The Foundations of Probability

  • Arnold M. Faden


1. From Economics of Space and Time to the Foundations of Probability. My book (Faden, 1977, abbreviated EST) scarcely mentions probability, and yet in retrospect there is a clear path from EST to the present essay. Let me begin, then, by tracing this path.


Cognitive Perspective Probability Zero Probability Judgment Ergodic Process Limited Stock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Beckmann, A continuous model of transportation, Econometrica, 20 (October, 1952): 643–60.CrossRefGoogle Scholar
  2. M. Beckmann, The partial equilibrium of a continuous space market, Weltwirtsch. Archiv, 71 (1953): 73–87.Google Scholar
  3. G. E.P. Box & G.M. Jenkins, Time Series Analysis: Forecasting & Control (Holden Day, San Francisco, 2nd ed, 1976).Google Scholar
  4. B. de Finetti, Foresight: its logical laws, its subjective sources, 1937, translated in H. G. Kyburg and H. E. Smokier, Studies in Subjective Probability (Wiley, New York, 1964).Google Scholar
  5. A. M. Faden, Economics of Space and Time: The Measure-Theoretic Foundations of Social Science (Iowa State University Press, Ames, Iowa 1977).Google Scholar
  6. A. M. Faden & G. C. Rausser, Econometric Policy Model Construction: the post-Bayesian approach, Annals Econ. Soc. Meas., 5 (1976): 349–62.Google Scholar
  7. T. Fine, Theories of Probability (Academic Press, New York, 1973).Google Scholar
  8. I. Hacking, The Emergence of Probability (Cambridge University Press, New York, 1975).Google Scholar
  9. Konrad Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie (Springer, Berlin, 1960).Google Scholar
  10. E. T. Jaynes, Prior probabilities, IEEE Trans, on Systems Science and Cybernetics, SSC-4, Sept. 1968, 227–241.CrossRefGoogle Scholar
  11. H. Jeffreys, Theory of Probability (Clarendon Press, Oxford, 3rd ed, 1961).Google Scholar
  12. L. Kantorovitch, On the translocation of masses, Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 37 no. 7–8 (1942): 199–201.Google Scholar
  13. W. J. M. Kickert, Fuzzy Theories on Decision-Making (Nijhoff, The Hague, 1970).Google Scholar
  14. A. Maitra, Integral representations of invariant measures, Trans. Am. Math. Soc., 229 (1977): 207–225.CrossRefGoogle Scholar
  15. G. Polya, Mathematics and Plausible Reasoning (Princeton University Press, Princeton, 1954).Google Scholar
  16. K. Popper, Conjectures and Refutations; the Growth of Scientific Knowledge (Basic Books, New York, 1982).Google Scholar
  17. H. A. Simon, Models of Bounded Rationality (MIT Press, Cambridge, 1982), 2 vols.Google Scholar
  18. C. A. B. Smith, Consistency in statistical inference and decision, J. Royal Stat. Soc., B 23 (1961): 1–25.Google Scholar
  19. A. Tversky & D. Kahneman, Judgment under uncertainty: heuristics and biases, Science, 183 (1974): 1124–1131.CrossRefGoogle Scholar
  20. R. L. Winkler, The assessment of prior distributions in Bayesian analysis, J. Am. Stat. Assn., 62 (1967): 776–800.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Arnold M. Faden
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations