Physiology of Kidney Development

  • A. Spitzer
  • J. E. Robillard
  • D. N. Weismann
  • N. A. Ayres
  • R. A. Gomez
  • K. T. Nakamura
  • R. L. Chevalier
Conference paper


Intrinsic to the process of growth is the maintenance of a positive balance for a variety of substances, including minerals. Phosphate is not only an important constituent of bone but also of soft tissue and, in particular, of muscle, liver, and brain. It is of interest to note that the plasma phosphate concentration bears a direct relationship to the rate of growth, suggesting, but not proving, that an environment high in phosphate is essential to the accretion of new tissue.


Glomerular Filtration Rate Renal Mass Mean Arterial Blood Pressure Urinary Flow Rate Renal Denervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17: 163–171PubMedGoogle Scholar
  2. Caverzasio J, Bonjour JP, Fleisch H (1982) Tubular handling of Pi in young growing and adult rats. Am J Physiol 242: F705–710PubMedGoogle Scholar
  3. Choi Y, Feld LG, Kinne R, Spitzer A (1983) Mechanism of phosphate transport by the kidney of the newborn. Pediatr Res 17: 347AGoogle Scholar
  4. Daniels AL, Hutton MK, Knott EM, Wright 0E, Forman F (1935) Calcium and phosphorus needs of preschool children. J Nutrition 10: 373–388Google Scholar
  5. Dean RFA, McCance RA (1948) Phosphate clearance in infants and adults. J Physiol (Lond) 107: 182–186Google Scholar
  6. Fetterman GH, Shuplock NA, Phillipp FJ, Gregg MS (1965) The growth and maturation of human glomeruli and proximal convolutions from term to adulthood. Pediatrics 35: 601–619PubMedGoogle Scholar
  7. Fomon SJ (1974) Infant nutrition. Saunders, Philadelphia, p 272Google Scholar
  8. Hay DA, Evan A (1979) Maturation of the proximal tubule in the puppy kidney: a comparison to the adult. Anat Rec 195: 273–299PubMedCrossRefGoogle Scholar
  9. Horster M, Larsson L (1976) Mechanisms of fluid absorption during proximal tubule development. Kidney Int 10: 348–363PubMedCrossRefGoogle Scholar
  10. Johnson V, Spitzer A (1981) Reabsorption of phosphate during development by the isolated perfused kidney. Pediatr Res 15: 694AGoogle Scholar
  11. Larsson L (1975) The ultrastructure of the developing proximal tubule in the rat. J Ultrastruct Res 51: 119–139PubMedCrossRefGoogle Scholar
  12. McCrory WW, Forman CW, McNamara H, Barnett HL (1952) Renal excretion of inorganic phosphate in newborn infants. J Clin Invest 31: 357–365PubMedCrossRefGoogle Scholar
  13. Nordin BCE (1976) Calcium, phosphate and magnesium metabolism. Churchill Livingston, New York, p 78Google Scholar
  14. Russo JC, Nash MA (1980) Renal response to alterations in dietary phosphate in the young beagle. Biol Neonate 38: 1–10PubMedCrossRefGoogle Scholar
  15. Spitzer A (1982) The role of the kidney in sodium homeostasis during maturation. Kidney Int 21: 539–545PubMedCrossRefGoogle Scholar
  16. Spitzer A, Spitzer C (1983) Renal energy metabolism in the newborn. Pediatr Res 17: 357AGoogle Scholar
  17. Staum BB, Hamburger RJ, Goldberg M (1972) Tracer microinjection study of renal tubular phosphate reabsorption in the rat. J Clin Invest 51: 2271–2276PubMedCrossRefGoogle Scholar
  18. Widdowson EM, McCance RA (1965) The metabolism of calcium, phosphorus, magnesium and strontium. Pediatr Clin North Am 12: 595–614PubMedGoogle Scholar
  19. Alward CT, Hook JB, Helmrath TA, Bailie MD (1978) Effects of asphyxia on renal function in the newborn piglet. Pediatr Res 12: 225–228PubMedGoogle Scholar
  20. Ayres NA, Robillard JE (1983) The role of arginine vasopressin in the modulation of the cardiovascular response in the hypoxemic lamb. American Heart Association Meetings, 1983 (Abstract)Google Scholar
  21. Broberger U, Aperia A (1978) Renal function in idiopathic distress syndrome. Acta Paediatr Scand 67: 313–319PubMedCrossRefGoogle Scholar
  22. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120: 817–824PubMedGoogle Scholar
  23. Dauber IM, Krauss AN, Synchych PS, Auld PAM (1976) Renal failure following perinatal anoxia. J Pediatr 88: 851–855PubMedCrossRefGoogle Scholar
  24. Daniel SS, James LS (1976) Abnormal renal function in the newborn infant. J Pediatr 88: 856–858PubMedCrossRefGoogle Scholar
  25. Daniel SS, Yeh MN, Bowe ET, Fukunaga A, James LS (1975) Renal response of the lamb fetus to partial occlusion of the umbilical cord. J Pediatr 87: 788–794PubMedCrossRefGoogle Scholar
  26. Daniel SS, Husain MK, Milliez J, Stark RI, Yeh MN, James LS (1978) Renal response of fetal lamb to complete occlusion of umbilical cord. J Pediatr 131: 514–519Google Scholar
  27. Feldman W, Drummond KN, Klein M (1970) Hyponatremia following asphyxia neonato-rum. Acta Paediatr Scand 59: 52–57PubMedCrossRefGoogle Scholar
  28. Guignard JP, Torrado A, Mazouni SM, Gautier E (1976) Renal function in respiratory distress syndrome. J Pediatr 88: 845–850PubMedCrossRefGoogle Scholar
  29. Iwamoto HS, Rudolph AM, Keil LC, Heymann MA (1979) Hemodynamic responses of the sheep fetus to vasopressin infusion. Circ Res 44: 430–436PubMedGoogle Scholar
  30. Millard RW, Baig H, Vatner SF (1979) Prostaglandin control of the renal circulation in response to hypoxemia in the fetal lamb in utero. Circ Res 45: 172–179PubMedGoogle Scholar
  31. Miltenyi M, Pohlandt F, Boka G, Kun E (1981) Tubular proteinuria after perinatal hypoxia. Acta Paediatr Scand 70: 399–403PubMedCrossRefGoogle Scholar
  32. Robillard JE, DiBona GF (1983) Role of renal nerves as a major renal ischemic factor during fetal hypoxemia. Pediatr Res 17: 355A (Abstract)Google Scholar
  33. Robillard JE, Gomez RA (1981) Effect of angiotensin-II blockade on glomerular and renal hemodynamics during fetal hypoxemia. Pediatr Res 15: 699 (Abstract)Google Scholar
  34. Robillard JE, Weitzman RE (1980) Developmental aspects of the fetal renal response to exogenous arginine vasopressin. Am J Physiol 238: F407 - F414PubMedGoogle Scholar
  35. Robillard JE, Weitzman RE, Burmeister L, Smith FG, Jr (1981) Developmental aspects of the renal response to hypoxemia in the lamb fetus. Circ Res 48: 128–138PubMedGoogle Scholar
  36. Rurak DW (1978) Plasma vasopressin levels during hypoxemia and the cardiovascular effects of exogenous vasopressin in fetal and adult sheep. J Physiol (Loud) 277: 341–357Google Scholar
  37. Stonestreet BS, Laptook A, Schanler R, Oh W (1982) Hemodynamic responses to asphyxia in spontaneously breathing newborn term and premature lambs. Early Hum Dev 7: 81–97PubMedCrossRefGoogle Scholar
  38. Torrado A, Guignard JP (1974) Renal failure in respiratory distress syndrome. J Pediatr 85: 443PubMedGoogle Scholar
  39. Torrado A, Guignard JP, Prodhom LS, Gautier I (1974) Hypoxemia and renal function in newborns with respiratory distress syndrome. Hely Paediatr Acta 29: 399–405Google Scholar
  40. Trimper CE, Lumber ER (1972) The renin-angiotensin system in foetal lambs. Pflugers Arch 336: 1–10PubMedCrossRefGoogle Scholar
  41. Walker DW (1977) Effect of hypoxia on glomerular filtration rate, urine flow and urine composition in chronically catheterized foetal lambs. J Physiol (Lond) 272: 15 P-16 PGoogle Scholar
  42. Weismann DN, Clarke WR (1981) Postnatal age-related renal responses to hypoxemia in lambs. Circ Res 49: 1332–1338PubMedGoogle Scholar
  43. Weismann DN, Herrig JE, McWeeny OJ, Ayres NA, Robillard JE (1983) Renal and adrenal responses to hypoxemia during angiotensin-converting enzyme inhibition in lambs. Circ Res 52: 179–187PubMedGoogle Scholar
  44. Aschinberg LC, Koskimies O, Bernstein J, Nash M, Edelmann CM Jr, Spitzer A (1978) The influence of age on the response to renal parenchymal loss. Yale J Biol Med 51: 341–345PubMedGoogle Scholar
  45. Chevalier RL (1982a) Glomerular number and perfusion during normal and compensatory renal growth in the guinea pig. Pediatr Res 16: 436–440PubMedCrossRefGoogle Scholar
  46. Chevalier RL (1982b) Functional adaptation to reduced renal mass in early development. Am J Physiol 242: F190 - F196PubMedGoogle Scholar
  47. Chevalier RL (1983a) Reduced renal mass in early postnatal development: glomerular dynamics in the guinea pig. Biol Neonate 44 (3) 158–165PubMedCrossRefGoogle Scholar
  48. Chevalier RL (1983b) Hemodynamic adaptation to reduced renal mass in early postnatal development. Pediatr Res 17: 620–624PubMedCrossRefGoogle Scholar
  49. Spitzer A, Brandis M (1974) Functional and morphologic maturation of the superficial nephrons: relationship to total kidney function. J Clin Invest 53: 279–287PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1984

Authors and Affiliations

  • A. Spitzer
  • J. E. Robillard
  • D. N. Weismann
  • N. A. Ayres
  • R. A. Gomez
  • K. T. Nakamura
  • R. L. Chevalier

There are no affiliations available

Personalised recommendations