticides and soil microbes. Residue Rev 64: 17–66

    PubMed  Google Scholar 

  • Wainright M (1978) A review of the effects of pesticides on microbial activity in soil. J Soil Sci 29: 287–298

    Article  Google Scholar 

  • Ware CW, Roan CC (1970) Interaction of pesticides with aquatic microorganisms and plankton. Residue Rev 33: 15–45

    PubMed  CAS  Google Scholar 

  • Wheeler WB, Frear DEH, Mumma RO, Hamilton RH, Cotner RC (1967) Quantitative extraction of root absorbed dieldrin from the aerial parts of forage crops. J Agric Food Chem 15: 227–230

    Article  CAS  Google Scholar 

  • Yamato Y, Suzuki M, Watanbe T (1976) Organochlorine insecticides on mixed phase systems, II OV-l/OV-25, OV-210/OV-25 and OV-225/OV-25 systems. J Assoc Off Anal Chem 59: 1180–1183

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lal, R., Agnihotri, N.P. (1984). Experimental, Methodological and Analytical Approach to the Study of Microbe-Insecticide Interactions. In: Lal, R. (eds) Insecticide Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69917-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69917-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69919-1

  • Online ISBN: 978-3-642-69917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics