Skip to main content

A Direct Correlation Between the Affinity of a Given mRNa for Eukaryotic Initiation Factor 2 and its Ability to Compete in Translation

  • Conference paper
Mechanisms of Protein Synthesis

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 73 Accesses

Abstract

Eukaryotic gene expression is often regulated by the selective translation of specific mRNA templates over other ones. Examples of this type of control, involving competition between mRNA species, are encountered in cellular differentiation and virus infection. Messenger RNA competition is thought to occur mainly at initiation of translation, during the recognition of mRNA and its binding to ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrieux A, Rosenfeld MG (1977) Characterization of GTP-dependent Met-NAf binding protein, J Biol Chem 252: 3843–3847

    PubMed  CAS  Google Scholar 

  • Barrieux A, Rosenfeld MG (1978) NA-induced dissociation of initiation factor 2. J Biol Chem 253: 6311–6315

    PubMed  CAS  Google Scholar 

  • Browning KS, Leung DW, Clark JM Jr (1980) Protection of satellite tobacco necrosis virus ribonucleic acid by wheat germ 40 S and 80 S ribosomes. (Biochemistry 19: 2276–2282

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Stringer EA, Valenzuela D, Maitra U (1981) Characterization of F-2 containing two polypeptide chains of Mr = 48,000 and 38,000. J Biochem (Tokyo) 256:3988–3994

    CAS  Google Scholar 

  • Chen Y, Woodley C, Bose K, Gupta NK (1972) Protein synthesis in rabbit reticulocytes: characteristics of a Met-tRNAMet binding factor. Biochem Biophys Res Commun 48: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Clemens MJ, Safer B, Merrick WC, Andersen WF, London IM (1975) Inhibition of protein synthesis in rabbit reticulocyte lysates by double stranded RNA and oxidized glutathione: indirect mode of action on polypeptide chain initiation. Proc Natl Acad Sci USA 72: 1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Collins P, Fuller F, Marcus P, Hightower L, Ball LA (1982) Synthesis and processing of Sindbis virus nonstructural proteins in vitro. Virology 118: 363–379

    Article  PubMed  CAS  Google Scholar 

  • Daniels-Mueen S, Detjen B, Grifo JA, Merrick WC, Thach RE (1983) Unusual requirements for optimum translation of polio viral RNA in vitro. J Biol Chem 258: 7195–7199

    Google Scholar 

  • Darnbrough CH, Legon S, Hunt T, Jackson RJ (1973) Initiation of protein synthesis: evidence for messenger RNA independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J Mol Biol 76: 379–403

    Article  PubMed  CAS  Google Scholar 

  • Di Segni G, Rosen H, Kaempfer R (1979) Competition between α- and β-globin messenger ribonucleic acids for eukaryotic initiation factor 2. Biochemistry 18: 2847–2854

    Article  PubMed  Google Scholar 

  • Grifo JA, Tahara SM, Leis JP, Morgan MA, Shatkin AJ, Merrick WS (1982) Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem 257: 5246–5252

    PubMed  CAS  Google Scholar 

  • Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC (1983) New initiation factor activity required for globin mRNA translation. J Biol Chem 258: 5804–5810

    PubMed  CAS  Google Scholar 

  • Hackett PB, Egberts E, Traub P (1978a) Selective translation of mengovirus RNA over host mRNA in homologous, fractionated, cell-free translational systems from Ehrlich-ascites tumor cells. Eur J Biochem 83: 353–361

    Article  PubMed  CAS  Google Scholar 

  • Hackett PB, Egberts E, Traub P (1978b) Translation of ascites and mengovirus RNA in fractionated cell-free systems from uninfected and mengovirus-infected Ehrlich-ascites tumor cells. Eur J Biochem 83: 341–352

    Article  PubMed  CAS  Google Scholar 

  • Hershey JWB (1982) The initiation factors. In: Perez-Bercoff R (ed) Protein biosynthesis in eukaryotes. Plenum, New York, pp 97–117

    Google Scholar 

  • Jackson RJ (1982) The cytoplasmic control of protein synthesis. In: Perez-Bercoff R (ed) Protein biosynthesis in eukaryotes. Plenum, New York, pp 363–418

    Google Scholar 

  • Kaempfer R (1974) Identification and RNA binding properties of an initiation factor capable of relieving translational inhibition induced by heme deprivation or double-stranded RNA. Biochem Biophys Res Commun 61: 591–597

    Article  CAS  Google Scholar 

  • Kaempfer R (1979) Purification of initiation factor F-2 by RNA-affinity chromatography. In: Grossman L, Moldave K (eds) Methods in enzymology, vol LX, part G. Academic, New York, pp 247–255

    Google Scholar 

  • Kaempfer R (1984) Regulation of eukaryotic translation. In: Fraenkel Conrat H, Wagner RR (eds) Comprehensive virology, vol XIX. Plenum, New York, pp 99–175

    Google Scholar 

  • Kaempfer R, Konijn AM (1983) Translational competition by mRNA species encoding albumin, ferritin, hemopexin and globin. Eur J Biochem 131: 545–550

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Hollender R, Abrams WR, Israeli R (1978a) Specific binding of messenger RNA and methionyl-tRNAMet by the same initiation factor for eukaryotic protein synthesis. Proc Natl Acad Sci USA 75: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Rosen H, Israeli R (1978b) Translational control: recognition of the 5’ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNAf Met. Proc Natl Acad Sci USA 75: 650–654

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Hollender R, Soreq H, Nudel U (1979a) Recognition of messenger RNA in eukaryotic protein synthesis: equilibrium studies of the interaction between messenger RNA and the initiation factor that binds methionyl-tRNAf. Eur J Biochem 94: 591–600

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Israeli R, Rosen H, Knoller S, Zilberstein A, Schmidt A, Revel M (1979b) Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2. Virology 99: 170–173

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Van Emmelo J, Fiers W (1981) Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5’-terminal sequence comprising the ribosome binding site. Proc Natl Acad Sci USA 78: 1542–1546

    Article  PubMed  CAS  Google Scholar 

  • Kaempfer R, Rosen H, Di Segni G, Knoller S (1983) Structural feature of picornavirus RNA involved in pathogenesis: a very high affinity binding site for a messenger RNA-recognizing protein. In: Kohn A, Fuchs P (eds) Developments in molecular virology, vol VI: mechanisms of viral pathogenesis. Martinus Nijhoff, The Hague, pp 180–200

    Google Scholar 

  • Kozak M (1980a) Influence of mRNA secondary structure on binding and migration of 40 S ribosomal subunits. Cell 19: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1980b) Role of ATP in binding and migration of 40 S ribosomal subunits. Cell 22: 459–467

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47: 1–45

    PubMed  CAS  Google Scholar 

  • Lawrence C, Thach RE (1974) Encephalomyocarditis virus infection of mouse plasmacytoma cells. I. Inhibition of cellular protein synthesis. J Virol 14: 598–610

    PubMed  CAS  Google Scholar 

  • Lee KAW, Guertin D, Sonenberg N (1983) mRNA secondary structure as a determinant in cap recognition and initiation complex formation. J Biol Chem 258: 707–710

    PubMed  CAS  Google Scholar 

  • Leung DW, Browning DS, Heckmann JE, Rahandary UL, Clark JM Jr (1979) Nucleotide sequence of the 5’ terminus of satellite tobacco necrosis virus ribonucleic acid Biochemistry 18: 1361–1366

    CAS  Google Scholar 

  • Levin DH, Kyner D, Acs G (1973) Protein initiation in eukaryotes: formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate. Proc Natl Acad Sci USA 70: 41–45

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Riggs AD (1975) A comparison of lac repressor binding to operator and nonoperator DNA. Biochem Biophys Res Commun 62: 704–710

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (1971) Alpha and beta globin mRNA: different amounts and rates of initiation of translation. J Biol Chem 246: 7131–7138

    PubMed  CAS  Google Scholar 

  • Lodish HF (1974) Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature (Lond) 251: 385–388

    Article  CAS  Google Scholar 

  • Morgan MA, Shatkin AJ (1980) Initiation of reovirus transcription by ITP and properties of m7I- capped, inosine-substituted mRNAs. Biochemistry 19: 5960–5966

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Perez-Bercoff R, Kaempfer R (1982) Genomic RNA of mengovirus: recognition of common features by ribosomes and eukaryotic initiation factor 2. J Virol 41: 30–41

    PubMed  CAS  Google Scholar 

  • Ray BK, Brendler TG, Adya S et al. (1983) Role of mRNA competition in regulating translation: further characterization of mRNA discriminatory factors. Proc Natl Acad Sci USA 80: 663–667

    Article  PubMed  CAS  Google Scholar 

  • Rose JK (1980) Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus. Cell 19: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Rosen H, Kaempfer R (1979) Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiator factor 2. Biochem Biophys Res Commun 91: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Rosen H, Knoller S, Kaempfer R (1981a) Messenger RNA specificity in the inhibition of eukaryotic translation by double-stranded RNA. Biochemistry 20: 3011–3020

    Article  PubMed  CAS  Google Scholar 

  • Rosen H, Di Segni G, Kaempfer R (1982) Translational control by messenger RNA competition for eukaryotic initiation factor 2. J Biol Chem 257: 946–952

    PubMed  CAS  Google Scholar 

  • Schreier MH, Staehelin T (1973) Initiation of eukaryotic protein synthesis: (Met-tRNAf. 40 S ribo- some) initiation complex catalysed by purified initiation factors in the absence of mRNA. Nature New Biol 242: 35–38

    PubMed  CAS  Google Scholar 

  • Seal SN, Schmidt A, Tomaszewski M, Marcus A (1978) Inhibition of mRNA translation by the cap analogue, 7-methylguanosine-5’-phosphate. Biochem Biophys Res Commun 82: 553–559

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N (1981) ATP/Mg2+-dependent cross-linking of cap binding proteins to the 5’ end of eukaryotic mRNA. Nucleic Acids Res 9: 1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Guertin D, Lee KAW (1982) Capped mRNAs with reduced secondary structure can function in extracts of poliovirus-infected cells. Mol Cell Biol 2: 1633–1638

    PubMed  CAS  Google Scholar 

  • Trachsel H, Erni B, Schreier M, Staehelin T (1977) Initiation of mammalian protein synthesis. The assembly of the initiation complex with purified initiation factors. J Mol Biol 116: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Villareal LP, Breindl M, Holland JJ (1976) Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry 15: 1663–1667

    Article  Google Scholar 

  • von Hippel P, Revzin A, Gross CA, Wang AC (1974) Non-specific DNA binding of genome regulating proteins as biological control mechanism. Thelac operon: equilibrium aspects. Proc Natl Acad Sci USA 71: 4808–4812

    Article  Google Scholar 

  • Weber LA, Hickey ED, Maroney PA, Baglioni C (1977) Inhibition of protein synthesis by Cl-. J Biol Chem 252: 4007–4010

    PubMed  CAS  Google Scholar 

  • Zagorska L, Chroboczek J, Klita S, Szafranski P (1982) Effect of secondary structure of mRNA on the formation of initiation complexes with prokaryotic and eukaryotic ribosomes. Eur J Biochem 122: 265–269

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Kaempfer, R., Rosen, H., Di Segni, G. (1984). A Direct Correlation Between the Affinity of a Given mRNa for Eukaryotic Initiation Factor 2 and its Ability to Compete in Translation. In: Bermek, E. (eds) Mechanisms of Protein Synthesis. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69912-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69912-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69914-6

  • Online ISBN: 978-3-642-69912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics