The maximum firing rate of the “final common pathway„ is limited to 50–60 imp/sec by mechanisms such as stretch reflex, tension limitation by Golgi tendon organs, presynaptic inhibition and Renshaw inhibition. Spinal mechanisms with stereotypic patterns would, for example, interrupt static contractions by excitation of Golgi tendon organs. By means of Hoffmann’ reflex investigations gonistic facilitation and antagonistic inhibition can be demonstrated. Immediately after increased H-potential by agonistic innervation a silent period can be observed, which is partially due to spinal limitations.

The flexibility of spinal controls in muscle spindle mechanism is performed either by γ-loop-innervation or direct activation of α-motoneurons. The other limiting mechanisms differ at their interneurons, which can be excited (stabilization) or inhibited (enhanced motor ability) by central pathways. In highly trained athletes the firing rate limits of the final common pathway can probably be reduced or cancelled out. This is probably one of the reasons, why sport injuries occur more frequently in highly trained athletes.

Flexibility of Spinal Control Mechanisms; Advantages and Dangers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burg D, Szumski AJ, Struppler A, Velho F (1973) Afferent and efferent activation of human muscle receptors involved in reflex and voluntary contraction. Exp Neurol 41:754PubMedCrossRefGoogle Scholar
  2. 2.
    Henatsch H-D (1976) Bauplan der peripheren und zentralen sensomotorischen Kontrollen. In: Gauer OH, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd XIV: Sensomotorik. Urban & Schwarzenberg, MünchenGoogle Scholar
  3. 3.
    Jung R (1976) Einführung in die Bewegungsphysiologie. In: Gauer OH, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd XIV: Sensomotorik. Urban & Schwarzenberg, MünchenGoogle Scholar
  4. 4.
    Myers SJ, Lovelace RE (1971) The motor unit and muscle action potentials. In: Downey JA, Darling RC (eds) Physiological basis of rehabilitation medicine. Saunders, PhiladelphiaGoogle Scholar
  5. 5.
    Person RS (1974) Die Arbeit der Muskeln bei den Bewegungsakten des Menschen. In: Pickenhain S (Hrsg) Sportphysiologie. VEB Volk und Gesundheit, BerlinGoogle Scholar
  6. 6.
    Stoboy H (1980a) Reflektorische Kontrolle und Muskeltätigkeit. In: Witt AN, Rettig H, Schlegel KF, Hackenbroch M, Hupfauer W (Hrsg) Orthopädie in Praxis und Klinik, Bd. I: Allgemeine Orthopädie. Thieme, Stuttgart New YorkGoogle Scholar
  7. 7.
    Stoboy H (1980b) Physiologie der Skelettmuskulatur in ihrer Anpassung auf sportliche Belastungen unter besonderer Berücksichtigung der Flexibilität spinaler Reflexmechanismen. In: Nowacki PE, Böhmer D (Hrsg) Sportmedizin — Aufgaben und Bedeutung für den Menschen in unserer Zeit. Thieme, StuttgartGoogle Scholar
  8. 8.
    Struppler A (1974) Elektromyographie der zentralen Innervationsstörungen. In: Hopf HC, Struppler A (Hrsg) Elektromyographie. Thieme, StuttgartGoogle Scholar
  9. 9.
    Vallbo AB (1971) Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeleto-motor effects. J Physiol (Lond) 218:413Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Stoboy

There are no affiliations available

Personalised recommendations