Caffeine pp 221-238 | Cite as

The Mutagenic Potential of Caffeine

  • R. H. Haynes
  • J. D. B. Collins


In this paper we evaluate the available data on the mutagenic potential of caffeine and discuss its possible risk to man. A primary consideration in risk assessment is to compare the doses to which average human subjects may be exposed with those required to produce measurable genetic effects in various test systems.


Chromosomal Aberration Chromosome Damage Chinese Hamster Cell Maleic Hydrazide Antimutagenic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler ID (1969) Does caffeine induce dominant lethal mutations in mice? Humangenetik 7: 137–148PubMedCrossRefGoogle Scholar
  2. Adler ID (1970) The problem of caffeine mutagenicity. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 383–403Google Scholar
  3. Ahnström G, Natarajan AT (1971) Repair of gamma-ray and neutron-induced lesions in germinating barley seeds. Int J Radiat Biol 19: 433–443CrossRefGoogle Scholar
  4. Alderson T, Khan AH (1967) Caffeine-induced mutagenesis in Drosophila Nature 215: 1080PubMedCrossRefGoogle Scholar
  5. Amacher DE, Paillet SC, Turner GN, Ray VE, Salsburg DS (1980) Point mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells. II. Test validation and interpretation. Mutat Res 72: 447–474PubMedCrossRefGoogle Scholar
  6. Andrew LE (1959) The mutagenic activity of caffeine in Drosophila Am Nat 93: 135–138CrossRefGoogle Scholar
  7. Anmad A, Leopold U (1973) On a possible correlation between fine structure and map expansion and reciprocal recombination based on crossing over. Mol Gen Genet 123: 143–158CrossRefGoogle Scholar
  8. Axelrod J, Reichenthal J (1953) The fate of caffeine in man and a method for its estimation in biological material. J Pharmacol Exp Ther 107: 519PubMedGoogle Scholar
  9. Basier A, Bachmann U, Roszinsky-Köcher G, Röhrborn G (1979) Effects of caffeine on sister chromatid exchanges in vivo. Mutat Res 59: 209–214CrossRefGoogle Scholar
  10. Batkyan GG, Pogosyan VS (1976) Investigation of caffeine action in different tissues of Coreopsis (Coreopsis tinctoria Nutt). Tsitol Genet 10: 240–243Google Scholar
  11. Bertrand M, Schwarn E, Frandon A, Vagne A, Alary J (1965) Sur un effet teratogène systématique et spécifique de la caféine chez les rongeurs. CR Soc Biol (Paris) 159: 2199–2101Google Scholar
  12. Bishun N, Williams D, Mills J (1973 a) The cytogenetic effects of caffeine on two tumour cell lines. Mutat Res 21: 186–187Google Scholar
  13. Bishun NP, Williams DC, Raven RW (1973 b) Chromosome damage to HeLa cells grown continuously in caffeine. Mutat Res 17: 145–146PubMedCrossRefGoogle Scholar
  14. Bresler S, Mosevitsky M, Vyacheslavov L (1970) Complete mutagenesis in a bacterial population induced by thymine starvation on solid media. Nature 225: 764–766PubMedCrossRefGoogle Scholar
  15. Brøgger A (1973) Caffeine-induced enhancement of chromosome damage. Genetics 74: S31Google Scholar
  16. Brusick D (ed) (1980) Principles of genetic toxicology. Plenum, New York LondonGoogle Scholar
  17. Carlson PS (1974) Mitotic crossing-over in a higher plant. Genet Res 24: 109–112CrossRefGoogle Scholar
  18. Clark AM, Clark EG (1968) The genetic effects of caffeine on Drosophila melanogaster Mutat Res 6: 227–234PubMedCrossRefGoogle Scholar
  19. Clarke CH (1968) Differential effects of caffeine in mutagen-treated Schizosaccharomyces pombe Mutat Res 5: 33–40PubMedCrossRefGoogle Scholar
  20. Clarke CH (1970) Repair systems and nitrous acid mutagenesis in E. coli B/r. Mutat Res 9: 359–368PubMedCrossRefGoogle Scholar
  21. Clarke CH, Shankel DM (1977) Reversion induction in lac Z frameshift mutants of E. coli K12. Mutat Res 46: 243Google Scholar
  22. Clarke CH, Wade MJ (1975) Evidence that caffeine, 8-methoxysporalen, and steroid diamines are frameshift mutagens for E. coli K-12. Mutat Res 28: 123–126PubMedCrossRefGoogle Scholar
  23. Cole P (1971) Coffee-drinking and cancer of the lower urinary tract. Lancet 1: 1335–1337PubMedCrossRefGoogle Scholar
  24. Cornish H, Christman AA (1957) A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem 228: 315–323PubMedGoogle Scholar
  25. Coughlin CA, Adelberg EA (1956) Bacterial mutation induced by thymine starvation. Nature 178: 531–532PubMedCrossRefGoogle Scholar
  26. Demerec M, Wallace B, Witkin EM (1948) The gene. Carnegie Inst Washington Yearb 47: 169–176Google Scholar
  27. Demerec M, Bertani G, Flint J (1951) A survey of chemicals for mutagenic action on E. coli Am Nat 85: 119CrossRefGoogle Scholar
  28. Donovan PJ, DiPaolo JA (1974) Caffeine enhancement of chemical carcinogen-induced transformation of cultured Syrian hamster cells. Cancer Res 34: 2720–2727PubMedGoogle Scholar
  29. Ehliseyenko NN (1970) Modification of chromosome radiation lesion in roots of Crepis capillaris Radiobiologiia 10: 449–503Google Scholar
  30. Epstein SS, Bass W, Arnold E, Bishop Y (1970) The failure of caffeine to induce mutagenic effects or to synergize the effects of known mutagens in mice. Food Cosmet Toxicol 8: 381–401PubMedCrossRefGoogle Scholar
  31. Federal Register (1980) 45/205: 69616–69638Google Scholar
  32. Fishbein L, Flamm WG, Falk HL (eds) (1970) Chemical mutagens. Academic, New York, pp 39–53, 246–291Google Scholar
  33. Forbes C (1971) The influence of caffeine on the sex-linked lethal frequency in D. melanogaster Genetics 68: S20Google Scholar
  34. Fox M (1974) The effect of post-treatment with caffeine on survival and UV-induced mutation frequencies in Chinese hamster cells and mouse lymphoma cells in vitro. Mutat Res 24: 187–204PubMedCrossRefGoogle Scholar
  35. Fox M (1977) A caffeine insensitive error-prone repair process in V79 Chinese hamster cells? Mutat Res 46: 118Google Scholar
  36. Fries N, Kihlman B (1948) Fungal mutations obtained with methyl xanthines. Nature 162: 573–575PubMedCrossRefGoogle Scholar
  37. Fujiwara Y (1975 a) Caffeine-sensitive post-replication repair of N-methyl-N-nitrosourea damage in mouse L cells. Mutat Res 31: 260–261Google Scholar
  38. Fujiwara Y (1975 b) Postreplication repair of UV damage to DNA, DNA-chain elongation and effects of metabolic inhibitors in mouse L cells. Biophys J 15: 403–415PubMedCrossRefGoogle Scholar
  39. Gabridge MG, Legator MS (1969) A host-mediated microbial assay for the detection of mutagenic compounds. Proc Soc Exp Biol Med 130: 831–834PubMedGoogle Scholar
  40. Gezelius K, Fries N (1952) Phage resistant mutants induced in E. coli by caffeine. Hereditas 38: 112–114Google Scholar
  41. Gilbert EF, Pistey WR (1973) Effect on the offspring of repeated caffeine administration to pregnant rats. J Reprod Fertil 34: 495–499PubMedCrossRefGoogle Scholar
  42. Glass EA, Novick A (1959) Induction of mutation in chloramphenicol-inhibited bacteria. J Bacteriol 77: 10–16PubMedGoogle Scholar
  43. Goldstein A, Warren R (1962) Passage of caffeine into human gonadal and fetal tissue. Biochem Pharmacol 11: 166–168PubMedCrossRefGoogle Scholar
  44. Goodman LS, Gilman A (eds) (1967) The pharmacological basis of therapeutics, 3rd edn. Macmillan, New York, p 354Google Scholar
  45. Grigg GW (1968) Caffeine-death in Escherichia coli Mol Gen Genet 102: 316PubMedCrossRefGoogle Scholar
  46. Grigg GW, Stuckey J (1966) The reversible suppression of stationary phase mutations in E. coli by caffeine. Genetics 53: 823–834PubMedGoogle Scholar
  47. Guglielmi GE, Vogt TF, Tice RR (1982) Induction of sister chromatid exchanges and inhibition of cellular proliferation in vitro. I. Caffeine. Environ Mutagen 4: 191–200PubMedCrossRefGoogle Scholar
  48. Harm W (1970) Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. VIII. Inhibition of photoenzymatic repair of UV lesions in E. coli DNA by caffeine. Mutat Res 10: 319–333PubMedCrossRefGoogle Scholar
  49. Haugli FB, Dove WF (1972) Mutagenesis and mutant selection in Physarum polycephalum Mol Gen Genet 118: 109–124PubMedGoogle Scholar
  50. Kakunaga T (1975) Caffeine inhibits cell transformation by 4-nitroquinoline-1-oxide. Nature 258: 248–250PubMedCrossRefGoogle Scholar
  51. Kao FT, Puck TT (1969) Genetics of somatic mammalian cells. IX. Quantitation of mutagenesis by physical and chemical agents. J Cell Physiol 74: 245–258PubMedCrossRefGoogle Scholar
  52. Kihlman BA (1952) A survey of purine derivatives as inducers of chromosome changes. Hereditas 38: 115–127CrossRefGoogle Scholar
  53. Kihlman BA (1964) The production of chromosome aberrations by streptonigrin in Vicia faba Mutat Res 1: 54–62CrossRefGoogle Scholar
  54. Kihlman BA (1974) Effects of caffeine on the genetic material. Mutat Res 26: 53–71PubMedCrossRefGoogle Scholar
  55. Kihlman BA (ed) (1977) Caffeine and chromosomes. Elsevier/North-Holland, New YorkGoogle Scholar
  56. Kihlman BA, Levan A (1949) The cytological effect of caffeine. Hereditas 35: 109–111Google Scholar
  57. Kihlman BA, Odmark G (1965) Deoxyribonucleic acid synthesis and the production of chromosomal aberrations by streptonigrin, 8-ethoxycaffeine, and 1, 3, 7, 9-tetramethyluric acid. Mutat Res 2: 494–505PubMedCrossRefGoogle Scholar
  58. Kihlman BA, Sturelid S (1975) Enhancement by methylated oxypurines of the frequency of induced chromosomal aberrations. III. The effect in combination with X-rays in root tips of Vicia faba Hereditas 80: 247–254PubMedCrossRefGoogle Scholar
  59. Kihlman BA, Sturelid S, Norlen K, Tidriks D (1971) Caffeine, caffeine derivitives and chromosomal aberrations. II. Different responses of Allium root tips and Chinese hamster cells to treatments with caffeine, 8-ethoxycaffeine, and 6-methylcoumarin. Hereditas 69: 35–50PubMedCrossRefGoogle Scholar
  60. Kihlman BA, Sturelid S, Hartley-Asp B, Nilsson K (1973) Caffeine potentiation of the chromosome damage produced in bean root tips and in Chinese hamster cells by various chemical and physical agents. Mutat Res 17: 271–275PubMedCrossRefGoogle Scholar
  61. King MT, Beikirch H, Eckhardt K, Gocke E, Wild D (1979) Mutagenicity studies with X-ray contrast media, analgesics, antipyretics, antirheumatics, and some other pharmaceutical drugs in bacterial, drosophila, and mammalian test systems. Mutat Res 66: 33–43PubMedCrossRefGoogle Scholar
  62. Koerting-Keiffer LE, Mickey GH (1969) Einwirkung von Koffein auf Chromosomen. Z Pflanzenzucht 61: 244–251Google Scholar
  63. Kuhlmann W, Fromme HG, Heege EM, Ostertag W (1968) The mutagenic action of caffeine in higher organisms. Cancer Res 28: 2375–2389PubMedGoogle Scholar
  64. Kunz BA (1982) Genetic effects of deoxyribonucleotide pool imbalances. Environ Mutagen 4: 695–725PubMedCrossRefGoogle Scholar
  65. Kunz BA, Barclay BJ, Game JC, Little JG, Haynes RH (1980) Induction of mitotic recombination in yeast by starvation for thymine nucleotides. Proc Natl Acad Sci USA 77: 6057–6061PubMedCrossRefGoogle Scholar
  66. Lee S (1971) Chromosome aberrations induced in cultured human cells by caffeine. Jpn J Genet 46: 337–344CrossRefGoogle Scholar
  67. Legator MS (1970) The host-mediated assay, a practical procedure for evaluating potential mutagenic agents. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 260–270Google Scholar
  68. Legator MS, Zimmering S (1979) Review of the genetic effects of caffeine. J Environ Sci Health [C] 13/12: 135–188Google Scholar
  69. Lehmann AR, Kirk-Bell S (1974) Effects of caffeine and theophylline on DNA synthesis in unirradiated and UV-irradiated mammalian cells. Mutat Res 26: 73PubMedCrossRefGoogle Scholar
  70. Lieb M (1961) Enhancement of ultraviolet-induced mutations in bacteria by caffeine. Z Verer-bungsl 92: 416–429CrossRefGoogle Scholar
  71. Linn S, Schoenbaum SC, Monson RR, Rosner B, Stubblefíeld PG, Ryan KJ (1982) No association between coffee consumption and adverse outcomes of pregnancy. N Engl J Med 306/3: 141–145PubMedCrossRefGoogle Scholar
  72. Loprieno N, Barale R, Baroncelli S (1974) Genetic effects of caffeine. Mutat Res 26: 83–87PubMedCrossRefGoogle Scholar
  73. Lumb J, Sideropoulos A, Shankel D (1968) Inhibition of dark repair of ultraviolet damage in DNA by caffeine and 8-chlorocaffeine. Kinetics of inhibition. Mol Gen Genet 102: 108–111PubMedCrossRefGoogle Scholar
  74. Lyon MF, Philips RJS, Searle AG (1962) A test for mutagenicity of caffeine in mice. Z Vererbungsl 93: 7–13PubMedGoogle Scholar
  75. Maher VM, Ouellette LM, Curren RD, McCormick JJ (1976) Caffeine enhancement of the cytotoxic and mutagenic effect of ultraviolet irradiation in a xeroderma pigmentosum variant strain of human cells. Biochem Biophys Res Commun 71: 228–234PubMedCrossRefGoogle Scholar
  76. Matter BE, Grauwiler J (1974) Micronuelei in mouse bone-marrow cells. A simple in vivo model for the evaluation of drug-induced chromosomal aberrations. Mutat Res 23: 239–249PubMedCrossRefGoogle Scholar
  77. McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: a assay of 300 chemicals. Proc Natl Acad Sci USA 72/12: 5135–5139PubMedCrossRefGoogle Scholar
  78. Mendelson D (1974) The effect of caffeine on repair systems in oocytes of D. melanogaster I. Mutat Res 22: 145–156PubMedCrossRefGoogle Scholar
  79. Mirvish SS, Cardesa A, Wallcave L, Shubik P (1975) Induction of mouse lung adenomas by amines or ureas plus nitrite and by N-nitroso compounds: Effect of ascorbate, gallic acid, thiocynate and caffeine. J Natl Cancer Inst 55: 633–636PubMedGoogle Scholar
  80. Mittler S, Mittler JE, Tonetti AM, Szymczak ME (1967 a) The effect of caffeine on chromosome loss and nondisjunction in Drosophila Mutat Res 4: 708–710PubMedCrossRefGoogle Scholar
  81. Mittler S, Mittler JE, Owens SL (1967 b) Loss of chromosomes and nondisjunction induced by caffeine in Drosophila Nature 214: 424PubMedCrossRefGoogle Scholar
  82. Mulvihill JJ (1973) Caffeine as teratogen and mutagen. Teratology 8: 69–72PubMedCrossRefGoogle Scholar
  83. Murota T, Murakami A (1976) Induction of dominant lethal mutations by alkylating agents in germ cells of the silkworm Bombyx mori Mutat Res 38: 343–344PubMedGoogle Scholar
  84. Neims A (1981) Third international caffeine workshop Nutr Rev 39/4: 184Google Scholar
  85. Novick A (1956) Mutagens and antimutagens. Brookhaven Symp Biol 8: 201–214PubMedGoogle Scholar
  86. Ostertag W, Greif BJ (1967) Die Erzeugung von Chromatidenbrüchen durch Coffein in Leuko-cytenkulturen des Menschen. Humangenetik 3: 282–294CrossRefGoogle Scholar
  87. Ostertag W, Haake J (1966) The mutagenicity in D. melanogaster of caffeine and other compounds which produce chromosome breakage in human cells in culture. Z Vererbungsl 98: 299–308CrossRefGoogle Scholar
  88. Ostertag W, Duisberg E, Stürmann M (1965) The mutagenic activity of caffeine in man. Mutat Res 2: 293–296PubMedCrossRefGoogle Scholar
  89. Roberts JJ, Sturrock JE (1973) Enhancement by caffeine of N-methyl-N-nitrosourea-induced mutations and chromosome aberrations in Chinese hamster cells. Mutat Res 20: 243–255PubMedCrossRefGoogle Scholar
  90. Röhrborn G (1972) Mutagenitätsuntersuchungen an Mäusen nach chronischer Behandlung mit Coffein. Z Ernährungswiss [Suppl] 14: 54–67Google Scholar
  91. Roy SC (1973) Comparative effects of colchicine, caffeine and hydroquionone on nodal roots of Callisiafragrans Biol Plant 15: 383–390CrossRefGoogle Scholar
  92. Sandlie I, Kleepe K (1982) Effect of caffeine on nucleotide pools in Escherichia Coli Chem Biol Interact 40: 141–148PubMedCrossRefGoogle Scholar
  93. Sandlie I, Solberg K, Kleepe K (1980) The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli Mutat Res 73: 29PubMedCrossRefGoogle Scholar
  94. Sarachek A, Bish JT, Ireland R (1970) Relative susceptibilities of caffeine-sensitive and caffeine-resistant strains of Candida albicans to inactivation and mutation by ultraviolet radiation. Arch Mikrobiol 74: 244–257PubMedCrossRefGoogle Scholar
  95. Schöneich J, Michaelis A, Rieger R (1970) Coffein und die chemische Induktion von Chromatiden Aberrationen bei Vicia faba und Ascitestumoren der Maus. Biol Zentralbl 89: 49–63Google Scholar
  96. Shakamis VF (1970) Comparative study of the action of caffeine on X chromosome nondisjunction and recessive sex-linked lethal mutations in females of various D. melanogaster lines. Sov Genet 6: 921–924Google Scholar
  97. Shankel DM, Kleinberg JA (1967) Comparison of mutational synergism elicited by caffeine and acriflavin with ultraviolet light. Genetics 56: 589Google Scholar
  98. Shiraishi Y, Sandberg AA (1976) Caffeine and sister chromatid exchange. Proc Jpn Acad 52: 379–382Google Scholar
  99. Simon D, Yen S, Cole P (1975) Coffee drinking and cancer of the lower urinary tract. J Natl Cancer Inst 54: 587–591PubMedGoogle Scholar
  100. Simons JWIM, van Zeeland AA, Knaap AG AC (1977) Mutation induction and analysis of repair processes in mammalian cells in vitro. Mutat Res 46: 156Google Scholar
  101. Swietlinska Z, Zuk J (1974) Effects of caffeine on chromosome damage induced by chemical mutagens and ionizing radiation in Vicia faba and Secale cereale Mutat Res 26: 89–97CrossRefGoogle Scholar
  102. Tazima Y (1981) Apparent threshold and its significance in the assessment of risks due to chemical mutagens. In: Sugimura T, Kondo S, Takebe H (eds) Environmental mutagens and carcinogens. University of Tokyo Press, TokyoGoogle Scholar
  103. Terada M, Nishimura H (1975) Mitigation of caffeine-induced teratology in mice by prior chronic caffeine ingestion. Teratology 12: 79–82PubMedCrossRefGoogle Scholar
  104. Thayer PS, Kensler CJ (1973) Exposure of four generations of mice to caffeine in drinking water. Toxicol Appl Pharmacol 25: 169–179PubMedCrossRefGoogle Scholar
  105. Thayer PS, Himmelfarb P, Liss RH, Carlson BL (1971) Continuous exposure of HeLa cells to caffeine. Mutat Res 12: 197–203PubMedCrossRefGoogle Scholar
  106. Timson J (1972) Effect of theobromine, theophylline and caffeine on the mitosis of human lymphocytes. Mutat Res 15: 197–201PubMedCrossRefGoogle Scholar
  107. Timson J (1977) Caffeine. Mutat Res 47: 1–52PubMedGoogle Scholar
  108. Trosko JE, Chu EHY (1971) Effects of caffeine on the induction of mutations in Chinese hamster cells by ultraviolet light. Mutat Res 12: 337–340PubMedCrossRefGoogle Scholar
  109. Ts’o PO, Lu P (1964) Interaction of nucleic acids. I. Physical binding of thymine, adenine, steroids, and aromatic hydrocarbons to nucleic acid. Proc Natl Acad Sci USA 51: 17–24CrossRefGoogle Scholar
  110. Turnbull D (1975) Factors affecting the response of Chinese hamster cells to mutagenic alkylating agents. PhD Thesis, Sussex UniversityGoogle Scholar
  111. Venkatasetty R (1972) Genetic variation induced by radiation and chemical agents in Drosophila melanogaster Diss Abstr [B] 32: 5047–5048Google Scholar
  112. Vig BK (1972) Effect of caffeine and other antimetabolites on the induction of somatic crossing-over in Glycine max (soybean). Genetics 71: S66Google Scholar
  113. Waldren CA, Patterson D (1979) Effects of caffeine on purine metabolism and ultraviolet light-induced lethality in cultured mammalian cells. Cancer Res 39: 4975–4982PubMedGoogle Scholar
  114. Warren RN (1969) Metabolism of xanthine alkaloids in man. J Chromatogr 40: 468–469PubMedCrossRefGoogle Scholar
  115. Watson WAF (1975) Lack of an effect of caffeine on repair systems in oocytes of D. melanogaster following treatment of mature sperm with alkylating agents. Mutat Res 33: 395–398PubMedCrossRefGoogle Scholar
  116. Weinstein D, Mauer I, Solomon HM (1972) The effect of caffeine on chromosomes of human lymphocytes in vivo and in vitro studies. Mutat Res 16: 391–399PubMedCrossRefGoogle Scholar
  117. Witkin E (1959) Post-irradiation metabolism and the timing of ultraviolet-induced mutations in bacteria. In: Proceedings of the Xth international Congress on Genetics, vol 1. University of Toronto Press, Toronto, pp 280–299Google Scholar
  118. Witkin EM, Farquharson EL (1969) Enhancement and diminution of ultraviolet light initiated mutagenesis by post-treatment with caffeine in E. coli In: Wolstenholme GEW, O’Connor M (eds) Ciba Foundation symposium on mutation as a cellular process. Churchill, London, pp 36–49Google Scholar
  119. Yamamoto K, Yamaguchi H (1969) Inhibition by caffeine of the repair of X-ray-induced chromosome breaks in barley. Mutat Res 8: 428–430PubMedCrossRefGoogle Scholar
  120. Yanders AF, Seaton RK (1962) The lack of mutagenicity of caffeine in Drosophila Am Nat 96: 277–280CrossRefGoogle Scholar
  121. Yefremova GI, Filippova LM (1974) Effect of caffeine on crossing-over in Drosophila melanogaster Mutat Res 23: 347–352PubMedCrossRefGoogle Scholar
  122. Yeomans TC, Hilliker AJ, Holm DG (1972) Recessive lethals in Drosophila sperm: Synergism of caffeine and gamma radiation. Can J Genet Cytol 14: 741Google Scholar
  123. Yielding LW, Riley TL, Yielding KL (1976) Preliminary study of caffeine and chloroquine enhancement of X-ray-induced birth defects. Biochem Biophys Res Commun 68: 1356–1361PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. H. Haynes
  • J. D. B. Collins

There are no affiliations available

Personalised recommendations