Skip to main content

Neue Verfahren zur Messung von Durchblutung und Metabolismus des Gehirns

  • Conference paper
Notwendiges und nützliches Messen in Anästhesie und Intensivmedizin
  • 37 Accesses

Zusammenfassung

Die Messung der Hirndurchblutung und des Hirnstoffwechsels mit Indikatorsubstanzen beim Menschen wurden durch die Pionierarbeiten von Kety u. Schmidt ab 1945 erstmals möglich. Durch Gewinnung von Blutproben aus den zu- und abführenden zerebralen Gefäßen war zunächst nur eine Bestimmung für das gesamte Gehirn möglich. Mit der Einführung radioaktiver Indikatorsubstanzen und entsprechender externer Nachweisverfahren konnten dann regionale Messungen durchgeführt werden. In den letzten Jahren haben sich nun durch „single photon emission computer tomography“ (SPECT) und Positronenemissionstomographie (PET) Möglichkeiten zur Untersuchung von Hirndurchblutung und Hirnstoffwechsel mit räumlicher, dreidimensionaler Auflösung eröffnet, und teilweise werden derartige Untersuchungsverfahren auch für dynamische Computertomographie sowie Kernspintomographie (NMR) entwickelt. Diese neuen Verfahren und die wichtigsten bisher erzielten Ergebnisse sollen im folgenden vorgestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baldy-Moulinier M, Ingvar DH, Meldrum BS (eds) (1983) Cerebral blood flow, metabolism and epilepsy. Libbey, London Paris

    Google Scholar 

  • Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P (1981) Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. Stroke 12:454–459

    Article  PubMed  CAS  Google Scholar 

  • Bergström M, Eriksson L, Böhm C, Blomqvist G, Litton J (1983 a) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7:42–50

    Article  PubMed  Google Scholar 

  • Bergström M, Collins VP, Ehrin E et al. (1983 b) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using (68Ga) EDTA, (11C) glucose, and (11C) methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  Google Scholar 

  • Bottomley PA, Hart HR Jr, Edelstein WA et al. (1984) Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology 150:441–446

    PubMed  CAS  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79:3523–3526

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure, and normal values. J Comput Assist To-mogr 4:727–736

    Article  CAS  Google Scholar 

  • Gibbs JM, Wise RJS, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet I:310–314

    Article  Google Scholar 

  • Haselgrove JC, Subramanian VH, Leigh JS Jr, Gyulai L, Chance B (1983) In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Science 220:1170–1173

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Phelps ME (eds) (1983) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glu-cose. J Cereb Blood Flow Metab 4:212–223

    Article  PubMed  CAS  Google Scholar 

  • Hilal SK, Maudsley AA, Simon HE et al. (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR 4:245–249

    PubMed  CAS  Google Scholar 

  • Holden JE, Gatley SJ, Hichwa RD, Ip WR, Shaughnessy WJ, Nickles RJ, Polcyn RE (1981) Cerebral blood flow using PET measurements of fluoromethane kinetics. J Nucl Med 22:1084–1088

    PubMed  CAS  Google Scholar 

  • Holman BL, Lee RGL, Hill TC, Lovett RD, Lister-James J (1984) A comparison of two cerebral perfusion tracers, N-isopropyl I-123 p-iodoamphetamine and I-123 HIPDM, in the human. J Nucl Med 25:25–30

    PubMed  CAS  Google Scholar 

  • Huang SC, Carson RE, Hoffman EJ, Carson J, McDonald N, Barrio JR, Phelps ME (1983) Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 3:141–153

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Lassen NA (eds) (1975) Brain work. Munksgaard, Copenhagen

    Google Scholar 

  • Ingvar DH, Lassen NA (1982) Atraumatic two-dimensional rCBF measurements using stationary detectors and inhalation or intravenous administration of 133-Xenon. J Cereb Blood Flow Metab 2:271–274

    Article  PubMed  CAS  Google Scholar 

  • Koeppe RA, Holden JE, Polcyn RE, Nickles RJ, Hutchins GD, Weese JL (in press) Absolute quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validation. J Cereb Blood Flow Metab

    Google Scholar 

  • Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Barrio JR, Huang SC et al. (1982 a) Quantifying local cerebral blood flow by N-isopropyl-p- (123I)iodoamphetamine (IMP) tomography. J Nucl Med 23:196–203

    PubMed  CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982 b) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Jones T (1983) Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab 3:416–424

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Ingvar DH (1963) Regional cerebral blood flow measurement in man. Arch Neurol 9:615–622

    Google Scholar 

  • Lassen NA, Henriksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography. Stroke 12:284–288

    Article  PubMed  CAS  Google Scholar 

  • Leon MJ de, Ferris SH, George AE et al. (1983) Positron emission tomographic studies of aging and Alzheimer disease. AJNR 4:568–571

    PubMed  Google Scholar 

  • Litton J, Bergström M, Eriksson L, Bohm C, Blomqvist G, Kesselberg M (1984) Performance study of the PC-384 positron camera system for emission tomography of the brain. J Comput Assist Tomogr 8:74–87

    Article  PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME (1984) Human sensory stimulation and deprivation: Positron emission tomographic results and strategies. Ann Neurol [Suppl] 15:50–60

    Google Scholar 

  • Meyer JS, Hayman LA, Amano T et al. (1981) Mapping local blood flow of human brain by CT scanning during stable Xenon inhalation. Stroke 12:426–436

    Article  PubMed  CAS  Google Scholar 

  • Mills CM, Brant-Zawadzki M, Crooks LE et al. (1983) Nuclear magnetic resonance: Principles of blood flow imaging. AJNR 4:1161–1166

    Google Scholar 

  • Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Watari H (1984) In vivo measurement of energy metabolism and the concomitant monitoring of electroencephalogram in experimental cerebral ischaemia. Brain Res 296:370–372

    Article  PubMed  CAS  Google Scholar 

  • Obrist WD, Thompson HK, King CH, Wang HS (1967) Determination of regional cerebral blood flow by inhalation of 133-Xenon. Circ Res 20:124–135

    PubMed  CAS  Google Scholar 

  • Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Chiro G Di (1983) Gly-colytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR 4:533–535

    PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC, Baxter L, Gerner R (1984) Positron emission tomographic study of affective disorders: Problems and strategies. Ann Neurol [Suppl] 15:149–156

    Google Scholar 

  • Prichard JW, Alger JR, Behar KL, Petroff OAC, Shulman RG (1983) Cerebral metabolic studies in vivo by 31P NMR. Proc Natl Acad Sci USA 80:2748–2751

    Article  PubMed  CAS  Google Scholar 

  • Pykett IL (1982) Kernspintomographie: Röntgenbilder ohne Röntgenstrahlen. Spektrum Wissensch 2:40–55

    Google Scholar 

  • Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J (1983) Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 24:790–798

    PubMed  CAS  Google Scholar 

  • Rhodes CG, Wise RJS, Gibbs JM et al. (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14:614–626

    Article  PubMed  CAS  Google Scholar 

  • Roland PE (1982) Cortical regulation of selective attention in man. A regional cerebral blood flow study. J Neurophysiol 48:1059–1078

    PubMed  CAS  Google Scholar 

  • Singer JR, Crooks LE (1983) Nuclear magnetic resonance blood flow measurements in the human brain. Science 221:654–656

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C et al. (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Thulborn KR, Boulay GH Du, Duchen LW, Radda G (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J Cereb Blood Flow Metab 2:299–306

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Gotoh F (1981) Local cerebral blood flow values as estimated with diffusible tracers: Validity of assumptions in normal and ischemic tissue. J Cereb Blood Flow Metab 1:403–411

    Article  PubMed  CAS  Google Scholar 

  • Veall N, Mallett BL (1965) The partition of tracer amounts of Xenon between human blood and brain tissues at 37 °C. Phys Med Biol 10:375–380

    Article  CAS  Google Scholar 

  • Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14:627–637

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herholz, K., Heiss, WD., Pawlik, G., Wienhard, K. (1985). Neue Verfahren zur Messung von Durchblutung und Metabolismus des Gehirns. In: Rügheimer, E., Pasch, T. (eds) Notwendiges und nützliches Messen in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69893-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69893-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13637-8

  • Online ISBN: 978-3-642-69893-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics