Durchblutung und Stoffwechsel bei degenerativen Erkrankungen des Gehirns

  • K. Herholz
  • W.-D. Heiss
  • G. Pawlik
  • K. Wienhard

Zusammenfassung

Degeneration von Nervenzellen tritt in erheblichem Umfang bereits im Rahmen physiologischer Alterungsvorgänge auf und ist bis heute nur ungenügend therapeutisch zu beeinflussen. Führendes Symptom eines höhergradigen kortikalen Zellverlustes, der sich bei pathologischen und CT-Untersuchungen als Atrophie darstellt, ist eine Einschränkung der intellektuellen Leistungsfähigkeit, im Extremfall die Demenz.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amano T, Meyer JS, Okabe T et al. (1983) Cerebral vasomotor responses during oxygen inhalation. Results in normal aging and dementia. Arch Neurol 40:277–282Google Scholar
  2. Berger B, Thierry AM, Tassin JP et al. (1976) Dopaminergic innervation of the rat prefrontal cortex. A fluorescence histochemical study. Brain Res 106:133–145PubMedCrossRefGoogle Scholar
  3. Bes A, Güell A, Fabre N et al. (1983 a) Cerebral blood flow studies by Xenon-133 inhalation technique in Parkinsonism: Loss of hyperfrontal pattern. J Cereb Blood Flow Metabol 3:33–37CrossRefGoogle Scholar
  4. Bes A, Güell A, Fabre N et al. (1983 b) Effects of dopaminergic agonists (Piribedil and Bromocriptine) on cerebral blood flow in Parkinsonism. J Cereb Blood Flow Metabol 3 [Suppll]: 490–491Google Scholar
  5. Bustany P, Henry JF, Sargent T et al. (1983 a) Local brain protein metabolism in dementia and schizophrenia: In vivo studies with 11C-L-methionine and positron emission tomography. In: Heiss WD, Phelps ME (eds) Positron Emission Tomography of the Brain. Springer, Berlin Heidelberg New York Tokyo, pp 208–211Google Scholar
  6. Bustany P, Henry JF, DeRotrou J et al. (1983 b) Local cerebral metabolic rate of 11C-L-methionine in early stages of dementia, schizophrenia, Parkinson’s disease. J Cereb Blood Flow Metabol 3 [Suppll]: 492–493Google Scholar
  7. Butler RW, Dickinson WA, Katholi C et al. (1983) The comparative effects of organic brain disease on cerebral blood flow and measured intelligence. Ann Neurol 13:155–159PubMedCrossRefGoogle Scholar
  8. Davis SM, Ackerman RH, Correia JA et al. (1983) Cerebral blood flow and cerebrovascular CO2 reactivity in stroke-aged normal controls. Neurology 33:391–399PubMedGoogle Scholar
  9. DeLeon MJ, Ferris SH, George AE et al. (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimers disease. J Cereb Blood Flow Metabol 3:391–394CrossRefGoogle Scholar
  10. Eriksson L, Böhm C, Bergström M et al. (1983) Design characteristics of a multiring positron camera System for emission tomography of the brain. In: Heiss WD, Phelps ME (eds) Positron Emission Tomography of the Brain. Springer, Berlin Heidelberg New York, pp 40–45Google Scholar
  11. Fabre N, Adam P, Geraud G et al. (1983) Correlations between CBF and CT scan in Parkinsonism. J Cereb Blood Flow Metabol 3 [Suppl 1]: 516–517Google Scholar
  12. Fazekas J, Alman RW, Bessman A (1952) Cerebral physiology of the aged. Am J Med Sci 223:245–257PubMedCrossRefGoogle Scholar
  13. Foster NL, Chase TN, Fedio P et al. (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology 33:961–965PubMedGoogle Scholar
  14. Frackowiak RSJ, Pozzilli C, Legg NJ et al. (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778PubMedCrossRefGoogle Scholar
  15. Friedland RP, Budinger TF, Yano Y et al. (1983) Regional cerebral metabolic alterations in Alzheimer-type dementia: Kinetic studies with 18-Fluorodeoxyglucose. J Cereb Blood Flow Metabol 3 [Suppl 1]: 510–511Google Scholar
  16. Globus M, Mildorf B, Melamed E et al. (1983) rCBF changes in Parkinson’s disease: Correlation with dementia. J Cereb Blood Flow Metabol 3 [Suppl 1]: 508–509Google Scholar
  17. Grubb RL, Raichle ME, Gado MH et al. (1977) Cerebral blood flow, oxygen utilization, and blood volume in dementia. Neurology 27:905–910PubMedGoogle Scholar
  18. Güell A, Geraud G, Jauzac P et al. (1982) Effects of a dopaminergic agonist (Piribedil) on cerebral blood flow in man. J Cereb Blood Flow Metabol 2:255–257CrossRefGoogle Scholar
  19. Gustafson L, Risberg J (1979) Regional cerebral blood flow measurements by the 133Xe inhalation technique in differential diagnosis of dementia. Acta Neurol Scand 60 [Suppl 72]: 46–47Google Scholar
  20. Hachinski VC, Iliff LD, Zilhka E et al. (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637PubMedGoogle Scholar
  21. Hakim AM, Mathieson G (1979) Dementia in Parkinson disease: A neuropathologic study. Neurology 29:1209–1214PubMedGoogle Scholar
  22. Harrison MJG, Thomas DJ, DuBoulay GH et al. (1979) Multi-infarct dementia. J Neurol Sci 40:97–103PubMedCrossRefGoogle Scholar
  23. Hawkins RA, Phelps ME, Mazziotta JC et al. (1983) A study of Wilson’s disease with F-18 FDG and positron tomography. J Cereb Blood Flow Metabol 3 [Suppl 1]: 498–499Google Scholar
  24. Heiss WD (1979) Regional cerebral blood flow measurement using a scintillation camera. Clin Nucl Med 4:385–396PubMedCrossRefGoogle Scholar
  25. Heiss WD, Phelps ME (1983) Positron emission tomography of the brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Hoyer S (1978) Das organische Psychosyndrom. Überlegungen zur Hirndurchblutung, zum Hirnstoffwechsel und zur Therapie. Nervenarzt 49:201–207PubMedGoogle Scholar
  27. Hoyer et al. (1975) Störungen des Hirnstoffwechsels bei Leberkrankheiten. In: Holm E (Hrg) Ammoniak und hepatische Enzephalopathie. Biochemie, Elektrophysiologie, Toxikologie, Fischer, Stuttgart, pp 27–32Google Scholar
  28. Ingvar DH (1979) Hyperfrontal distribution of the cerebral gray matter flow on resting wakefulness: On the functional anatomic of the conscious State. Acta Neurol Scand 60:12–15PubMedCrossRefGoogle Scholar
  29. Ingvar DH, Gustafson L (1970) Regional cerebral blood flow in organic dementia with early onset. Acta Neurol Scand [Suppl] 43:42–73Google Scholar
  30. Kuhl DE, Metter EJ, Riege WH et al. (1982 a) Effects of human aging on patterns of local cerebral glucose utilization determined by the (18F) fluorodeoxyglucose method. J Cereb Blood Flow Metabol 2:163–171CrossRefGoogle Scholar
  31. Kuhl DE, Phelps ME, Markham CH et al. (1982 b) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 12:425–434PubMedCrossRefGoogle Scholar
  32. Kuhl DE, Metter EJ, Riege WH et al. (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metabol 3 [Suppl 1]: 494–495Google Scholar
  33. Lassen NA, Feinberg I, Lane MH (1960) Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J Clin Invest 39:491–500PubMedCrossRefGoogle Scholar
  34. Lassen NA, Ingvar DH (1963) Regional cerebral blood flow measurement in man. Arch Neurol 9:615–622Google Scholar
  35. Lavy S, Melamed E, Cooper G et al. (1979) Regional cerebral blood flow in patients with Parkinson’s disease. Arch Neurol 36:344–348PubMedGoogle Scholar
  36. Leenders K, Wolfson L, Gibbs J et al. (1983 a) Regional cerebral blood flow and oxygen metabolism in Parkinson’s disease and their responses to L-dopa. J Cereb Blood Flow Metabol 3 [Suppl 1]: 488–489Google Scholar
  37. Leenders K, Wolfson L, Jones T (1983 b) The effect of L-dopa on rCBF and rCMRO2 in patients with Parkinson’s disease. International Symposium: Measurement of Cerebral Blood Flow and Cerebral Metabolism in Man. HeidelbergGoogle Scholar
  38. Lenzi GL, Jones T, McKenzie CG et al. (1978) Study of regional cerebral metabolism and blood flow relationship in man using the method of continuously inhaling oxygen-15 and oxygen-15 labelled carbon dioxiderJ Neurol Neurosurg Psychiatry 41:1–10PubMedCrossRefGoogle Scholar
  39. Lenzi GL, Jones T, Reid JL et al. (1979) Regional impairment of cerebral oxidative metabolism in Parkinson’s disease. J Neurol Neurosurg Psychiatry 42:59–62PubMedCrossRefGoogle Scholar
  40. Lieberman A, Dziatolowski M, Kupersmith M et al. (1979) Dementia in Parkinson disease. Ann Neurol 6:355–359PubMedCrossRefGoogle Scholar
  41. Lindvall O, Björklund A, Moore RY et al. (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331PubMedCrossRefGoogle Scholar
  42. Melamed E, Lavy S, Siew F et al. (1979) Reduction of rCBF in dementia: Correlation with age-matched normal controls and computerized tomography. Acta Neurol Scand 60 [Suppl 72]: 544–545Google Scholar
  43. Obrist WD, Thompson HK, Wang HS et al. (1975) Regional cerebral blood flow estimated by 133 Xenon inhalation. Stroke 6:245–256PubMedCrossRefGoogle Scholar
  44. Phelps ME, Huang SC, Hoffman EJ et al. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 6:371–388PubMedCrossRefGoogle Scholar
  45. Podreka I, Heiss WD, Brücke T (1981) Atraumatic CBF measurement with the scintillation camera. Comparison with intracarotid rCBF values. Stroke 12:47–53PubMedCrossRefGoogle Scholar
  46. Rapoport SI, Duara R, Horwitz B et al. (1983) Brain aging in 40 healthy men: rCMRGlc and correlated functional activity in various brain regions in the resting State. J Cereb Blood Flow Metabol 3 [Suppl 1]: 484–485Google Scholar
  47. Reivich M, Kuhl DE, Wolf W et al. (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137PubMedGoogle Scholar
  48. Rougemont D, Baron JC, Collard P et al. (1983) Local cerebral metabolic rate of glucose (ICMRGlc) in treated and untreated patients with Parkinson’s disease. J Cereb Blood Flow Metabol 3 [Suppl 1]: 504–505Google Scholar
  49. Shaw TG, Mortel KF, Meyer JS et al. (1983) Four year longitudinal (prospective analysis of age related changes in cerebral blood flow measured in normal healthy and risk factored volunteers. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebrovascular disease 4. Excerpta Medica, Amsterdam Oxford Princeton, pp 15–21Google Scholar
  50. Yamaguchi F, Meyer JS, Sakai F et al. (1979) Effects of normal human aging on cerebral vasocon-strictive responses to hypocapnia with demonstration of ischemic threshold. Acta Neurol Scand 60 [Suppl 72]: 88–89Google Scholar
  51. Yamaguchi F, Meyer JS, Yamamoto M et al. (1980) Noninvasive regional cerebral blood flow measurements in dementia. Arch Neurol 37:410–418PubMedGoogle Scholar
  52. WIENHARD K, Pawlik G, Eriksson L et al. (1983) Kinetic constants of cerebral glucose metabolism in pathological conditions. J Cereb Blood Flow Metabol 3 [Suppl 1]: 474–475Google Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 1984

Authors and Affiliations

  • K. Herholz
  • W.-D. Heiss
  • G. Pawlik
  • K. Wienhard

There are no affiliations available

Personalised recommendations