Keratinisierung und Lipide

  • Ingrun Anton-Lamprecht
Conference paper

Zusammenfassung

Die epidermalen Lipide machen in sebumfreien Präparationen zwar nur etwa 3–4% des Frischgewichts aus; dennoch wird zunehmend deutlich, daß sie im Keratinisierungsprozeß und für die Epidermisfunk-tion eine integrale Bedeutung haben. Die Synthese der epidermalen Lipide findet im oberen Stratum spi-nosum und im Stratum granulosum in den Keratinosomen statt. Diese enthalten freie Sterole, vor allem Cholesterin, Glykolipide und Glykosphingolipide, die morphologisch als Lamellenpakete darstellbar sind, und sezernieren diese in die Intercellularräume. Durch Hydrolyse von Zuckern und Fettsäuren aus Glykolipiden und Veresterung eines Teils der Fettsäuren und des freien Cholesterins findet in den Intercellularen der Hornschicht ein Umbau zu neutralen Lipiden statt, die als großflächige Lamellen die Intercellularräume der Hornschicht erfüllen und das morphologische Substrat der epidermalen Barriere bilden. Für die Synthese der polaren Lipide der Keratinosomen sind essentielle Fettsäuren erforderlich. Ihr Mangel beeinflußt unmittelbar über die fehlende Lipidsynthese der Keratinosomen die epidermale Barrierefunktion, mittelbar über Prostaglandine und das cyclische AMP-GMP-System offenbar die Proliferationskinetik der Epidermis. Epidermale Lipide machen somit den entscheidenden Faktor für die epidermale Barrierefunktion aus und sind ein integraler Bestandteil des Keratinisierungsprozesses.

Summary

Although epidermal lipids account for only 3–4% of fresh weight in sebum-free preparations of the epidermal barrier region, it becomes more and more evident that they are of intrinsic importance for epidermal function and keratinization. Epidermal lipids are synthesized within keratinosomes in the upper spi-nous and granular cells. Keratinosomes contain polar lipids such as free sterols, mainly cholesterol, glycolipids, and glycosphingolipids, which ultrastructurally are arranged in the lamellar stacks forming the major contents of the keratinosomes. At the border of the horny layer these lamellar stacks are secreted into the intercellular spaces. Within the horny layer, the polar lipids of the keratinosomes are transformed into non-polar, neutral lipids by hydrolysis of sugars and fatty acids of glycolipids and by subsequent esterification of part of the free fatty acids and cholesterol. The resulting neutral lipids fill up the intercellular spaces of the horny layer by forming large flat lamellae which must be regarded as the morphological substrate of the epidermal barrier. Essential fatty acids are required for the synthesis of the polar lipids within keratinosomes. Essential fatty acid deficiency therefore influences the epidermal barrier function directly via the failure of keratinosomes to synthesize their lipid moieties, whereas epidermal proliferation is probably affected more indirectly via prostaglandins and the cyclic AMP/GMP system. Epidermal lipids thus represent an integral component part of the epidermal barrier and must be regarded as important factor of the keratinization process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Anton-Lamprecht, I: Zur Ultrastruktur hereditärer Verhornungsstörungen. III. Autosomal-dominante Ichthyosis vulgaris. Arch. derm. Forsch. 248, 149 (1973).CrossRefGoogle Scholar
  2. 2.
    Anton-Lamprecht, I, Kahlke, W: Zur Ultrastruktur hereditärer Verhornungsstörungen. V. Ichthyosis beim Refsum-Syndrom (Heredopathia atac-tica polyneuritiformis). Arch. derm. Forsch. 250, 185 (1974).Google Scholar
  3. 3.
    Baden, H P, Kubilis, J, Rosenbaum, K, Fletcher, A: Keratinization in the harlequin fetus. Arch. Derm. 118, 14 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein, I A, Brabec, R K, Vadlamudi, B, Ohno, A K, Delap, L W, Gray, R H: Molecular markers of differentiation in the epidermis of the newborn rat. In: Biochemistry of normal and abnormal epidermal differentiation, Ed.: I A Bernstein and M Seiji. Curr. Probl. Derm. 10, 421. Karger, Basel 1980.Google Scholar
  5. 5.
    Blanchet-Bardon, C, Anton-Lamprecht, I, Puissant, A, Schnyder, U W: Ultrastructural features of ichthyotic skin in Refsum’s syndrome. Chapt. 9 in: The Epidermis in Disease, Ed.: R Marks and P J Dykes. MTP Press Ltd, Lancaster 1978.Google Scholar
  6. 6.
    Blanchet-Bardon, C, Dumez, Y, Labée, F, Lutzner, M A, Puissant, A, Henrion, R: Prenatal diagnosis of a harlequin fetus. Lancet, im Druck (1982).Google Scholar
  7. 7.
    Buxman, M, Goodkin, P E, Fahrenbach, W H, Dimond, R L: Harlequin ichthyosis with epidermal lipid abnormalities. Arch. Derm. 115, 189 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    Chanarin, I, Patel, A, Slawin, G, Wills, E J, Andrews, T M, Stewart, G: Neutral lipid storage disease: A new disorder of lipid metabolism. Brit. Med. J. 1, 553 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    Dale, B A: Filaggrin: Biochemistry and interaction with keratins. 32nd Symposium on the Biology of Skin: Biology of the keratinocyte in vitro. Salishan, USA, Okt. 1982. J. invest. Derm., im Druck.Google Scholar
  10. 10.
    Dale, B A, Lonsdale-Eccles, J D, Holbrook, K A: Stratum corneum basic protein: an interfilamentous matrix protein of epidermal keratin. In: Biochemistry of normal and abnormal epidermal differentiation, Ed.: I A Bernstein and M Seiji. Curr. Probl. Derm. 10, 311. Karger, Basel 1980.Google Scholar
  11. 11.
    Dale, B A, Ling, S Y: Immunologic cross reaction of stratum corneum basic protein and a keratohyalin granule protein. J. invest. Derm. 72, 257 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    Davies, M G, Marks, R, Dykes, P J, Reynolds, D: Epidermal abnormalities in Refsum’s disease. Brit. J. Derm. 97, 401 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    Davies, MG, Reynolds, D J, Marks, R, Dykes, P J: The epidermis in Refsum’s disease (Heredopathia atactica polyneuritiformis). Chapt. 8 in: The Ichthyoses. Ed.: R Marks and P J Dykes. MTP Press Ltd., Lancaster 1978.Google Scholar
  14. 14.
    Dykes, P J, Marks, R, Davies, M G, Reynolds, D J: Epidermal metabolism in Heredopathia atactica polyneuritiformis (Refsum’s disease). J. invest. Derm. 70, 126 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    Eldjarn, L, Stokke, O, Try, K: Biochemical aspects of Refsum’s disease and principles for the dietary treatment. Chapt. 23 in: Metabolic and Deficiency Diseases of the Nervous System, Part I, Ed.: H. Klawans. Vol. 27 of: Handbook of Clinical Neurology, Ed.: P J Vinken and G W Bruyn. Amer. Elsevier Publ., New York 1976.Google Scholar
  16. 16.
    Elias, P M: Lipids and the epidermal permeability barrier. Arch, derm. Res. 270, 95 (1981).CrossRefGoogle Scholar
  17. 17.
    Elias, P M: Membranes, lipids, and the epidermal permeability barrier. Chapt. I in: The Epidermis in Disease, Ed.: R Marks and E Christophers. MTP Press Ltd, Lancaster 1981.Google Scholar
  18. 18.
    Elias, P M: Epidermal lipids, membranes, and keratinization. Intern. J. Derm. 20, 1 (1981).CrossRefGoogle Scholar
  19. 19.
    Elias, P M, Brown, B E: The mammalian cutaneous permeability barrier. Defective barrier function in essential fatty acid deficiency correlates with abnormal intercellular lipid deposition. Lab. Invest. 39, 574 (1978).PubMedGoogle Scholar
  20. 20.
    Elias, P M, Brown, B E, Fritsch, P, Goerke, J, Gray, G M, White, R J: Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum. J. invest. Derm. 73, 339 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    Elias, P M, Cooper, E R, Kork, A, Brown, B E: Percutaneous transport in relation to stratum corneum structure and lipid composition. J. invest. Derm. 76, 297 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    Elias, P M, Friend, D S: The permeability barrier in mammalian epidermis. J. Cell Biol. 65, 180 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    Elias, P M, Fritsch, P, Dahl, M V, Wolff, K: Staphylococcal toxic epidermal necrolysis: pathogenesis and studies on the subcellular site of action of exfoliation. J. invest. Derm. 65, 501 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    Elias, P M, Goerke, J, Friend, D S: Mammalian epidermal barrier layer lipids: composition and influence on structure. J. invest. Derm. 69, 535 (1977).PubMedCrossRefGoogle Scholar
  25. 25.
    Elias, P M, Goerke, J, Friend, D S, Brown, B E: Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J. Cell Biol. 78, 577 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    Elias, P M, Leventhal, M E: Intercellular volume changes and cell surface area expansion during cornification. Europ. J. Cell Biol. 22, 439 (1980).Google Scholar
  27. 27.
    Elias, P M, McNutt, N S, Friend, D S: Membrane alterations during cornification of mammalian squamous epithelia: a freeze-fracture, tracer, and thin-section study. Anat. Rec. 189, 577 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    Elias, P M, Mittermayer, H, Tappeiner, G, Fritsch, P, Wolff, K: Staphylococcal toxic epidermal necrolysis (TEN): the expanded mouse model. J. invest. Derm. 63, 467 (1974).PubMedCrossRefGoogle Scholar
  29. 29.
    Epstein, E H: X-linked ichthyosis — generalized nature of the defect and the normal control of stratum corneum shedding. Kurs Genodermatosen (CO6), XVI. Intern. Congr. Derm., Tokyo 1982.Google Scholar
  30. 30.
    Franke, W W, Schiller, D L, Moll, R, Winter, S, Schmid, E, Engelbrecht, I, Denk, H, Krepier, R, Platzer, B: Diversity of cytokeratins. Differentiation-specific expression of cytokeratin polypeptides in epithelial cells and tissues. J. molecul. Biol. 153, 933 (1981).CrossRefGoogle Scholar
  31. 31.
    Franke, W W, Schmid, E, Osborn, M, Weber, K: Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. nat. Acad. Sci. USA 75, 5034 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    Franke, W W, Weber, K, Osborn, M, Schmid, E, Freudenstein, C: Antibody to prekeratin. Decoration of tonofilament-like arrays in various cells of epithelial character. Exp. Cell Res. 116, 429 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    Freinkel, R K, Traczyk, T N: A method for partial purification of lamellar granules from fetal rat epidermis. J. invest. Derm. 77, 478 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    Frost, P, Weinstein, G D, Bothwell, J W, Wildnauer, R: Ichthyosiform dermatoses. III. Studies of transepidermal water loss. Arch. Derm. 98, 230 (1968).PubMedCrossRefGoogle Scholar
  35. 35.
    Fuchs, E, Green, H: The expression of keratin genes in epidermis and cultured epidermal cells. Cell 15, 887 (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    Fuchs, E, Green, H: Multiple keratins of cultured human epidermal cells are translated from different mRNA molecules. Cell 17, 573 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    Fuchs, E, Green, H: Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    Fuchs, E, Green, H: Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25, 617 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    Fuchs, E V, Coppock, S M, Green, H, Cleveland, D W: Two distinct classes of keratin genes and their evolutionary significance. Cell 27, 75 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    Fukuyama, K, Epstein, W: Quantitative autoradiographic studies of proteins in keratohyalin granules. In: Biochemistry of Cutaneous Epidermal Differentiation. Ed.: M Seiji and I A Bernstein. University of Tokyo Press, Tokyo 1977 (S. 253).Google Scholar
  41. 41.
    Gloor, M, Horácek, J: Über die Hautoberflächenlipide. In: Normale und Pathologische Physiologie der Haut. Handb. Haut-Geschl. Krankh. Band I, Teil IV A, Hrsg.: E Schwarz, H W Spier, G Stüttgen. Springer, Berlin, Heidelberg, New York (1979).Google Scholar
  42. 42.
    Gray, G M: Keratinization and the plasma membrane of the stratum corneum cell. In: Frontiers of Matrix Biology, Vol. 9, S. 83. Ed.: M Prunieras. Karger, Basel 1981.Google Scholar
  43. 43.
    Gray, G M, King, I A, Yardley, H J: The plasma membrane of granular cells from pig epidermis: isolation and lipid and protein composition. J. invest. Derm. 71, 131 (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    Gray, G M, King, I A, Yardley, H J: The plasma membrane of Malpighian cells from pig epidermis: isolation and lipid and protein composition. Brit. J. Derm. 103, 505 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    Gray, G M, White, R J: Glykosphingolipids and ceramides in human and pig epidermis. J. invest. Derm. 70, 336 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    Gray, G M, White, RJ, Majer, J R: 1-(3′-O-Acyl)-beta-glucosyl-N-dihydroxypentatriacontadienoylsphingosine, a major component of the glucosylceramides of pig and human epidermis. Biochim. Biophys. Acta 528, 127 (1978).PubMedGoogle Scholar
  47. 47.
    Gray, G M, White, R J, Williams, R H, Yardley, H J: Lipid composition of the superficial stratum corneum cells of pig epidermis. Brit. J. Derm. 106, 59 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    Grayson, S, Elias, P M: Isolation and lipid biochemical characterization of stratum corneum membrane complexes: implications for the cutaneous permeability barrier. J. invest. Derm. 78, 128 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    Hansen, A E, Wiese, H F, Boelschy, A N: Role of linoleic acid in infant nutrition: clinical and chemical study of 428 infants fed on milk mixtures varying in kind and amount of fat. Pediatrics (Suppl. 1), 171 (1963).Google Scholar
  50. 50.
    Hashimoto, K: Cementsome, a new interpretation of the membrane-coating granule. Arch. Derm. Forsch. 240, 349 (1971).CrossRefGoogle Scholar
  51. 51.
    Hashimoto, K: Intercellular spaces of the human epidermis as demonstrated with lanthanum. J. invest. Derm. 57, 17 (1971).PubMedCrossRefGoogle Scholar
  52. 52.
    Hayward, A F: Membrane-coating granules. Int. Rev. Cytol. 59, 97 (1979).PubMedCrossRefGoogle Scholar
  53. 53.
    Hayward, A F, Hackemann, M: Electron microscopy of membrane-coating granules and cell surface coat in keratinized and nonkeratinized human oral epithelium. J. Ultrastruct. Res. 43, 205 (1973).PubMedCrossRefGoogle Scholar
  54. 54.
    Hennings, H: Modulation of keratinocyte proliferation and differentiation by extracellular calcium. 32nd Symposium on the Biology of Skin: Biology of the keratinocyte in vitro. Salishan, USA, Okt. 1982. J. invest. Derm., im Druck.Google Scholar
  55. 55.
    Hennings, H, Michael, D, Cheng, C, Steinert, P, Holbrook, K A, Yuspa, S H: Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    Hernell, O, Holmgren, G, Jagell, S F, Johnson, S B, Holman, R T: Suspected faulty essential fatty acid metabolism in Sjögren-Larsson syndrome. Pediat. Res. 16, 45 (1982).PubMedGoogle Scholar
  57. 57.
    Kahlke, W: Über das Vorkommen von 3, 7, 11, 15-Tetramethylhexadecansäure im Blutserum bei Refsum-Syndrom. Klin. Wschr. 41, 783 (1963).CrossRefGoogle Scholar
  58. 58.
    Kahlke, W: Refsum-Syndrom. Lipoidchemische Untersuchungen bei 9 Fällen. Klin. Wschr. 42, 1011 (1964).PubMedCrossRefGoogle Scholar
  59. 59.
    Klenk, E, Kahlke, W: Über das Vorkommen der 3, 7, 11, 15-Tetramethylhexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia atactica polyneuritiformis [Refsum-Syndrom]). Hoppe-Seyler’s Z. physiol. Chem. 333, 133 (1963).PubMedCrossRefGoogle Scholar
  60. 60.
    Kligman, A M: The uses of sebum. Brit. J. Derm. 75, 307 (1963).PubMedCrossRefGoogle Scholar
  61. 61.
    Kooyman, D J: Lipids of the skin. Arch. Derm. (Chicago) 25, 444 (1932).Google Scholar
  62. 62.
    Koppe, J G, Rijken, Y, Jöbsis, A C, Marinkovic, A, de Groot, W P: X-linked ichthyosis. A sulfatase deficiency. Arch. Dis. Childh. 53, 803 (1978).PubMedCrossRefGoogle Scholar
  63. 63.
    Lane, E B: Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J. Cell Biol. 92, 665 (1982).PubMedCrossRefGoogle Scholar
  64. 64.
    Lazarides, E: Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Ann. Rev. Biochem. 51, 219 (1982).PubMedCrossRefGoogle Scholar
  65. 65.
    Marks, R, Dykes, P J: Growth characteristics of the epidermis in the ichthyotic disorders. Chapt. 6 in: The Ichthyoses. Ed.: R Marks and P J Dykes. MTP Press. Ltd, Lancaster 1978.Google Scholar
  66. 66.
    Matoltsy, A G: Desmosomes, filaments, and keratohyalin granules: their role in the stabilization and keratinization of the epidermis. J. invest. Derm. 65, 127 (1975).PubMedCrossRefGoogle Scholar
  67. 67.
    Matoltsy, A G, Cliffel, P J, Matoltsy, M N: The structure of filaments of normal and psoriatic horn cells. In: Biochemistry of Normal and Abnormal Epidermal Differentiation. Ed.: I A Bernstein and M Seiji. Curr. Probl. Derm. 10, 365 (1980).PubMedGoogle Scholar
  68. 68.
    McGuire, J, Milstone, L, Osber, M, Ingalls, L: Keratins in cultivated human keratinocytes are stable. In: Biochemistry of Normal and Abnormal Epidermal Differentiation. Ed.: I A Bernstein and M Seiji. Curr. Probl. Derm. 10, 327 (1980).PubMedGoogle Scholar
  69. 69.
    Menton, D N: The effects of essential fatty acid deficiency on the skin of the mouse. Amer. J. Anat. 122, 337 (1968).PubMedCrossRefGoogle Scholar
  70. 70.
    Nemanic, M K, Elias, P M: In situ precipitation: a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum. J. Histochem. Cytochem. 28, 573 (1980).PubMedCrossRefGoogle Scholar
  71. 71.
    Ödland, G F, Holbrook, K A: The lamellar granules of epidermis. Curr. Probl. Derm. 9, 29 (1981).PubMedGoogle Scholar
  72. 72.
    Parakkal, P F, Alexander, N: Keratinization. A survey of vertebrate epithelia. Academic Press, New York and London 1972.Google Scholar
  73. 73.
    Prottey, C: Essential fatty acids and the skin. Comment. Brit. J. Derm. 94, 579 (1976).CrossRefGoogle Scholar
  74. 74.
    Refsum, S: Heredoataxia hemeralopica polyneuritiformis — et tidligere ikke beskrevet familiaert syndrom?. En foreløbig meddedelse. Nord. Med. 28, 2682 (1945).Google Scholar
  75. 75.
    Refsum, S: Heredopathia atactica polyneuritiformis. A familial syndrome not hitherto described. Acta psychiat. scand. Suppl. 38 (1946).Google Scholar
  76. 76.
    Refsum, S: Heredopathia atactica polyneuritiformis (Refsum’s disease). Chapt. 42 in: Peripheral Neuropathy. Ed.: P J Dyck et al. W B Saunders, Philadelphia 1975.Google Scholar
  77. 77.
    Refsum, S: Heredopathia atactica polyneuritiformis (Refsum’s disease). In: Systemic Disorders and Atrophies, Part I (p 181). Vol. 29 of Handbook of Clinical Neurology, Ed.: P J Vinken and G W Bruyn, in collab. with J M B V de Jong. Amer. Elsevier Publ., New York 1975.Google Scholar
  78. 78.
    Refsum, S: Heredopathia atactica polyneuritiformis. Phytanic acid storage disease (Refsum’s disease). In: Spinocellular Degenerations, Ed.: I Sobue. University of Tokyo Press, Tokyo 1980.Google Scholar
  79. 79.
    Schreiner, E, Wolff, K: Die Permeabilität des epidermalen Intercellularraumes für kleinmolekulares Protein. Arch. klin. exp. Derm. 235, 78 (1969).PubMedCrossRefGoogle Scholar
  80. 80.
    Schwarz, E: Biochemie der epidermalen Keratinisierung. Grundzüge der pathologischen Verhornung. In: Normale und pathologische Physiologie der Haut II. Handb. Haut-Geschlkr. Band I, Teil 4 A, Hrsg.: E Schwarz, H W Spier, G Stüttgen. Springer, Berlin, Heidelberg, New York 1979.Google Scholar
  81. 81.
    Shapiro, L J, Buxman, M M, Weiss, R, Vidgoff J, Dimond, R L, Roller, J A, Wells, R S: Enzymatic basis of typical x-linked ichthyosis. Lancet 8093 II, Oct. 7 (1978).Google Scholar
  82. 82.
    Skerrow, C J, Matoltsy, A G: Isolation of epidermal desmosomes. J. Cell Biol. 63, 515 (1974).PubMedCrossRefGoogle Scholar
  83. 83.
    Skerrow, C J, Matoltsy, A G: Chemical characterization of isolated epidermal desmosomes. J. Cell Biol. 63, 524 (1974).PubMedCrossRefGoogle Scholar
  84. 84.
    Smith, W P, Christensen, M S, Nacht, S, Gans, E H: Effect of lipids on the aggregation and permeability of human stratum corne urn. J. invest. Derm. 78, 7 (1982).PubMedCrossRefGoogle Scholar
  85. 85.
    Squier, C A: The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J. Ultrastruct. Res. 43, 160 (1973).PubMedCrossRefGoogle Scholar
  86. 86.
    Steinberg, D, Avigan, J, Mize, C E, Eldjarn, L, Try, K, Refsum, S: Conversion of U-14C-phytol to phytanic acid and its oxidation in heredopathia atactica polyneuritiformis. Biochim. Biophys. Res. Comm. 19, 783 (1965).CrossRefGoogle Scholar
  87. 87.
    Steinert, P M: The mechanism of assembly of bovine epidermal keratin filaments in vitro. In: Biochemistry of Cutaneous Epidermal Differentiation. Ed.: M Seiji and I A Bernstein. University of Tokyo Press, Tokyo 1977 (p 444).Google Scholar
  88. 88.
    Steinert, P M: Structure of the keratin filaments from cultured cells and from tissue. 32nd Symposium on the Biology of Skin: Biology of the keratinocyte in vitro. Salishan, USA, Okt. 1982. J. invest. Derm., im Druck.Google Scholar
  89. 89.
    Steinert, P M, Cantieri, J S, Teller, D C, Lonsdale-Eccles, J D, Dale, B A: Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc. nat. Acad. Sci. USA, 78, 4097 (1981).PubMedCrossRefGoogle Scholar
  90. 90.
    Steinert, P M, Peck, G L, Idler, W W: Structural changes of human epidermal alphakeratin in disorders of keratinization. In: Biochemistry of Normal and Abnormal Epidermal Differentiation. Ed.: I A Bernstein and M Seiji. Curr. Probl. Derm. 10, 321. Karger, Basel, New York 1980.Google Scholar
  91. 91.
    Summerly, R, Yardley, H J: Cholesterol synthesis in ichthyosis vulgaris. Brit. J. Derm. 79, 378 (1967).PubMedCrossRefGoogle Scholar
  92. 92.
    Sun, T T: Monoclonal antibodies to keratin intermediate filaments in keratinizing and non-keratinizing epithelia. 32nd Symposium on the Biology of the Skin: Biology of the keratinocyte in vitro. Salishan, USA, Oktober 1982. J. invest. Derm., im Druck.Google Scholar
  93. 93.
    Sun, T T, Doran, T I, Vidrich, A: The use of antikeratin antibodies for the identification of cultured epithelial cells. Birth Defects 16, 183 (1980).PubMedGoogle Scholar
  94. 94.
    Takaki, Y: An electron microscopic study of membrane coating granules in normal skin and abnormal keratinization with reference to acid phosphatase activity. Jap. J. Derm. A 81, 327 und B 81, 131 (1971).Google Scholar
  95. 95.
    Wertz, P W, Downing, D T: Glykolipids in mammalian epidermis: structure and function in the water barrier. Science 217, 1261 (1982).PubMedCrossRefGoogle Scholar
  96. 96.
    Wilgram, G F, Krawczyk, W S, Connolly, J E: Extraction of osmium zinc iodide staining material in keratinosomes. J. invest. Derm. 61, 12 (1973).PubMedCrossRefGoogle Scholar
  97. 97.
    Williams, M L, Elias, P M: N-alkanes in normal and pathological human scale. Biochim. Biophys. Res. Commun., im Druck.Google Scholar
  98. 98.
    Wolff, K, Holubar, K: Ödland-Körper (Membrane coating granules, Keratinosomen) als epidermale Lysosomen. Ein elektronenmikroskopisch-cytochemischer Beitrag zum Verhornungsprozeß der Haut. Arch. klin. exp. Derm. 231, 1 (1967).PubMedCrossRefGoogle Scholar
  99. 99.
    Wolff Schreiner, E: Ultrastructural cytochemistry of the epidermis. Intern. J. Derm. 16, 77 (1977).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Ingrun Anton-Lamprecht
    • 1
  1. 1.Institut für Ultrastrukturforschung der HautHautklinik der Ruprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations