Skip to main content

Basic Chemistry of Salinity

  • Conference paper

Part of the book series: Ecological Studies ((ECOLSTUD,volume 51))

Abstract

The management of salt-affected soils is based to a large degree on the chemistry of the soil-water system. A popular approach has been to treat the aqueous phase in the soil matrix as an electrolyte solution. Thus all basic laws of solution chemistry governing chemical reactions and physicochemical processes are considered when quantifying the interactive multiphase equilibria which determines the chemical composition of the soil solution. The application of thermodynamic principles to soils, aquatic and other natural systems has gained impetus from a growing number of excellent texts on this topic (Garrels and Christ 1965, Lindsay 1979, Sposito 1981, Stumm and Morgan 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F (1971) Ionic concentrations and activities in soil solutions. Soil Sci Soc Am Proc 34: 410–426

    Google Scholar 

  • Arora HW, Coleman NT (1979) The influence of electrolyte concentration on flocculation of clay suspensions. Soil Sci 127: 134–189

    Article  CAS  Google Scholar 

  • Aylmore LAG, Quirk JP (1959) Swelling of clay-water systems. Nature, London, 183: 1752–1753

    Google Scholar 

  • Babcock KL (1963) Theory of the chemical properties of soil colloidal systems at equilibrium. Hilgar- dia Vol 34 No. 7 414–542

    Google Scholar 

  • Banin A, Lahav N (1968) Particle size and optical properties of montmorillonite in suspension. Is J Chem 6: 235–250

    CAS  Google Scholar 

  • Bar-On P, Shainberg I, Michaeli I (1970) The electrophoretic mobility of Na/Ca montmorillonite particles. J Colloid Interface Sci 33: 471–472

    Article  CAS  Google Scholar 

  • Barshad I (1955) Adsorption and swelling properties of clay-water systems. Bull Cal Dep Nat Res Div Mines 169: 70–77

    CAS  Google Scholar 

  • Blackmore AV, Miller RD (1961) Tactoid size and osmotic swelling in Ca-montmorillonite. Soil Sci Soc Am Proc 25: 169–174

    Article  CAS  Google Scholar 

  • Bolt GH (1979) Soil chemistry, part B. Physico-chemical models. Elsevier, Amsterdam

    Google Scholar 

  • Bower CA, Wilcox LV, Akin GW, Keyes MG (1965) An index of the tendency of CaC03 to precipitate from irrigation waters. Soil Sci Soc Am Proc 29: 91–92

    Article  Google Scholar 

  • Bresler E (1970) Numerical solution of the equation for interacting diffuse layers in mixed ionic system with non-symmetrical electrolytes. J Colloid Interface Sci 3: 278–283

    Article  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Cole CV (1957) Hydrogen and calcium relationships of calcareous soils. Soil Sci 83: 141–150

    Article  CAS  Google Scholar 

  • Davies CW (1962) Ion association. Butterworth, London, p 190

    Google Scholar 

  • Emerson WW (1964) The shaping of soil crumbs as influenced by clay mineral composition. Aust J Soil Res 2: 211–217

    Article  Google Scholar 

  • Emerson WW, Chi CL (1977) Exchangeable calcium, magnesium and sodium and the dispersion of illites in water. II. Dispersion of illites in water. Aust J Soil Res 15: 255–262

    Article  CAS  Google Scholar 

  • Frenkel H, Amrhein C, Jurinak J J (1983) The effect of exchangeable cations on soil mineral weathering. Soil Sci Soc Am J 47: 649–653

    Article  CAS  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Freeman, Cooper & Co, San Francisco

    Google Scholar 

  • Goodwin JW (1982) Colloidal dispersions. R Soc Chem, London, pp 165–195

    Google Scholar 

  • Greene RSB, Posner AM, Quirk JP (1978) A study of the coagulation of montmorillonite and illite suspensions of CaCl2 using the electron microscope. In: Emerson WW, Bond RD, Dexter AR (eds) Modification of soil structure. John Wiley, New York, pp 35–40

    Google Scholar 

  • Griffin RA, Jurinak JJ (1973) Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Sci 116: 26–30

    Article  CAS  Google Scholar 

  • Guggenheim EA (1950) Thermodynamics. InterScience Publ, New York, p 412

    Google Scholar 

  • Harned HS, Owen BB (1958) The physical chemistry of electrolyte solutions, 3rd edn. Reinhold, New York

    Google Scholar 

  • Jacobson R, Langmuir D (1974) Dissociation constants of calcite and CaHCOjfrom 0 to 50 °C. Goe-chim Cosnochim Acta 38: 301–318

    CAS  Google Scholar 

  • Jenne EA (ed) (1979) Chemical modeling in aqueous systems. Am Chem Soc Symp, Ser No 93. Am Chem Soc, Washington DC

    Google Scholar 

  • Keren R, Shainberg I (1975) Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems. I Homoionic clay. Clays Clay Miner 23: 193–200

    Article  CAS  Google Scholar 

  • Keren R, Shainberg I (1979) Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems. II. Mixed systems. Clays Clay Miner 27: 145–151

    Article  CAS  Google Scholar 

  • Langlier WF (1936) The analytical control of anti-corrosion water treatment. J Am Water Works Assoc 28: 1500–1521

    Google Scholar 

  • Levy R (1980) Sources of soluble calcium and magnesium and their effects on sodium absorption ratios of solutions in two soils of Israel. Geoderma 23: 113–123

    Article  CAS  Google Scholar 

  • Levy R (1981) Effect of dissolution of aluminosilicates and carbonates on ionic activity products of calcium carbonate in soil extracts. Soil Sci Soc Am J 45: 250–255

    Article  CAS  Google Scholar 

  • Lewis GN, Randall M (1961) Thermodynamics. Revised by Pitzer KS, Brewer L. McGraw-Hill, New York

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. John Wiley, New York, p 449

    Google Scholar 

  • Lowenthal RE, Marais GYR (1978) Carbonate chemistry of aquatic systems: Theory and application, vol I. Ann Arbor Science Publishers, Ann Arbor p 430

    Google Scholar 

  • McAtee JL (1961) Heterogeneity in montmorillonites. Clays and Clay Minerals. Proc 5th Nat Conf Clays Clay Miner, pp 279–288

    Google Scholar 

  • McNeal BL, Coleman NT (1966) Effect of solution composition on soil hydraulic conductivity. Soil Sci Soc Am Proc 30: 308–312

    Article  CAS  Google Scholar 

  • Mering J (1946) On the hydration of montmorillonite. Trans Faraday Soc 42B: 205–219

    Article  Google Scholar 

  • Mering J, Glaeser R (1953) Cations exchangeable dans montmorillonite. CR Reunions Gpe Fr Argiles 5: 61–72

    Google Scholar 

  • Mering J, Glaeser R (1954) On the role of the valency of exchangeable cations in montmorillonite, Bull Soc Fr Miner Cristallogr 77: 519–530

    CAS  Google Scholar 

  • Norrish K (1954) The swelling of montmorillonite. Disc Faraday Soc 18: 120–134

    Article  CAS  Google Scholar 

  • Norrish K, Quirk JP (1954) Crystalline swelling of montmorillonite. Nature London 173: 255–256

    Article  CAS  Google Scholar 

  • Olsen SR, Watanabe FS (1959) Solubility of calcium carbonate in calcareous soils. Soil Sci 88: 123–129

    Article  CAS  Google Scholar 

  • Van Olphen H (1956) Forces between suspended bentonite particles. Clays and Clay Minerals. Proc 4th Nat Conf Clays Clay Miner, pp 204–224

    Google Scholar 

  • Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. John Wiley, New York

    Google Scholar 

  • Oster JD, Frenkel H (1980) The chemistry of the reclamation of sodic soils with gypsum and lime. Soil Sci Soc Am J 44: 41–45

    Article  CAS  Google Scholar 

  • Oster JD, Shainberg I (1979) Exchangeable cation hydrolysis on soil weathering as affected by ex-changeable sodium. Soil Sci Soc Am J 43: 70–75

    CAS  Google Scholar 

  • Oster JD, Shainberg I, Wood JD (1980) Flucculation value and gel structure of Na/Ca montmorillonite and illite suspension. Soil Sci Soc Am J 44: 955–959

    CAS  Google Scholar 

  • Pitzer KS (1979) Theory: Ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol I. CRC Press, Boca Raton, Florida, pp 157–208

    Google Scholar 

  • Ponnamperuma FN, Tianco EM, Loy TA (1966) Ionic strengths of the solutions of flooded soils and other natural aqueous solutions from specific conductance. Soil Sci 102: 408–413

    Article  CAS  Google Scholar 

  • Prost R (1975) Interactions between adsorbed water molecules and the structure and clay minerals: Hydration mechanism of smectites. Proc Int Clay Conf, Mexico City, pp 351–373

    Google Scholar 

  • Rhoades JD, Krueger DB, Reed M J (1968) The effect of soil mineral weathering on the sodium hazard of irrigation waters. Soil Sci Soc Am Proc 32: 643–647

    Article  CAS  Google Scholar 

  • Robins CW, Wagenet RJ, Jurinak JJ (1980) A combined salt transport-chemical equilibria model for calcareous and gypsiferous soils. Soil Sci Soc Am J 44: 1191–1194

    Article  Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte solutions, 2nd edn. Butterworth, London

    Google Scholar 

  • Rowell DL (1963) Effect of electrolyte concentration on the swelling of oriented aggregates of montmorillonite. Soil Sci 96: 368–374

    Article  CAS  Google Scholar 

  • Russo D, Bresler E (1977) Effect of mixed Na/Ca solutions on the hydraulic properties of unsaturated soils. Soil Sci Soc Am J 41: 713–717

    Article  CAS  Google Scholar 

  • Schofield RK, Samson HR (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Disc Faraday Soc 18: 135–145

    Article  CAS  Google Scholar 

  • Sethi M J, Young RW, Jorgensen MA (1980) Influence of salt concentration on inter-particle action and rheology of montmorillonite suspension. Proc Int Symp Salt Affected Soils, Kamal, India

    Google Scholar 

  • Shainberg I, Kaiserman A (1969) Kinetics of the formation and breakdown of Ca-montmorillonite tactoids. Soil Sci Soc Am Proc 43: 547–551

    Article  Google Scholar 

  • Shainberg I, Otoh H (1968) Size and shape of montmorillonite particles saturated with Na/Ca ions. Isr JChem 6: 251–259

    CAS  Google Scholar 

  • Shainberg I, Bresler E, Klausner Y (1971) Studies on Na/Ca montmorillonite systems. I. The swelling pressure. Soil Sci 111: 214–219

    Article  CAS  Google Scholar 

  • Sposito G (1981) The thermodynamics of soil solutions. Oxford Univ Press, New York, p 223

    Google Scholar 

  • Sposito G (1983) The future of an illusion: Ion activities in soil solutions. Soil Sci Soc Am J (in press)

    Google Scholar 

  • Stokes RH (1979) Thermodynamics of solutions. In: Pytkowitz RM (ed) Activity coefficients in electrolyte solutions, vol I. CRC Press, Boca Raton, Florida, pp 1–28

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. John Wiley, New York, p 780

    Google Scholar 

  • Suarez DL (1977) Ion activity products of calcium carbonate in waters below the root zone. Soil Sci Soc Am J 41: 310–315

    CAS  Google Scholar 

  • Suarez DL, Frenkel H (1981) Cation release from sodium and calcium saturated clay-size soil fractions.Soil Sci Soc Am J 45: 716–721

    CAS  Google Scholar 

  • Suarez DL, Rhoades JD (1982) The apparent solubility of calcium carbonate in soils. Soil Sci Soc Am J 46: 716–722

    Article  CAS  Google Scholar 

  • Sun MS, Harriss DK, Magnuson VR (1980) Activity corrections for ionic equilibria in aqueous solutions. Can J Chem 58: 1253–1257

    Article  CAS  Google Scholar 

  • Warkentin BP, Bolt GH, Miller RD (1957) Swelling pressure of montmorillonite. Soil Sci Soc Am Proc 21: 495–497

    Article  Google Scholar 

  • Whitfield M (1975) Sea water as an electrolyte solution. In: Riley JP, Skirrow G (eds) Chemical oceanography, vol I, 2nd edn. Academic Press, London New York

    Google Scholar 

  • Whitfield M (1979) Activity coefficients in natural waters. In: Pytkowitz RM (ed) Activity coefficients in electrolyte solutions, vol II. CRC Press, Boca Raton, Florida, pp 153–300

    Google Scholar 

  • Wood WH, Granquist WT, Krieger IM (1956) Viscosity studies on dilute clay mineral suspensions. Clays and Clay Minerals. Proc 4th Natl Conf Clays Clay Miner, pp 240–250

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jurinak, J.J., Keren, R., Shainberg, I. (1984). Basic Chemistry of Salinity. In: Shainberg, I., Shalhevet, J. (eds) Soil Salinity under Irrigation. Ecological Studies, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69836-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69836-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69838-5

  • Online ISBN: 978-3-642-69836-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics