Caffeine pp 3-38 | Cite as

Products of Metabolism of Caffeine

  • M. J. Arnaud

Abstract

The isolation of caffeine from green coffee beans was described in Germany in 1820 by Runge and confirmed the same year by von Giese. In France, Robiquet in 1823 and then Pelletier in 1826 independently discovered a white and volatile crystalline substance. The name “cofeina” appeared in 1823 in the “Dictionnaire des termes de médecine” and the word “caffein” or “Coffein” was used by Fechner in 1826. The same year, Martius discovered a substance which he called “guaranin”, and 1 year later a substance found in tea was named “thein” by Oudry. It was only in 1838 (Mulder; Jobst) and in 1840 (Martius; Berthemot and Dechastelus) that thein and guaranin respectively were shown to be identical with caffeine. In 1843 caffeine was found in maté prepared from Ilex paraguayensis (Stenhouse), and in 1865 in kola nuts (Daniell).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albanese M (1895) Über das Verhalten des Caffeïns und des Theobromins im Organismus. Arch Exp Pathol Pharmakol 35: 449–466CrossRefGoogle Scholar
  2. Aldridge A, Neims AH (1979) The effect of phenobarbital and β-naphtolflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos 7: 378–382PubMedGoogle Scholar
  3. Aldridge A, Neims AH (1980) Relationship between the clearance of caffeine and its 7-N-de-methylation in developing beagle puppies. Biochem Pharmacol 29: 1909–1914PubMedCrossRefGoogle Scholar
  4. Aldridge A, Parsons WD, Neims AH (1977) Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene. Life Sci 21: 967–974PubMedCrossRefGoogle Scholar
  5. Aldridge A, Aranda JV, Neims AH (1979) Caffeine metabolism in the newborn. Clin Pharmacol Ther 25: 447–453PubMedGoogle Scholar
  6. Aranda JV, Turmen T (1979) Methylxanthines in apnea of prematurity. Clin Perinatol 6: 87–108PubMedGoogle Scholar
  7. Aranda JV, Louridas TA, Vitullo BB, Thorn P, Aldridge A, Haber R (1979) Metabolism of theophylline to caffeine in human fetal liver. Science 206: 1319–1321PubMedCrossRefGoogle Scholar
  8. Aranda JV, Turmen T, Sasyniuk BI (1980) Pharmacokinetics of diuretics and methylxanthines in the neonate. Eur J Clin Pharmacol 18: 55–63PubMedCrossRefGoogle Scholar
  9. Aranda JV, Beharry K, Kinlough L (1983) Development of caffeine biotransformation in humans (Abstr). Pediatr Res 17: 353Google Scholar
  10. Arnaud MJ (1976 a) Identification kinetic and quantitative study of [2–14C] and [1-Me14C] caffeine metabolites in rat’s urine by chromatographic separations. Biochem Med 16: 67–76PubMedCrossRefGoogle Scholar
  11. Arnaud MJ (1976 b) Metabolism of 1,3,7-trimethyldihydrouric acid in the rat: new metabolic pathway of caffeine. Experientia 32: 1238–1240PubMedCrossRefGoogle Scholar
  12. Arnaud MJ (1980) Second international caffeine workshop. Nutr Rev 38: 197Google Scholar
  13. Arnaud MJ (1981) Third international caffeine workshop. Nutr Rev 39: 183Google Scholar
  14. Arnaud MJ (1983) Formation de dérivés de l’uracile au cours du métabolisme de la caféine. Med 5: 375–376Google Scholar
  15. Arnaud MJ, Bracco I (1980) Fetal and early postnatal caffeine metabolism in the rat. World Conf Clin Pharm Ther, London, Abstract 0556Google Scholar
  16. Arnaud MJ, Gétaz F (1982) Postnatal establishment of a bloodbrain barrier for theobromine in the rat. Experienta 38: 752Google Scholar
  17. Arnaud MJ, Welsch C (1979 a) Metabolic pathway of theobromine in the rat and identification of two new metabolites in human urine. J Agric Food Chem 27: 524–527PubMedCrossRefGoogle Scholar
  18. Arnaud MJ, Welsch C (1979b) Metabolism of [1-Me14C]paraxanthine in the rat: identification of a new metabolite. Experientia 35: 34Google Scholar
  19. Arnaud MJ, Welsch C (1980a) Caffeine metabolism in human subjetcs. In: IXth international colloquium in the sicence and technology of coffee, vol 1. Association Scientifique Internationale du Café, Paris, 1981, pp 385–396Google Scholar
  20. Arnaud MJ, Welsch C (1980 b) Comparison of caffeine metabolism by perfused rat liver and isolated microsomes. In: Estabrook RW, Gelboni HV, Gilette JR, O’Brien PJ (eds) Microsomes, drug oxidations, and chemical carcinogenesis, Academic, New York, pp 813–816Google Scholar
  21. Arnaud MJ, Welsch C (1981) Theophylline and caffeine metabolism in man. In: Rietbrock N, Woodcook BG, Staib AH (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 135–148Google Scholar
  22. Arnaud MJ, Thélin-Dorner A, Ravussin E, Acheson KJ (1980) Study of the demethylation of [1,3,7-Me13C]caffeine in man using respiratory exchange measurement. Biomed Mass Spectrom 7: 521–524PubMedCrossRefGoogle Scholar
  23. Arnaud MJ, Braceo I, Welsch C (1982) Metabolism and distribution of labeled theophylline in the pregnant rat. Impairment of theophylline metabolism by pregnancy and absence of blood-brain-barrier in the fetus. Pediatr Res 16: 167–171PubMedCrossRefGoogle Scholar
  24. Arnaud MJ, Braceo I, Sauvageat JL, Clerc MF (1983) Placental transfer of the major caffeine metabolite in the rat using 6-amino-5[N-formylmethylamino]1,3[Me14C]-dimethyluracil administered orally or intravenously to the pregnant rat. Toxicol Lett 16: 271–279PubMedCrossRefGoogle Scholar
  25. Axelrod J, Reichenthal J (1953) The fate of caffeine in man and a method for its estimation in biological material. J Pharmacol Exp Ther 107: 519–523PubMedGoogle Scholar
  26. Bada HS, Khanna NN, Somani SM, Tin AA (1979) Interconversion of theophylline and caffeine in newborn infants. J Pediatr 94: 993–995PubMedCrossRefGoogle Scholar
  27. Benedict SR (1916) Uric acid in its relation to metabolism. J Lab Clin Med 2: 1–15Google Scholar
  28. Berthemot, Dechastelus (1840) Chemische Untersuchung des Guarana. Liebigs Ann Chem 36: 90–93CrossRefGoogle Scholar
  29. Birkett DJ, Grygiel JJ, Miners JO (1981) Metabolie disposition of the methylxanthines in man. In: Rietbrock N, Woodcock BG, Staib AH, (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 149–158Google Scholar
  30. Bonati M, Latini R, Marzi E, Cantoni R, Belvedere G (1980) [2–14C] caffeine metabolism in control and 3-methylcholanthrene induced rat liver microsome by high pressure liquid chromatography. Toxicol Lett 7: 1–7PubMedCrossRefGoogle Scholar
  31. Bonati M, Latini R, Marra G, Assael BM, Parmi R (1981) Theophylline metabolism during the first month of life and development. Pediatr Res 15: 304–308PubMedCrossRefGoogle Scholar
  32. Bondzynski S, Gottlieb R (1895 a) Über Methylxanthin, ein Stoffwechselprodukt des Theobromins und Caffeïns. Ber Chem Ges 28: 1113–1118CrossRefGoogle Scholar
  33. Bondzynski S, Gottlieb R (1895 b) Über Methylxanthin, ein Stoffwechselprodukt des Theobromins und Caffeïns. Arch Exp Pathol Pharmakol 25: 45–55Google Scholar
  34. Bondzynski S, Gottlieb R (1896) Über die Constitution des nach Coffein und Theobromin im Harne auftretenden Methylxanthins. Arch Exp Pathol Pharmakol 37: 385–388CrossRefGoogle Scholar
  35. Bory C, Baltassat P, Porthault M, Bethenod M, Frederich A, Aranda JV (1978) Biotransformation of theophylline to caffeine in premature newborn. Lancet 1204–1205Google Scholar
  36. Bory C, Baltassat P, Porthault M, Bethenod M, Frederich A, Aranda JV (1979) Metabolism of theophylline to caffeine in premature newborn infants. J Pediatr 94: 988–993PubMedCrossRefGoogle Scholar
  37. Boutroy M-J (1978) Etude de la pharmacologic de la 1,3-dimethylxanthine chez le prématuré. Master’s Thesis, University of NancyGoogle Scholar
  38. Boutroy M-J, Vert P, Monin P, Royer RJ, Royer-Morrot M-J (1979 a) Methylation of theophylline to caffeine in premature infants. Lancet 830Google Scholar
  39. Boutroy M-J, Vert P, Royer RJ, Monin P, Royer-Morrot M-J (1979 b) Caffeine, metabolite of theophylline during the treatment of apnea in premature infant. J Pediatr 94: 996–998PubMedCrossRefGoogle Scholar
  40. Brazier JL, Ribon B, Desage M, Salle B (1980 a) Study of theophylline metabolism in premature human newborns using stable isotope labelling. Biomed Mass Spectrom 7: 189–192PubMedCrossRefGoogle Scholar
  41. Brazier JL, Salle BL, Ribon B, Renaud H, Desage M (1980 b) Metabolism of theophylline labeled with stable isotopes in the premature newborn infant. Colloq Inst Natl Sante Rech Med (Pharmacol Dev) 89: 309–316Google Scholar
  42. Bresler HW (1904) Über die Bestimmung der Nucleinbasen im Safte von Beta vulgaris. Hoppe Seylers Z Physiol Chem 4: 535–541CrossRefGoogle Scholar
  43. Brodie BB, Axelrod J, Reichenthal J (1952) Metabolism of theophylline (1,3-dimethylxanthine) in man. J Biol Chem 194: 215–222PubMedGoogle Scholar
  44. Buchanan OH, Block WD, Christman AA (1945 a) The metabolism of the methylated purines. I. The enzymatic determination of urinary uric acid. J Biol Chem 157: 181–187Google Scholar
  45. Buchanan OH, Christman AA, Block WD (1945 b) The metabolism of the methylated purines. II. Uric acid excretion following the ingestion of caffeine, theophylline and theobromine. J Biol Chem 157: 189–201Google Scholar
  46. Bülow KB, Larsson H (1969) Absorption of orally administered tritium labelled theophylline preparations. Pharmacol Clin 1: 156–160CrossRefGoogle Scholar
  47. Burg AW (1975) Physiological disposition of caffeine. Drug Metab Rev 4: 199–228PubMedCrossRefGoogle Scholar
  48. Burg AW, Stein ME (1972) Urinary excretion of caffeine and its metabolites in the mouse. Biochem Pharmacol 21: 909–922PubMedCrossRefGoogle Scholar
  49. Burg AW, Werner E (1972) Tissue distribution of caffeine and its metabolites in the mouse. Biochem Pharmacol 21: 923–936PubMedCrossRefGoogle Scholar
  50. Burg AW, Burrows R, Kensler CJ (1974) Unusual metabolism of caffeine in the squirrel monkey. Toxicol Appl Pharmacol 28: 162–166PubMedCrossRefGoogle Scholar
  51. Burian R, Schur H (1900) Über die Stellung der Purinkörper im menschlichen Stoffwechsel. Arch Gesamte Physiol 80: 241–343CrossRefGoogle Scholar
  52. Butts WC, Mrochek JE, Young DS (1971) Influence of certain components of a chemically defined diet on urinary excretion of ultraviolet-absorbing compounds. Clin Chem 17: 956–957PubMedGoogle Scholar
  53. Caldwell J, Monks TJ, Smith RL (1978) A comparison of the metabolism and pharmacokinetics of intravenously administered theophylline and aminophylline in man. Br J Pharmacol 63: 369P–370PPubMedGoogle Scholar
  54. Caldwell J, Lawrie CA, Monks TJ (1980) The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Br J Pharmacol 70: 111P–112PGoogle Scholar
  55. Caldwell J, O’Gorman J, Adamson RH (1981) The metabolism of caffeine in three non-human primate species. In: Rietbrock N, Woodcock GB, Staib AH (eds) Methods in clinical pharmacology, vol 3. Vieweg, Braunschweig Wiesbaden, pp 181–185Google Scholar
  56. Callahan MM, Robertson RS, Branfman AR, McComish M, Yesair DW (1980) In: IXth international colloquium on the science and technology of coffee, vol 1. Association Scientifique International du Café, Paris, 1981, pp 371–384Google Scholar
  57. Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF, Yesair DW (1982) Human metabolism of [1-methyl-14C] and [2–14C] caffeine after oral administration. Drug Metab Dispos 10: 417–423PubMedGoogle Scholar
  58. Chou C-H, Waller GR (1980) Possible allelopathic constituents of coffea arabica. J Chem Ecol 6: 643–654CrossRefGoogle Scholar
  59. Christensen HD, Manion CV, Kling OR (1981) Caffeine kinetics during late pregnancy. In: Soyka LF, Redmond G (eds) Drug metabolism in the immature human. Raven, New York, pp 163–181Google Scholar
  60. Clark GW, de Lorimier AA (1926) The effects of caffeine and theobromine upon the formation and excretion of uric acid. Am J Physiol 77: 491–502Google Scholar
  61. Coombs HI (1927) Studies on xanthine oxidase. IX. The specificity of the system. Biochem J 21: 1259–1265PubMedGoogle Scholar
  62. Cornish HH (1956) A study of the metabolism of theobromine, theophylline and caffeine. University Microfilms, Ann Arbor/Mich, publ no 21, p 165Google Scholar
  63. Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline and caffeine in man. J Biol Chem 228: 315–323PubMedGoogle Scholar
  64. Daniell WF (1865) On the kola-nut of tropical West Africa (The gurunut of Soudan). Pharm J 6: 450–457Google Scholar
  65. De NC, Mittelman A, Jenkins EE, Grain PF, McCloskey JA, Chheda GB (1980) Isolation of a new modified uracil derivative from huma urine. J Carbohydrates Nucleosides Nucleotides 7: 113–129Google Scholar
  66. De NC, Mittelman A, Dutta SP, Edmonds CG, Jenkins EE, McCloskey JA, Blakley CR, Vestal ML, Chheda GB (1981) Isolation and characterization of two new modified uracil derivates from human urine. J Carbohydrates Nucleosides Nucleotides 8: 363–389Google Scholar
  67. Desmond PV, Patwardhan R, Parker R, Schenker S, Speeg KV Jr (1980) Effect of Cimetidine and other antihistaminics on the elimination of aminopyrine, phenacetin and caffeine. Life Sci 26: 1261–1268PubMedCrossRefGoogle Scholar
  68. Dictionnaire des termes de médecine, chirurgie, art vétérinaire, pharmacie, histoire naturelle, botanique, physique, chimie, etc. (1823), Paris, p 109Google Scholar
  69. Dixon M (1926) Studies on xanthine oxidase. VII. The specificity of the system. Biochem J 20: 703–718PubMedGoogle Scholar
  70. Fabro S, Sieber SM (1969) Caffeine and nicotine penetrate the preimplantation blastocyst. Nature 223: 410–411PubMedCrossRefGoogle Scholar
  71. Fechner MGT (1826) Repertorium der organischen Chemie. LeipzigGoogle Scholar
  72. Ferrero JL, Neims AH (1983) Biotransformation of caffeine by mouse liver microsomes: GSH or cytosol causes a shift in products from 1,3,7-trimethyluric acid to 6-amino-5[N-formylmethylamino]1,3-dimethyluracil (Abstr 5871). Fed Proc 42: 1293Google Scholar
  73. Fink K, Adams WS, Pfleiderer W (1964) A new urinary pyrimidine, 5-acetylamino-6-amino-3-methyluraeil. Its isolation, identification and synthesis. J Biol Chem 239: 4250–4256PubMedGoogle Scholar
  74. Fischer E (1882) Über Caffeïn, Theobromin, Xanthin und Guanin. Liebigs Ann Chem 215: 253–320CrossRefGoogle Scholar
  75. Fischer E (1897) Über die Constitution des Caffeïns, Xanthins, Hypoxanthins und verwandter Basen. Ber Dtsch Chem Ges 30: 549–559CrossRefGoogle Scholar
  76. Fischer E, Ach L (1895) Synthese des Caffeïns. Ber Dtsch Chem Ges 28: 3135–3143CrossRefGoogle Scholar
  77. Grant DM, Tang BK, Kalow W (1983) Polymorphic N-acetylation of a caffeine metabolite. Clin Pharmacol Ther 33: 335–359CrossRefGoogle Scholar
  78. Grygiel JJ, Birkett DH (1980) Effect of age on patterns of theophylline metabolism. Clin Pharmacol Ther 28: 456–462PubMedCrossRefGoogle Scholar
  79. Haig A (1896) Uric acid as a factor in causation of diseases. LondonGoogle Scholar
  80. Hess N, Schmoll E (1896) Über die Beziehungen der Eiweiß- und Paranucleinsubstanzen der Nahrung zur Alloxurkörperausscheidung im Harn. Arch Exp Pathol Pharmakol 37: 243–253CrossRefGoogle Scholar
  81. Horning MG, Nowlin J, Thenot JP, Bouwsma OJ (1979) Effect of deuterium substitution on the rate of caffeine metabolism. In: Stable Isotopes, Proceedings of 3rd International Conference, 1978, pp 379–384Google Scholar
  82. Jager-Roman E, Doyle PE, Thomas D, Baird-Lambert J, Cvejic M, Buchanan N (1982) Increased theophylline metabolism on premature infants after prenatal betamethasone administration. Dev Pharmacol Ther 5: 127–135PubMedGoogle Scholar
  83. Jenne JW, Nagasawa HT, Thompson RD (1976) Relationship of urinary metabolites of theophylline to serum theophylline levels. Clin Pharmacol Ther 19: 375–381PubMedGoogle Scholar
  84. Jobst C (1838) Thein identisch mit Caffein. Ann Chem Pharm 25: 63–66CrossRefGoogle Scholar
  85. Johnson EA (1952) The occurence of substituted uric acids in human urine. Biochem J 51: 133–138PubMedGoogle Scholar
  86. Kamei K, Matsuda M, Momose A (1975) New sulfur-containing metabolites of caffeine. Chem Pharm Bull (Tokyo) 23: 683–685Google Scholar
  87. Kelley WN, Wyngaarden JB (1970) Effect of dietary purine restriction, allopurinol, and oxipurinol on urinary excretion of ultraviolet-absorbing compounds. Clin Chem 16: 707–713PubMedGoogle Scholar
  88. Khanna KL, Rao GS, Cornish HH (1972) Metabolism of caffeine-3H in the rat. Toxicol Appl Pharmacol 23: 720–730PubMedCrossRefGoogle Scholar
  89. Klinge WE (1981) Method for the separation and quantification of methylated hydroxypurines found in urine of man and its application to the study of human metabolism of methylxanthines. Biochem Soc Trans 9: 120–121PubMedGoogle Scholar
  90. Kossel A (1888) Über eine neue Base aus dem Pflanzenreich. Ber Dtsch Chem Ges 21: 2164–2167CrossRefGoogle Scholar
  91. Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DD, Josephs H (1982) The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin. Pharmacol Ther 32: 261–269PubMedCrossRefGoogle Scholar
  92. Krüger M (1899 a) Über den Abbau des Caffeïns im Organismus des Hundes. Ber Chem Ges 32: 2818–2824CrossRefGoogle Scholar
  93. Krüger M (1899 b) Über den Abbau des Caffeïns im Organismus des Kaninchens. Ber Chem Ges 32: 3336–3337CrossRefGoogle Scholar
  94. Krüger M, Salomon G (1895/1896) Die Constitution des Heteroxanthins und seine physiologischen Wirkungen. Z Physiol Chem 21: 169–185CrossRefGoogle Scholar
  95. Krüger M, Salomon G (1898) Die Alloxurbasen des Harnes. Z Physiol Chem 24: 364–394CrossRefGoogle Scholar
  96. Krüger M, Salomon G (1898/1899) Die Alloxurbasen des Harnes. Z Physiol Chem 26: 350–380CrossRefGoogle Scholar
  97. Krüger M, Schmidt J (1900) Das Verhalten von Theobromin im Organismus des Menschen. Arch Exp Pathol Pharmakol 45: 259–261CrossRefGoogle Scholar
  98. Krüger M, Schmidt J (1901) Der Einfluß des Caffeïns und Theobromins auf die Ausscheidung der Purinkörper im Harne. Z Physiol Chem 32: 104–110CrossRefGoogle Scholar
  99. Krüger M, Schmidt P (1899) Über das Verhalten von Theobromin, Paraxanthin und 3-Methylxanthin im Organismus. Ber Chem Ges 32: 2677–2682CrossRefGoogle Scholar
  100. Latini R, Bonati M, Marzi E, Garattini S (1981) Urinary excretion of an uracilic metabolite from caffeine by rat, monkey and man. Toxicol Lett 7: 267–272PubMedCrossRefGoogle Scholar
  101. Lehmann CG (1850) Lehrbuch der physiologischen Chemie, 2nd edn. Leipzig, p 367Google Scholar
  102. Leven (1868) Action physiologique et médicamenteuse de la caféine. Arch Physiol Norm Pathol 1: 179–189Google Scholar
  103. Logan L, Kling OR, Christensen HD (1983) Xanthine metabolism in pregnant baboons (Abstr 5870). Fed Proc 42Google Scholar
  104. Lohmann SM, Miech RP (1975) Synthesis and purification of 8–14C-theophylline. J Labelled Compd 11: 515–519CrossRefGoogle Scholar
  105. Lohmann SM, Miech RP (1976) Theophylline metabolism by the rat liver microsomal system. J Pharmacol Exp Ther 196: 213–225PubMedGoogle Scholar
  106. Markham R, Smith JD (1949) Chromatographic studies of nucleic acids. 1. A technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem J 45: 294–298PubMedGoogle Scholar
  107. Martin GJ (1948) The effect of various agents on the excretion of uric acid and allantoin. Exp Med Surg 6: 24–27PubMedGoogle Scholar
  108. Marthas T(1826) Das Guaranin; ein neuer Pflanzenbildungstheil. Arch Gesamte Nat 7: 266–271Google Scholar
  109. Martius T (1840) Über die Zusammensetzung des Guaranins. Ann Chem 36: 93–95CrossRefGoogle Scholar
  110. Medicus L (1875) Zur Constitution der Harnsäuregruppe. Liebigs Ann Chem 175: 230–251CrossRefGoogle Scholar
  111. Mendel LB, Wardell EL (1917) Effect of ingestion of coffee, tea and caffeine on the excretion of uric acid in man. JAMA 68: 1805–1807Google Scholar
  112. Miners JO, Attwood J, Birkett DJ (1982) Theobromine metabolism in man. Drug Metab Dispos 10: 692–675Google Scholar
  113. Monks TJ, Lawrie CA, Caldwell J (1981) The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Biopharm Drug Dispos 2: 31–37PubMedCrossRefGoogle Scholar
  114. Morgan EJ, Stewart CP, Hopkins FG (1922) Anaerobic and aerobic oxidation of xanthine and hypoxanthine by tissues and by milk. Proc R Soc Lond [Biol] 94: 109–131CrossRefGoogle Scholar
  115. Mrocheck JE, Butts WC, Rainey WT Jr, Burtis CA (1971) Separation and identification of urinary constituents by use of multiple-analytical techniques. Clin Chem 17: 72–77Google Scholar
  116. Muir KT, Jonkman JHG, Tang DS, Kunitani M, Riegelman S (1980) Simultaneous determination of theophylline and its major metabolites in urine by reverse-phase ion-pair HPLC. J Chromatogr 221: 85–95PubMedCrossRefGoogle Scholar
  117. Mulder CJ (1838) Chemische Untersuchung des chinesischen und des javanischen Thees. Arch Pharm 65: 68–84CrossRefGoogle Scholar
  118. Myer VC, Hanzal RF (1929) A study of methyl uric acids. Am J Physiol 90: 458–459Google Scholar
  119. Myers VC, Hanzal RF (1946) The metabolism of methylxanthines and their related methyluric acids. J Biol Chem 162: 309–323PubMedGoogle Scholar
  120. Myers VC, Wardell EL (1928) The influence of the ingestion of methylxanthine on the excretion of uric acid. J Biol Chem 77: 697–722Google Scholar
  121. Oudry V (1827) Thein, eine organische Salzbase im Thee (Thea chinesis). Mag Pharm 19: 49–50Google Scholar
  122. Pelletier MJ (1826) Note sur la caféine. J Pharm 12: 229–233Google Scholar
  123. Pfleiderer W (1971) Synthese und Eigenschaften von 5,6,7,8-Tetrahydroluminazinen und ihren 5-Acetyl-Derivaten. Liebigs Ann Chem 747: 111–222CrossRefGoogle Scholar
  124. Pinkard KJ, Cooper IA, Motteram R, Turner CN (1972) Purine and pyrimidine excretion in Hodgkin’s disease. J Natl Cancer Inst 49: 27–38PubMedGoogle Scholar
  125. Rafter JJ, Nilsson L (1981) Involvement of the intestinal microflora in the formation of sulfur-containing metabolites of caffeine. Xenobiotica 11: 771–778PubMedCrossRefGoogle Scholar
  126. Rao GS, Khanna KL, Cornish HH (1972) Mass spectrometric identification of methylxanthines and methyluric acids, the possible metabolites of caffeine. J Pharm Sci 61: 1822–1825PubMedCrossRefGoogle Scholar
  127. Rao GS, Khanna KL, Comish HH (1973) Identification of two new metabolites of caffeine in the rat urine. Experientia 19: 953–955CrossRefGoogle Scholar
  128. Robiquet (1823) Café. In: Dictionnaire technologique, vol 4. Thomine et Fortic, ParisGoogle Scholar
  129. Rost E (1895) Über die Ausscheidung des Coffeins und Theobromins im Harn. Arch Exp Pathol Pharmakol 36: 56–71CrossRefGoogle Scholar
  130. Rovei V, Chanoine F, Strolin-Benedetti M (1982) Pharmacokinetics of theophylline: a dose-range study. Br J Clin Pharmacol 14: 769–778PubMedGoogle Scholar
  131. Runge F (1820) Phytochemische Entdeckungen. Berlin, p 204Google Scholar
  132. Salomon G (1883) Über das Paraxanthin, einen neuen Bestandtheil des normalen menschlichen Harns. Ber Dtsch Chem Ges 16: 195–200CrossRefGoogle Scholar
  133. Salomon G (1885) Über Paraxanthin und Heteroxanthin. Ber Dtsch Chem Ges 18: 3406–3410CrossRefGoogle Scholar
  134. Scalais E, Papageorgiou A, Aranda JV (1983) Biotransformation of theophylline during the first six weeks of life (Abstr 409). Pediatr Res 17Google Scholar
  135. Scheele KW (1776) Calculi urinarii. Opuscula 2: 73–79Google Scholar
  136. Schmidt G, Huenisch E (1966) Detection of theobromine and its metabolites in urine. Dtsch Z Gesamte Gerichtl Med 57: 393–401PubMedCrossRefGoogle Scholar
  137. Schmidt G, Kuehl H (1968) Detection of theophylline and its metabolites in human urine. Wiss Z Martin Luther Univ Halle Wittenberg Math Naturwiss Reihe 17: 553–559Google Scholar
  138. Schmidt G, Schoyerer R (1966) Detection of caffeine and its metabolites in the urine. Dtsch Z Gesamte Gerichtl Med 57: 402–409PubMedCrossRefGoogle Scholar
  139. Soyka LF, Neese AL (1978) Perinatal exposure to methylxanthines: Possible effects of pregnancy outcome (Abstr). Clin Pharmacol Ther 23: 130Google Scholar
  140. Staib AH, Schuppan D, Lissner R, Zilly W, V Bomhard G, Richter E (1980) Pharmacokinetics and metabolism of theophylline in patients with liver diseases. Int J Clin Pharmacol Ther Toxicol 18: 500–502PubMedGoogle Scholar
  141. Stenhouse J (1843) Über Thein und seine Darstellung. Liebigs Ann Chem 45: 366–372CrossRefGoogle Scholar
  142. Strecker A (1861) Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Liebigs Ann Chem 118: 151–177CrossRefGoogle Scholar
  143. Sved S, Wilson DL (1977) Simultaneous assay of the methylxanthine metabolites of caffeine in plasma by high performance liquide chromatography. Res Commun Chem Pathol Pharmacol 17: 319–331PubMedGoogle Scholar
  144. Sved S, Hossie RD, McGilveray IJ (1976) The human metabolism of caffeine to theophylline. Res Commun Chem Pathol Pharmacol 13: 185–192PubMedGoogle Scholar
  145. Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylami-no-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos 11: 218–220PubMedGoogle Scholar
  146. Tang-Liu DD-S, Riegelman S (1981) Metabolism of theophylline to caffeine in adults. Res Commun Chem Pathol Pharmacol 34: 371–380PubMedGoogle Scholar
  147. Tang-Liu DD-S, Riegelman S (1982) An automated HPLC assay for simultaneous quantitation of methylated xanthines and uric acids in urine. J Chromatogr Sci 20: 155–159PubMedGoogle Scholar
  148. Tang-Liu DD-S, Williams RL, Riegelman S (1983) Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther 224: 180–185PubMedGoogle Scholar
  149. Tse FLS, Szeto DW (1981) Reversed-phase high performance liquid chromatographic determination of caffeine and its N-demethylated metabolites in dog plasma. J Chromatogr 226: 231–236PubMedCrossRefGoogle Scholar
  150. Tserng K-Y, King C, Takieddine FN (1981) Theophylline metabolism in premature infants. Clin Pharmacol Ther 29: 594–600PubMedCrossRefGoogle Scholar
  151. Van Gennip AH, de Bree PK, van der Heiden C, Wadman SK, Haverkamp J, Vliegenthart JFG (1973) Urinary excretion of 3-methylxanthine and related compounds in children. Clin Chem Acta 45: 119–127CrossRefGoogle Scholar
  152. Van Gennip AH, Grift J, van Bree-Blom EJ, Ketting D, Wadman SK (1979) Urinary excretion of methylated purines in man and in the rat after the administration of theophylline. J Chromatogr 163: 351–362PubMedCrossRefGoogle Scholar
  153. Von Giese F (1820) Vermischte Notizen. 1. Kaffeestoff und Salzgehalt des Quassia Extrakts. Allg Nord Ann Chem Freunde Naturkd Arzneiwiss 4: 240–241Google Scholar
  154. Warren RN (1969) Metabolism of xanthine alkaloids in man. J Chromatogr 40: 468–469PubMedCrossRefGoogle Scholar
  155. Warszawski D, Ben-Zvi Z, Gorodischer R, Arnaud MJ, Bracco I (1982) Urinary metabolites of caffeine in young dogs. Drug Metab Dispos 10: 424–428PubMedGoogle Scholar
  156. Weinfeld H (1951) Metabolism of methylxanthines. Fed Proc 10: 267Google Scholar
  157. Weinfeld H, Christman A (1953) The metabolism of caffeine and theophylline. J Biol Chem 200: 345–355PubMedGoogle Scholar
  158. Weissmann B, Bromberg PA, Gutman AB (1954) Chromatographic investigation of purines in normal human urine. Proc Soc Exp Biol Med 87: 257–260PubMedGoogle Scholar
  159. Weissmann B, Bromberg PA, Gutman AB (1957) The purine bases of human urine. II. Semiquantitative estimation and isotope incorporation. J Biol Chem 224: 423–434PubMedGoogle Scholar
  160. Welch RM, Hsu SY, DeAngelis RL (1977) Effect of Aroclor 1254, phenobarbitol and polycyclic aromatic hydrocarbons on the plasma clearance of caffeine in the rat. Clin Pharmacol Ther 22: 791–798PubMedGoogle Scholar
  161. Wietholtz H, Voegelin M, Arnaud MJ, Bircher J, Preisig R (1981) Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur J Clin Pharmacol 21: 53–59PubMedCrossRefGoogle Scholar
  162. Williams JF, Lowitt S, Szentivanyi A (1979) Effect of phenobarbital and 3-methylcholanthrene pre-treatment on the plasma half-life and urinary excretion profile of theophylline and its metabolites in rats. Biochem Pharmacol 28: 2935–2940PubMedCrossRefGoogle Scholar
  163. Woskresensky A (1842) Über das Theobromin. Liebigs Ann Chem 41: 125–127CrossRefGoogle Scholar
  164. Young DS (1970) Effect of a chemically defined diet on urinary excretion of minerals and aromatic compounds. Clin Chem 16: 681–686PubMedGoogle Scholar
  165. Young DS, Epley JA, Goldman P (1971) Influence of a chemically-defined diet on the composition of serum and urine. Clin Chem 17: 765–773PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. J. Arnaud

There are no affiliations available

Personalised recommendations