Skip to main content

Effects of Caffeine on Monoamine Neurotransmitters in the Central and Peripheral Nervous System

  • Chapter
Caffeine

Abstract

Over the past 10–15 years, interest in the behavioral and autonomic effects of caffeine has led neuropharmacologists, psychopharmacologists, and autonomic physiologists to explore for effects of this and related methylxanthines on the formation and release of neurotransmitters. Probably because of the availability of techniques and observed autonomic effects, most early studies focused on the catecholamines, and to a lesser extent on serotonin. In fact, the bulk of the neuropharmacologic literature on caffeine (which is small) considers effects related to these transmitters. Fewer and more recent studies have explored the possibility that caffeine effects may be mediated by other mechanisms, such as via an interaction with putative adenosine receptors. And only a handful of articles deal with effects of caffeine on such other transmitters as gamma-aminobutyric acid (GABA) and acetylcholine. For this reason, this review focuses primarily on the effects of caffeine on the monoamine neurotransmitters. Some information, however, is also presented on caffeine’s proposed effects on adenosine receptors, inasmuch as this is one possible route by which the methylxanthine exerts its actions on catecholamine neurons (as well as other cells). Reference to work on other transmitters is also made, but only in passing, to give the reader access to some of the available literature.

The studies described from the authors’ laboratory were supported in part by grants from the National Institute of Mental Health (MH 38178) and the International Life Sciences Institute

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequire E (1980) Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 33: 989–997

    PubMed  CAS  Google Scholar 

  • Ally AI, Nakatsu K (1976) Adenosine inhibition of isolated rabbit ileum and antagonism by theophylline. J Pharmacol Exp Ther 199: 208–215

    PubMed  CAS  Google Scholar 

  • Anden NE, Jackson DM (1975) Locomotor activity stimulation in rats produced by dopamine in the nucleus accumbens: potentiation by caffeine. J Pharm Pharmacol 27: 666–670

    Article  PubMed  CAS  Google Scholar 

  • Arnold MA, Fernstrom JD (1980) Administration of antisomatostatin serum to rats reverses the inhibition of pulsatile growth hormone secretion produced by an injection of metergoline, but not yohimbine. Neuroendocrinology 31: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Atuk, NO, Blaydes MC, Westervelt FB, Wood JE (1967) Effect of aminophylline on urinary excretion of epinephrine and norepinephrine in man. Circulation 35: 745–753

    PubMed  CAS  Google Scholar 

  • Bellet S, Kershbaum A, Finck EM (1968) Response of free fatty acids to coffee and caffeine. Metabolism 17: 702–707

    Article  PubMed  CAS  Google Scholar 

  • Bellet S, Roman L, DeCastro O, Kim KE, Kershbaum A (1969) Effect of coffee ingestion on catecholamine release. Metabolism 18: 288–291

    Article  PubMed  CAS  Google Scholar 

  • Bellin JS, Sorrentino GM (1974) Activation of brain monoamine oxidase by some CNS depressants. Res Commun Chem Pathol Pharmacol 9: 673–680

    PubMed  CAS  Google Scholar 

  • Berkowitz BA, Spector S (1971 a) The effect of caffeine and theophylline on the disposition of brain serotonin in the rat. Eur J Pharmacol 16: 322–325

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz BA, Spector S (1971 b) Effect of caffeine and theophylline on peripheral catecholamines. Eur J Pharmacol 13: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz BA, Spector S (1973) The role of brain serotonin in the pharmacologic effects of the methyl xanthines. In: Barchas JD, Usdin E (eds) Serotonin and behavior. Academic, New York, pp 137–147

    Google Scholar 

  • Berkowitz BA, Tarver JH, Spector S (1970) Release of norepinephrine in the central nervous system by theophylline and caffeine. Eur J Pharmacol 10: 64–71

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedebergs Arch Pharmacol 303: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Chiba S, Hashimoto K, Hashimoto K (1972) Pharmacological analysis of chromatographic responses of the S-A node to caffeine. Eur J Pharmacol 18: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Lesne M, Valette G, Wepierre J (1970) Etude de l’interaction entre les xanthines et la noradrenaline 3H, au niveau du coeur isolé de rat. Biochem Pharmacol 19: 2117–2124

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1982) The biochemical basis of neuropharmacology, 4th edn. Oxford, New York

    Google Scholar 

  • Corrodi H, Fuxe K, Jonsson G (1972) Effects of caffeine on central monoamine neurons. J Pharm Pharmacol 24: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Fernando JCR (1976) Effect of aminophylline on tryptophan and other aromatic amino acids in plasma, brain, and other tissues, and on brain 5-hydroxytryptamine metabolism. Br J Pharmacol 58: 533–545

    PubMed  CAS  Google Scholar 

  • Daly JW, Bruns RF, Snyder SH (1981) Adenosine receptors in the central nervous system: relationship to the central action of methylxanthines. Life Sci 28: 2083–2097

    Article  PubMed  CAS  Google Scholar 

  • DeGubareff T, Sleator W (1965) Effects of caffeine on mammalian atrial muscle and its interaction with adenosine and calcium. J Pharmacol Exp Ther 148: 202–214

    PubMed  CAS  Google Scholar 

  • DeSchaepdryver AF (1959) Physio-pharmacological effects on suprarenal secretion of adrenaline and noradrenaline in dogs. Arch Int Pharmacodyn 119: 517–518

    CAS  Google Scholar 

  • Elmquist D, Feldman DS (1965) Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals. J Physiol (Lond) 181: 487–497

    Google Scholar 

  • Estler CJ (1979) Influence of pimozide on the locomotor hyperactivity produced by caffeine. J Pharm Pharmacol 31: 126–127

    Article  PubMed  CAS  Google Scholar 

  • Fain JN, Li SY, Moreno FJ (1979) Regulation of cyclic AMP metabolism and lipolysis in isolated rat fat cells by insulin. N6-(phenylisopropyl)adenosine and 2’,5’-dideoxyadenosine. J Cyclic Nucleotide Res 5: 189–196

    PubMed  CAS  Google Scholar 

  • Fernstrom MH, Bazil CW, Fernstrom JD (to be published) Lack of effect of caffeine injection on serotonin synthesis rate in rat brain.

    Google Scholar 

  • Fuxe K, Ungerstedt U (1974) Action of caffeine and theophylline on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine receptor agonists. Med Biol 52: 48–54

    PubMed  CAS  Google Scholar 

  • Galloway MP, Roth RH (1982) Clonidine prevents methylxanthine stimulation of norepinephrine metabolism. Trans Am Soc Neurochem 13: 392

    Google Scholar 

  • Galloway MP, Roth RH (1983) Clonidine prevents methylxanthine stimulation of norepinephrine metabolism in rat brain. J Neurochem 40: 246–251

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Dawsey WJ, Mandell AJ (1975) Differential effects of caffeine, d-amphetamine, and methylphenidate on individual raphe cell fluorescence: a microspectrofluorimetric demonstration. Brain Res 85: 135–139

    Article  PubMed  CAS  Google Scholar 

  • Galzigna L, Maina G, Rumney G (1971) Role of L-ascorbic acid in the reversal of the monoamine oxidase inhibition by caffeine. J Pharm Pharmacol 23: 303–305

    Article  CAS  Google Scholar 

  • Goldberg MR, Curatolo PW, Tung CS, Robertson D (1982) Caffeine down-regulates beta adre-noreceptors in rat forebrain. Neurosci Lett 31: 47–52

    Article  PubMed  CAS  Google Scholar 

  • Grant S J, Redmond DE (1982) Methylxanthine activation of noradrenergic unit activity and reversal by Clonidine. Eur J Pharmacol 85: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Gysling K, Bustos G (1977) Effect of ethanol on dibutyryl cyclic adenosine monophosphate- and theophylline-induced stimulation of dopamine biosynthesis by rat striatal slices. Biochem Pharmacol 26: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Harris JE, Morgenroth VH, Roth RH, Baldessarini RJ (1974) Regulation of catecholamine biosynthesis in the rat brain in vitro by cyclic AMP. Nature 252: 156–158

    Article  PubMed  CAS  Google Scholar 

  • Hedqvist P, Fredholm BB (1976) Effects of adenosine on adrenal neurotransmission: prejunctional inhibition and post-junctional enhancement. Naunyn Schmiedebergs Arch Pharmacol 293: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Hedqvist P, Fredholm BB, Olundh S (1978) Antagonistic effect of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res 43: 592–598

    PubMed  CAS  Google Scholar 

  • Higbee MD, Kumar M, Galant SP (1982) Stimulation of endogenous catecholamine release by theophylline: a proposed additional mechanism of action for theophylline effects. J Allergy Clin Immunol 70: 377–382

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WW (1969) Caffeine effects on transmitter depletion and mobilization at motor nerve terminals. Am J Physiol 216: 621–629

    PubMed  CAS  Google Scholar 

  • Jhamandas K, Sawynok J, Sutak M (1978) Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium. Eur J Pharmacol 49: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Joyce EM, Koob GF(1981) Amphetamine-, scopolamine-, and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacolo-gy (Berlin) 73: 311–313

    Article  CAS  Google Scholar 

  • Karasawa T, Furakawa K, Yoshida K, Shimizu M (1976) Effect of theophylline on monoamine metabolism in the rat brain. Eur J Pharmacol 37: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Levi L (1967) The effect of coffee on the function of the sympathoadrenomedullary system in man. Acta Med Scand 181: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Chandra A, Liu GG (1980) The effects of theophylline and caffeine on thermoregulatory functions of rats at different ambient temperatures. J Pharm Pharmacol 32: 204–208

    Article  PubMed  CAS  Google Scholar 

  • Londos C, Cooper DMF, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 75: 5362–5366

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein PR, Vacas MI, Cardinali DP (1982) Effect of pentoxifylline on alpha- and beta-adreno-ceptor sites in cerebral cortex, medial basal hypothalamus, and pineal gland of the rat. Neuropharmacology 21: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Paul SM, Parma AM, Goodwin FK, Syapin P, Skolnick P (1979) Purinergic inhibition of diazepam binding to rat brain (in vitro). Life Sci 24: 851–858

    Article  PubMed  CAS  Google Scholar 

  • Martin JB (1976) Brain regulation of growth hormone secretion. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrineology, vol 4. Raven, New York, pp 129–168

    Google Scholar 

  • Paalzow G, Paalzow L (1974) Theophylline increased sensitivity to nociceptive stimulation and regional turnover of rat brain 5-HT, noradrenaline and dopamine. Acta Pharmacol Toxicol (Co-penh) 34: 157–173

    Article  CAS  Google Scholar 

  • Peach MJ (1972) Stimulation of release of adrenal catecholamine by adenosine 3′: 5′-cyclic monophosphate and theophylline in the absence of extracellular Ca2+. Proc Natl Acad Sci USA 69: 834–836

    Article  PubMed  CAS  Google Scholar 

  • Poisner AM (1973a) Caffeine-induced catecholamine secretion: similarity to caffeine-induced muscle contraction. Proc Soc Exp Biol Med 142: 103–105

    PubMed  CAS  Google Scholar 

  • Poisner AM (1973 b) Direct stimulant effect of aminophylline on catecholamine release from the adrenal medulla. Biochem Pharmacol 22: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Polc P, Bonetti EP, Pieri L, Cumin R, Angioi RM, Mohler H, Haefely WE (1981) Caffeine antagonizes several central effects of diazepam. Life Sci 28: 2265–2275

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Frolich JC, Carr K, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 298: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Jhamandas KH (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides, and morphine: antagonism by theophylline. J Pharmacol Exp Ther 197: 379–390

    PubMed  CAS  Google Scholar 

  • Schlosberg AJ, Fernstrom JD, Kopczynski MC, Cusack BM, Gillis MA (1981) Acute effects of caffeine injection on neutral amino acids and brain monoamine levels in rats. Life Sci 29: 173–183

    Article  PubMed  CAS  Google Scholar 

  • Scholfíeld CN (1982) Antagonism of gamma-aminobutyric acid and muscimol by Picrotoxin bicu-culline, strychnine, bemegride, leptazol, D-tubocurarine and theophylline in the isolated olfactory cortex. Naunyn Schmiedebergs Arch Pharmacol 318: 274–280

    Article  PubMed  Google Scholar 

  • Scholtholt J, Nitz RE, Schraven E (1972) On the mechanism of the antagonistic action of xanthine derivatives against adenosine and coronary vasodilators. Arzneimittelforsch 22: 1255–1259

    PubMed  CAS  Google Scholar 

  • Skok VI, Storch NN, Nishi S (1978) The effect of caffeine on the neurons of a mammalian sympathetic ganglion. Neuroscience 3: 697–708

    Article  PubMed  CAS  Google Scholar 

  • Snider SR, Waldeck B (1974) Increased synthesis of adrenomedullary catecholamines induced by caffeine and theophylline. Naunyn Schmiedebergs Arch Pharmacol 281: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci USA 78: 3260–3264

    Article  PubMed  CAS  Google Scholar 

  • Spindel E, Arnold M, Cusack B, Wurtman RJ (1980) Effects of caffeine on anterior pituitary and thyroid function in the rat. J Pharmacol Exp Ther 214: 58–62

    PubMed  CAS  Google Scholar 

  • Strieker EM, Zimmerman MB, Friedman MI, Zigmond MJ (1977) Caffeine restores feeding response to 2-deoxy-D-glucose in 6-hydroxydopamine-treated rats. Nature 267: 174–175

    Article  Google Scholar 

  • Strubelt O (1969) The influence of reserpine, propranolol, and adrenal medullectomy on the hyperglycemic actions of theophylline and caffeine. Arch Int Pharmacodyn 179: 215–224

    PubMed  CAS  Google Scholar 

  • Strubelt O, Siegers CP (1969) Zum Mechanismus der kalorigenen Wirkung von Theophyllin und Coffein. Biochem Pharmacol 18: 1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Sytinskii IA, Priyatkina TN (1966) Effect of certain drugs on the gamma-amino-butyric acid system of the central nervous system. Biochem Pharmacol 15: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Valzelli L, Bernasconi S (1973) Behavioral and neurochemical effects of caffeine in normal and aggressive mice. Pharmacol Biochem Behav 1: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Varagic VM, Zugic M (1971) Interactions of xanthine derivatives, catecholamines and glucose-6-phosphate on the isolated phrenic nerve diaphragm preparation of the rat. Pharmacology 5: 275–286

    Article  PubMed  CAS  Google Scholar 

  • Vestal RE, Eiriksson CE, Musser B, Ozaki LK, Halter JB (1983) Effect of intravenous aminophylline on plasma levels of catecholamines and related cardiovascular and metabolic responses in man. Circulation 67: 162–171

    Article  PubMed  CAS  Google Scholar 

  • Waldeck B (1971) Some effects of caffeine aminophylline on the turnover of catecholamines in the brain. J Pharm Pharmacol 23: 824–830

    Article  PubMed  CAS  Google Scholar 

  • Waldeck B (1973) Sensitization by caffeine of central catecholamine receptors. J Neural Transm 34: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Waldeck B (1974) Ethanol and caffeine: a complex interaction with respect to locomotor activity and central catecholamines. Psychopharmacologia (Berlin) 36: 209–220

    Article  CAS  Google Scholar 

  • Wanatabe H, Ikeda M, Wanatabe K (1981) Properties of rotational behavior produced by methyl-xanthine derivatives in mice with unilateral striatal 6-hydroxydopamine-induced lesions. J Pharmacobiodyn 4: 301–307

    Google Scholar 

  • White BC, Simpson CC, Adams JE, Harkins D (1978) Monoamine synthesis and caffeine-induced locomotor activity. Neuropharmacology 17: 511–513

    Article  PubMed  CAS  Google Scholar 

  • Wooten GF, Thoa, NB, Kopin IJ, Axelrod J (1973) Enhanced release of dopamine beta-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3′,5′-mono-phosphate and theophylline. Mol Pharmacol 9: 178–183

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernstrom, J.D., Fernstrom, M.H. (1984). Effects of Caffeine on Monoamine Neurotransmitters in the Central and Peripheral Nervous System. In: Dews, P.B. (eds) Caffeine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69823-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69823-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69825-5

  • Online ISBN: 978-3-642-69823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics