Skip to main content

Products of Metabolism of Caffeine

  • Chapter
Caffeine

Abstract

The isolation of caffeine from green coffee beans was described in Germany in 1820 by Runge and confirmed the same year by von Giese. In France, Robiquet in 1823 and then Pelletier in 1826 independently discovered a white and volatile crystalline substance. The name “cofeina” appeared in 1823 in the “Dictionnaire des termes de médecine” and the word “caffein” or “Coffein” was used by Fechner in 1826. The same year, Martius discovered a substance which he called “guaranin”, and 1 year later a substance found in tea was named “thein” by Oudry. It was only in 1838 (Mulder; Jobst) and in 1840 (Martius; Berthemot and Dechastelus) that thein and guaranin respectively were shown to be identical with caffeine. In 1843 caffeine was found in maté prepared from Ilex paraguayensis (Stenhouse), and in 1865 in kola nuts (Daniell).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albanese M (1895) Über das Verhalten des Caffeïns und des Theobromins im Organismus. Arch Exp Pathol Pharmakol 35: 449–466

    Article  Google Scholar 

  • Aldridge A, Neims AH (1979) The effect of phenobarbital and β-naphtolflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos 7: 378–382

    PubMed  CAS  Google Scholar 

  • Aldridge A, Neims AH (1980) Relationship between the clearance of caffeine and its 7-N-de-methylation in developing beagle puppies. Biochem Pharmacol 29: 1909–1914

    Article  PubMed  CAS  Google Scholar 

  • Aldridge A, Parsons WD, Neims AH (1977) Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene. Life Sci 21: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Aldridge A, Aranda JV, Neims AH (1979) Caffeine metabolism in the newborn. Clin Pharmacol Ther 25: 447–453

    PubMed  CAS  Google Scholar 

  • Aranda JV, Turmen T (1979) Methylxanthines in apnea of prematurity. Clin Perinatol 6: 87–108

    PubMed  CAS  Google Scholar 

  • Aranda JV, Louridas TA, Vitullo BB, Thorn P, Aldridge A, Haber R (1979) Metabolism of theophylline to caffeine in human fetal liver. Science 206: 1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Aranda JV, Turmen T, Sasyniuk BI (1980) Pharmacokinetics of diuretics and methylxanthines in the neonate. Eur J Clin Pharmacol 18: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Aranda JV, Beharry K, Kinlough L (1983) Development of caffeine biotransformation in humans (Abstr). Pediatr Res 17: 353

    Google Scholar 

  • Arnaud MJ (1976 a) Identification kinetic and quantitative study of [2–14C] and [1-Me14C] caffeine metabolites in rat’s urine by chromatographic separations. Biochem Med 16: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976 b) Metabolism of 1,3,7-trimethyldihydrouric acid in the rat: new metabolic pathway of caffeine. Experientia 32: 1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1980) Second international caffeine workshop. Nutr Rev 38: 197

    Google Scholar 

  • Arnaud MJ (1981) Third international caffeine workshop. Nutr Rev 39: 183

    Google Scholar 

  • Arnaud MJ (1983) Formation de dérivés de l’uracile au cours du métabolisme de la caféine. Med 5: 375–376

    Google Scholar 

  • Arnaud MJ, Bracco I (1980) Fetal and early postnatal caffeine metabolism in the rat. World Conf Clin Pharm Ther, London, Abstract 0556

    Google Scholar 

  • Arnaud MJ, Gétaz F (1982) Postnatal establishment of a bloodbrain barrier for theobromine in the rat. Experienta 38: 752

    Google Scholar 

  • Arnaud MJ, Welsch C (1979 a) Metabolic pathway of theobromine in the rat and identification of two new metabolites in human urine. J Agric Food Chem 27: 524–527

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Welsch C (1979b) Metabolism of [1-Me14C]paraxanthine in the rat: identification of a new metabolite. Experientia 35: 34

    Google Scholar 

  • Arnaud MJ, Welsch C (1980a) Caffeine metabolism in human subjetcs. In: IXth international colloquium in the sicence and technology of coffee, vol 1. Association Scientifique Internationale du Café, Paris, 1981, pp 385–396

    Google Scholar 

  • Arnaud MJ, Welsch C (1980 b) Comparison of caffeine metabolism by perfused rat liver and isolated microsomes. In: Estabrook RW, Gelboni HV, Gilette JR, O’Brien PJ (eds) Microsomes, drug oxidations, and chemical carcinogenesis, Academic, New York, pp 813–816

    Google Scholar 

  • Arnaud MJ, Welsch C (1981) Theophylline and caffeine metabolism in man. In: Rietbrock N, Woodcook BG, Staib AH (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 135–148

    Google Scholar 

  • Arnaud MJ, Thélin-Dorner A, Ravussin E, Acheson KJ (1980) Study of the demethylation of [1,3,7-Me13C]caffeine in man using respiratory exchange measurement. Biomed Mass Spectrom 7: 521–524

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Braceo I, Welsch C (1982) Metabolism and distribution of labeled theophylline in the pregnant rat. Impairment of theophylline metabolism by pregnancy and absence of blood-brain-barrier in the fetus. Pediatr Res 16: 167–171

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Braceo I, Sauvageat JL, Clerc MF (1983) Placental transfer of the major caffeine metabolite in the rat using 6-amino-5[N-formylmethylamino]1,3[Me14C]-dimethyluracil administered orally or intravenously to the pregnant rat. Toxicol Lett 16: 271–279

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Reichenthal J (1953) The fate of caffeine in man and a method for its estimation in biological material. J Pharmacol Exp Ther 107: 519–523

    PubMed  CAS  Google Scholar 

  • Bada HS, Khanna NN, Somani SM, Tin AA (1979) Interconversion of theophylline and caffeine in newborn infants. J Pediatr 94: 993–995

    Article  PubMed  CAS  Google Scholar 

  • Benedict SR (1916) Uric acid in its relation to metabolism. J Lab Clin Med 2: 1–15

    CAS  Google Scholar 

  • Berthemot, Dechastelus (1840) Chemische Untersuchung des Guarana. Liebigs Ann Chem 36: 90–93

    Article  Google Scholar 

  • Birkett DJ, Grygiel JJ, Miners JO (1981) Metabolie disposition of the methylxanthines in man. In: Rietbrock N, Woodcock BG, Staib AH, (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 149–158

    Google Scholar 

  • Bonati M, Latini R, Marzi E, Cantoni R, Belvedere G (1980) [2–14C] caffeine metabolism in control and 3-methylcholanthrene induced rat liver microsome by high pressure liquid chromatography. Toxicol Lett 7: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Bonati M, Latini R, Marra G, Assael BM, Parmi R (1981) Theophylline metabolism during the first month of life and development. Pediatr Res 15: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Bondzynski S, Gottlieb R (1895 a) Über Methylxanthin, ein Stoffwechselprodukt des Theobromins und Caffeïns. Ber Chem Ges 28: 1113–1118

    Article  CAS  Google Scholar 

  • Bondzynski S, Gottlieb R (1895 b) Über Methylxanthin, ein Stoffwechselprodukt des Theobromins und Caffeïns. Arch Exp Pathol Pharmakol 25: 45–55

    Google Scholar 

  • Bondzynski S, Gottlieb R (1896) Über die Constitution des nach Coffein und Theobromin im Harne auftretenden Methylxanthins. Arch Exp Pathol Pharmakol 37: 385–388

    Article  Google Scholar 

  • Bory C, Baltassat P, Porthault M, Bethenod M, Frederich A, Aranda JV (1978) Biotransformation of theophylline to caffeine in premature newborn. Lancet 1204–1205

    Google Scholar 

  • Bory C, Baltassat P, Porthault M, Bethenod M, Frederich A, Aranda JV (1979) Metabolism of theophylline to caffeine in premature newborn infants. J Pediatr 94: 988–993

    Article  PubMed  CAS  Google Scholar 

  • Boutroy M-J (1978) Etude de la pharmacologic de la 1,3-dimethylxanthine chez le prématuré. Master’s Thesis, University of Nancy

    Google Scholar 

  • Boutroy M-J, Vert P, Monin P, Royer RJ, Royer-Morrot M-J (1979 a) Methylation of theophylline to caffeine in premature infants. Lancet 830

    Google Scholar 

  • Boutroy M-J, Vert P, Royer RJ, Monin P, Royer-Morrot M-J (1979 b) Caffeine, metabolite of theophylline during the treatment of apnea in premature infant. J Pediatr 94: 996–998

    Article  PubMed  CAS  Google Scholar 

  • Brazier JL, Ribon B, Desage M, Salle B (1980 a) Study of theophylline metabolism in premature human newborns using stable isotope labelling. Biomed Mass Spectrom 7: 189–192

    Article  PubMed  CAS  Google Scholar 

  • Brazier JL, Salle BL, Ribon B, Renaud H, Desage M (1980 b) Metabolism of theophylline labeled with stable isotopes in the premature newborn infant. Colloq Inst Natl Sante Rech Med (Pharmacol Dev) 89: 309–316

    Google Scholar 

  • Bresler HW (1904) Über die Bestimmung der Nucleinbasen im Safte von Beta vulgaris. Hoppe Seylers Z Physiol Chem 4: 535–541

    Article  Google Scholar 

  • Brodie BB, Axelrod J, Reichenthal J (1952) Metabolism of theophylline (1,3-dimethylxanthine) in man. J Biol Chem 194: 215–222

    PubMed  CAS  Google Scholar 

  • Buchanan OH, Block WD, Christman AA (1945 a) The metabolism of the methylated purines. I. The enzymatic determination of urinary uric acid. J Biol Chem 157: 181–187

    CAS  Google Scholar 

  • Buchanan OH, Christman AA, Block WD (1945 b) The metabolism of the methylated purines. II. Uric acid excretion following the ingestion of caffeine, theophylline and theobromine. J Biol Chem 157: 189–201

    CAS  Google Scholar 

  • Bülow KB, Larsson H (1969) Absorption of orally administered tritium labelled theophylline preparations. Pharmacol Clin 1: 156–160

    Article  Google Scholar 

  • Burg AW (1975) Physiological disposition of caffeine. Drug Metab Rev 4: 199–228

    Article  PubMed  CAS  Google Scholar 

  • Burg AW, Stein ME (1972) Urinary excretion of caffeine and its metabolites in the mouse. Biochem Pharmacol 21: 909–922

    Article  PubMed  CAS  Google Scholar 

  • Burg AW, Werner E (1972) Tissue distribution of caffeine and its metabolites in the mouse. Biochem Pharmacol 21: 923–936

    Article  PubMed  CAS  Google Scholar 

  • Burg AW, Burrows R, Kensler CJ (1974) Unusual metabolism of caffeine in the squirrel monkey. Toxicol Appl Pharmacol 28: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Burian R, Schur H (1900) Über die Stellung der Purinkörper im menschlichen Stoffwechsel. Arch Gesamte Physiol 80: 241–343

    Article  CAS  Google Scholar 

  • Butts WC, Mrochek JE, Young DS (1971) Influence of certain components of a chemically defined diet on urinary excretion of ultraviolet-absorbing compounds. Clin Chem 17: 956–957

    PubMed  CAS  Google Scholar 

  • Caldwell J, Monks TJ, Smith RL (1978) A comparison of the metabolism and pharmacokinetics of intravenously administered theophylline and aminophylline in man. Br J Pharmacol 63: 369P–370P

    PubMed  CAS  Google Scholar 

  • Caldwell J, Lawrie CA, Monks TJ (1980) The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Br J Pharmacol 70: 111P–112P

    CAS  Google Scholar 

  • Caldwell J, O’Gorman J, Adamson RH (1981) The metabolism of caffeine in three non-human primate species. In: Rietbrock N, Woodcock GB, Staib AH (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 181–185

    Google Scholar 

  • Callahan MM, Robertson RS, Branfman AR, McComish M, Yesair DW (1980) In: IXth international colloquium on the science and technology of coffee, vol 1. Association Scientifique International du Café, Paris, 1981, pp 371–384

    Google Scholar 

  • Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF, Yesair DW (1982) Human metabolism of [1-methyl-14C] and [2–14C] caffeine after oral administration. Drug Metab Dispos 10: 417–423

    PubMed  CAS  Google Scholar 

  • Chou C-H, Waller GR (1980) Possible allelopathic constituents of coffea arabica. J Chem Ecol 6: 643–654

    Article  CAS  Google Scholar 

  • Christensen HD, Manion CV, Kling OR (1981) Caffeine kinetics during late pregnancy. In: Soyka LF, Redmond G (eds) Drug metabolism in the immature human. Raven, New York, pp 163–181

    Google Scholar 

  • Clark GW, de Lorimier AA (1926) The effects of caffeine and theobromine upon the formation and excretion of uric acid. Am J Physiol 77: 491–502

    CAS  Google Scholar 

  • Coombs HI (1927) Studies on xanthine oxidase. IX. The specificity of the system. Biochem J 21: 1259–1265

    PubMed  CAS  Google Scholar 

  • Cornish HH (1956) A study of the metabolism of theobromine, theophylline and caffeine. University Microfilms, Ann Arbor/Mich, publ no 21, p 165

    Google Scholar 

  • Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline and caffeine in man. J Biol Chem 228: 315–323

    PubMed  CAS  Google Scholar 

  • Daniell WF (1865) On the kola-nut of tropical West Africa (The gurunut of Soudan). Pharm J 6: 450–457

    Google Scholar 

  • De NC, Mittelman A, Jenkins EE, Grain PF, McCloskey JA, Chheda GB (1980) Isolation of a new modified uracil derivative from huma urine. J Carbohydrates Nucleosides Nucleotides 7: 113–129

    CAS  Google Scholar 

  • De NC, Mittelman A, Dutta SP, Edmonds CG, Jenkins EE, McCloskey JA, Blakley CR, Vestal ML, Chheda GB (1981) Isolation and characterization of two new modified uracil derivates from human urine. J Carbohydrates Nucleosides Nucleotides 8: 363–389

    CAS  Google Scholar 

  • Desmond PV, Patwardhan R, Parker R, Schenker S, Speeg KV Jr (1980) Effect of Cimetidine and other antihistaminics on the elimination of aminopyrine, phenacetin and caffeine. Life Sci 26: 1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Dictionnaire des termes de médecine, chirurgie, art vétérinaire, pharmacie, histoire naturelle, botanique, physique, chimie, etc. (1823), Paris, p 109

    Google Scholar 

  • Dixon M (1926) Studies on xanthine oxidase. VII. The specificity of the system. Biochem J 20: 703–718

    PubMed  CAS  Google Scholar 

  • Fabro S, Sieber SM (1969) Caffeine and nicotine penetrate the preimplantation blastocyst. Nature 223: 410–411

    Article  PubMed  CAS  Google Scholar 

  • Fechner MGT (1826) Repertorium der organischen Chemie. Leipzig

    Google Scholar 

  • Ferrero JL, Neims AH (1983) Biotransformation of caffeine by mouse liver microsomes: GSH or cytosol causes a shift in products from 1,3,7-trimethyluric acid to 6-amino-5[N-formylmethylamino]1,3-dimethyluracil (Abstr 5871). Fed Proc 42: 1293

    Google Scholar 

  • Fink K, Adams WS, Pfleiderer W (1964) A new urinary pyrimidine, 5-acetylamino-6-amino-3-methyluraeil. Its isolation, identification and synthesis. J Biol Chem 239: 4250–4256

    PubMed  CAS  Google Scholar 

  • Fischer E (1882) Über Caffeïn, Theobromin, Xanthin und Guanin. Liebigs Ann Chem 215: 253–320

    Article  Google Scholar 

  • Fischer E (1897) Über die Constitution des Caffeïns, Xanthins, Hypoxanthins und verwandter Basen. Ber Dtsch Chem Ges 30: 549–559

    Article  CAS  Google Scholar 

  • Fischer E, Ach L (1895) Synthese des Caffeïns. Ber Dtsch Chem Ges 28: 3135–3143

    Article  CAS  Google Scholar 

  • Grant DM, Tang BK, Kalow W (1983) Polymorphic N-acetylation of a caffeine metabolite. Clin Pharmacol Ther 33: 335–359

    Article  Google Scholar 

  • Grygiel JJ, Birkett DH (1980) Effect of age on patterns of theophylline metabolism. Clin Pharmacol Ther 28: 456–462

    Article  PubMed  CAS  Google Scholar 

  • Haig A (1896) Uric acid as a factor in causation of diseases. London

    Google Scholar 

  • Hess N, Schmoll E (1896) Über die Beziehungen der Eiweiß- und Paranucleinsubstanzen der Nahrung zur Alloxurkörperausscheidung im Harn. Arch Exp Pathol Pharmakol 37: 243–253

    Article  Google Scholar 

  • Horning MG, Nowlin J, Thenot JP, Bouwsma OJ (1979) Effect of deuterium substitution on the rate of caffeine metabolism. In: Stable Isotopes, Proceedings of 3rd International Conference, 1978, pp 379–384

    Google Scholar 

  • Jager-Roman E, Doyle PE, Thomas D, Baird-Lambert J, Cvejic M, Buchanan N (1982) Increased theophylline metabolism on premature infants after prenatal betamethasone administration. Dev Pharmacol Ther 5: 127–135

    PubMed  CAS  Google Scholar 

  • Jenne JW, Nagasawa HT, Thompson RD (1976) Relationship of urinary metabolites of theophylline to serum theophylline levels. Clin Pharmacol Ther 19: 375–381

    PubMed  CAS  Google Scholar 

  • Jobst C (1838) Thein identisch mit Caffein. Ann Chem Pharm 25: 63–66

    Article  Google Scholar 

  • Johnson EA (1952) The occurence of substituted uric acids in human urine. Biochem J 51: 133–138

    PubMed  CAS  Google Scholar 

  • Kamei K, Matsuda M, Momose A (1975) New sulfur-containing metabolites of caffeine. Chem Pharm Bull (Tokyo) 23: 683–685

    CAS  Google Scholar 

  • Kelley WN, Wyngaarden JB (1970) Effect of dietary purine restriction, allopurinol, and oxipurinol on urinary excretion of ultraviolet-absorbing compounds. Clin Chem 16: 707–713

    PubMed  CAS  Google Scholar 

  • Khanna KL, Rao GS, Cornish HH (1972) Metabolism of caffeine-3H in the rat. Toxicol Appl Pharmacol 23: 720–730

    Article  PubMed  CAS  Google Scholar 

  • Klinge WE (1981) Method for the separation and quantification of methylated hydroxypurines found in urine of man and its application to the study of human metabolism of methylxanthines. Biochem Soc Trans 9: 120–121

    PubMed  CAS  Google Scholar 

  • Kossel A (1888) Über eine neue Base aus dem Pflanzenreich. Ber Dtsch Chem Ges 21: 2164–2167

    Article  Google Scholar 

  • Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DD, Josephs H (1982) The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin. Pharmacol Ther 32: 261–269

    Article  PubMed  Google Scholar 

  • Krüger M (1899 a) Über den Abbau des Caffeïns im Organismus des Hundes. Ber Chem Ges 32: 2818–2824

    Article  Google Scholar 

  • Krüger M (1899 b) Über den Abbau des Caffeïns im Organismus des Kaninchens. Ber Chem Ges 32: 3336–3337

    Article  Google Scholar 

  • Krüger M, Salomon G (1895/1896) Die Constitution des Heteroxanthins und seine physiologischen Wirkungen. Z Physiol Chem 21: 169–185

    Article  Google Scholar 

  • Krüger M, Salomon G (1898) Die Alloxurbasen des Harnes. Z Physiol Chem 24: 364–394

    Article  Google Scholar 

  • Krüger M, Salomon G (1898/1899) Die Alloxurbasen des Harnes. Z Physiol Chem 26: 350–380

    Article  Google Scholar 

  • Krüger M, Schmidt J (1900) Das Verhalten von Theobromin im Organismus des Menschen. Arch Exp Pathol Pharmakol 45: 259–261

    Article  Google Scholar 

  • Krüger M, Schmidt J (1901) Der Einfluß des Caffeïns und Theobromins auf die Ausscheidung der Purinkörper im Harne. Z Physiol Chem 32: 104–110

    Article  Google Scholar 

  • Krüger M, Schmidt P (1899) Über das Verhalten von Theobromin, Paraxanthin und 3-Methylxanthin im Organismus. Ber Chem Ges 32: 2677–2682

    Article  Google Scholar 

  • Latini R, Bonati M, Marzi E, Garattini S (1981) Urinary excretion of an uracilic metabolite from caffeine by rat, monkey and man. Toxicol Lett 7: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Lehmann CG (1850) Lehrbuch der physiologischen Chemie, 2nd edn. Leipzig, p 367

    Google Scholar 

  • Leven (1868) Action physiologique et médicamenteuse de la caféine. Arch Physiol Norm Pathol 1: 179–189

    Google Scholar 

  • Logan L, Kling OR, Christensen HD (1983) Xanthine metabolism in pregnant baboons (Abstr 5870). Fed Proc 42

    Google Scholar 

  • Lohmann SM, Miech RP (1975) Synthesis and purification of 8–14C-theophylline. J Labelled Compd 11: 515–519

    Article  CAS  Google Scholar 

  • Lohmann SM, Miech RP (1976) Theophylline metabolism by the rat liver microsomal system. J Pharmacol Exp Ther 196: 213–225

    PubMed  CAS  Google Scholar 

  • Markham R, Smith JD (1949) Chromatographic studies of nucleic acids. 1. A technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem J 45: 294–298

    PubMed  CAS  Google Scholar 

  • Martin GJ (1948) The effect of various agents on the excretion of uric acid and allantoin. Exp Med Surg 6: 24–27

    PubMed  CAS  Google Scholar 

  • Marthas T(1826) Das Guaranin; ein neuer Pflanzenbildungstheil. Arch Gesamte Nat 7: 266–271

    Google Scholar 

  • Martius T (1840) Über die Zusammensetzung des Guaranins. Ann Chem 36: 93–95

    Article  Google Scholar 

  • Medicus L (1875) Zur Constitution der Harnsäuregruppe. Liebigs Ann Chem 175: 230–251

    Article  Google Scholar 

  • Mendel LB, Wardell EL (1917) Effect of ingestion of coffee, tea and caffeine on the excretion of uric acid in man. JAMA 68: 1805–1807

    CAS  Google Scholar 

  • Miners JO, Attwood J, Birkett DJ (1982) Theobromine metabolism in man. Drug Metab Dispos 10: 692–675

    Google Scholar 

  • Monks TJ, Lawrie CA, Caldwell J (1981) The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Biopharm Drug Dispos 2: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Morgan EJ, Stewart CP, Hopkins FG (1922) Anaerobic and aerobic oxidation of xanthine and hypoxanthine by tissues and by milk. Proc R Soc Lond [Biol] 94: 109–131

    Article  CAS  Google Scholar 

  • Mrocheck JE, Butts WC, Rainey WT Jr, Burtis CA (1971) Separation and identification of urinary constituents by use of multiple-analytical techniques. Clin Chem 17: 72–77

    Google Scholar 

  • Muir KT, Jonkman JHG, Tang DS, Kunitani M, Riegelman S (1980) Simultaneous determination of theophylline and its major metabolites in urine by reverse-phase ion-pair HPLC. J Chromatogr 221: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Mulder CJ (1838) Chemische Untersuchung des chinesischen und des javanischen Thees. Arch Pharm 65: 68–84

    Article  Google Scholar 

  • Myer VC, Hanzal RF (1929) A study of methyl uric acids. Am J Physiol 90: 458–459

    Google Scholar 

  • Myers VC, Hanzal RF (1946) The metabolism of methylxanthines and their related methyluric acids. J Biol Chem 162: 309–323

    PubMed  CAS  Google Scholar 

  • Myers VC, Wardell EL (1928) The influence of the ingestion of methylxanthine on the excretion of uric acid. J Biol Chem 77: 697–722

    CAS  Google Scholar 

  • Oudry V (1827) Thein, eine organische Salzbase im Thee (Thea chinesis). Mag Pharm 19: 49–50

    Google Scholar 

  • Pelletier MJ (1826) Note sur la caféine. J Pharm 12: 229–233

    Google Scholar 

  • Pfleiderer W (1971) Synthese und Eigenschaften von 5,6,7,8-Tetrahydroluminazinen und ihren 5-Acetyl-Derivaten. Liebigs Ann Chem 747: 111–222

    Article  CAS  Google Scholar 

  • Pinkard KJ, Cooper IA, Motteram R, Turner CN (1972) Purine and pyrimidine excretion in Hodgkin’s disease. J Natl Cancer Inst 49: 27–38

    PubMed  CAS  Google Scholar 

  • Rafter JJ, Nilsson L (1981) Involvement of the intestinal microflora in the formation of sulfur-containing metabolites of caffeine. Xenobiotica 11: 771–778

    Article  PubMed  CAS  Google Scholar 

  • Rao GS, Khanna KL, Cornish HH (1972) Mass spectrometric identification of methylxanthines and methyluric acids, the possible metabolites of caffeine. J Pharm Sci 61: 1822–1825

    Article  PubMed  CAS  Google Scholar 

  • Rao GS, Khanna KL, Comish HH (1973) Identification of two new metabolites of caffeine in the rat urine. Experientia 19: 953–955

    Article  Google Scholar 

  • Robiquet (1823) Café. In: Dictionnaire technologique, vol 4. Thomine et Fortic, Paris

    Google Scholar 

  • Rost E (1895) Über die Ausscheidung des Coffeins und Theobromins im Harn. Arch Exp Pathol Pharmakol 36: 56–71

    Article  Google Scholar 

  • Rovei V, Chanoine F, Strolin-Benedetti M (1982) Pharmacokinetics of theophylline: a dose-range study. Br J Clin Pharmacol 14: 769–778

    PubMed  CAS  Google Scholar 

  • Runge F (1820) Phytochemische Entdeckungen. Berlin, p 204

    Google Scholar 

  • Salomon G (1883) Über das Paraxanthin, einen neuen Bestandtheil des normalen menschlichen Harns. Ber Dtsch Chem Ges 16: 195–200

    Article  Google Scholar 

  • Salomon G (1885) Über Paraxanthin und Heteroxanthin. Ber Dtsch Chem Ges 18: 3406–3410

    Article  Google Scholar 

  • Scalais E, Papageorgiou A, Aranda JV (1983) Biotransformation of theophylline during the first six weeks of life (Abstr 409). Pediatr Res 17

    Google Scholar 

  • Scheele KW (1776) Calculi urinarii. Opuscula 2: 73–79

    Google Scholar 

  • Schmidt G, Huenisch E (1966) Detection of theobromine and its metabolites in urine. Dtsch Z Gesamte Gerichtl Med 57: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Kuehl H (1968) Detection of theophylline and its metabolites in human urine. Wiss Z Martin Luther Univ Halle Wittenberg Math Naturwiss Reihe 17: 553–559

    CAS  Google Scholar 

  • Schmidt G, Schoyerer R (1966) Detection of caffeine and its metabolites in the urine. Dtsch Z Gesamte Gerichtl Med 57: 402–409

    Article  PubMed  CAS  Google Scholar 

  • Soyka LF, Neese AL (1978) Perinatal exposure to methylxanthines: Possible effects of pregnancy outcome (Abstr). Clin Pharmacol Ther 23: 130

    Google Scholar 

  • Staib AH, Schuppan D, Lissner R, Zilly W, V Bomhard G, Richter E (1980) Pharmacokinetics and metabolism of theophylline in patients with liver diseases. Int J Clin Pharmacol Ther Toxicol 18: 500–502

    PubMed  CAS  Google Scholar 

  • Stenhouse J (1843) Über Thein und seine Darstellung. Liebigs Ann Chem 45: 366–372

    Article  Google Scholar 

  • Strecker A (1861) Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Liebigs Ann Chem 118: 151–177

    Article  Google Scholar 

  • Sved S, Wilson DL (1977) Simultaneous assay of the methylxanthine metabolites of caffeine in plasma by high performance liquide chromatography. Res Commun Chem Pathol Pharmacol 17: 319–331

    PubMed  CAS  Google Scholar 

  • Sved S, Hossie RD, McGilveray IJ (1976) The human metabolism of caffeine to theophylline. Res Commun Chem Pathol Pharmacol 13: 185–192

    PubMed  CAS  Google Scholar 

  • Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylami-no-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos 11: 218–220

    PubMed  CAS  Google Scholar 

  • Tang-Liu DD-S, Riegelman S (1981) Metabolism of theophylline to caffeine in adults. Res Commun Chem Pathol Pharmacol 34: 371–380

    PubMed  CAS  Google Scholar 

  • Tang-Liu DD-S, Riegelman S (1982) An automated HPLC assay for simultaneous quantitation of methylated xanthines and uric acids in urine. J Chromatogr Sci 20: 155–159

    PubMed  CAS  Google Scholar 

  • Tang-Liu DD-S, Williams RL, Riegelman S (1983) Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther 224: 180–185

    PubMed  CAS  Google Scholar 

  • Tse FLS, Szeto DW (1981) Reversed-phase high performance liquid chromatographic determination of caffeine and its N-demethylated metabolites in dog plasma. J Chromatogr 226: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Tserng K-Y, King C, Takieddine FN (1981) Theophylline metabolism in premature infants. Clin Pharmacol Ther 29: 594–600

    Article  PubMed  CAS  Google Scholar 

  • Van Gennip AH, de Bree PK, van der Heiden C, Wadman SK, Haverkamp J, Vliegenthart JFG (1973) Urinary excretion of 3-methylxanthine and related compounds in children. Clin Chem Acta 45: 119–127

    Article  Google Scholar 

  • Van Gennip AH, Grift J, van Bree-Blom EJ, Ketting D, Wadman SK (1979) Urinary excretion of methylated purines in man and in the rat after the administration of theophylline. J Chromatogr 163: 351–362

    Article  PubMed  Google Scholar 

  • Von Giese F (1820) Vermischte Notizen. 1. Kaffeestoff und Salzgehalt des Quassia Extrakts. Allg Nord Ann Chem Freunde Naturkd Arzneiwiss 4: 240–241

    Google Scholar 

  • Warren RN (1969) Metabolism of xanthine alkaloids in man. J Chromatogr 40: 468–469

    Article  PubMed  CAS  Google Scholar 

  • Warszawski D, Ben-Zvi Z, Gorodischer R, Arnaud MJ, Bracco I (1982) Urinary metabolites of caffeine in young dogs. Drug Metab Dispos 10: 424–428

    PubMed  CAS  Google Scholar 

  • Weinfeld H (1951) Metabolism of methylxanthines. Fed Proc 10: 267

    Google Scholar 

  • Weinfeld H, Christman A (1953) The metabolism of caffeine and theophylline. J Biol Chem 200: 345–355

    PubMed  CAS  Google Scholar 

  • Weissmann B, Bromberg PA, Gutman AB (1954) Chromatographic investigation of purines in normal human urine. Proc Soc Exp Biol Med 87: 257–260

    PubMed  CAS  Google Scholar 

  • Weissmann B, Bromberg PA, Gutman AB (1957) The purine bases of human urine. II. Semiquantitative estimation and isotope incorporation. J Biol Chem 224: 423–434

    PubMed  CAS  Google Scholar 

  • Welch RM, Hsu SY, DeAngelis RL (1977) Effect of Aroclor 1254, phenobarbitol and polycyclic aromatic hydrocarbons on the plasma clearance of caffeine in the rat. Clin Pharmacol Ther 22: 791–798

    PubMed  CAS  Google Scholar 

  • Wietholtz H, Voegelin M, Arnaud MJ, Bircher J, Preisig R (1981) Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur J Clin Pharmacol 21: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Williams JF, Lowitt S, Szentivanyi A (1979) Effect of phenobarbital and 3-methylcholanthrene pre-treatment on the plasma half-life and urinary excretion profile of theophylline and its metabolites in rats. Biochem Pharmacol 28: 2935–2940

    Article  PubMed  CAS  Google Scholar 

  • Woskresensky A (1842) Über das Theobromin. Liebigs Ann Chem 41: 125–127

    Article  Google Scholar 

  • Young DS (1970) Effect of a chemically defined diet on urinary excretion of minerals and aromatic compounds. Clin Chem 16: 681–686

    PubMed  CAS  Google Scholar 

  • Young DS, Epley JA, Goldman P (1971) Influence of a chemically-defined diet on the composition of serum and urine. Clin Chem 17: 765–773

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arnaud, M.J. (1984). Products of Metabolism of Caffeine. In: Dews, P.B. (eds) Caffeine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69823-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69823-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69825-5

  • Online ISBN: 978-3-642-69823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics