Blue Light Effects in Halobacteria

  • G. Wagner
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Halophiles, methanogenes and thermoacidophiles to the present knowledge comprise the phylogenetic kingdom of archaebacteria, equally distant from eubacteria and eukaryotes [16]. Compared to the relatively small number of archaebacteria discovered so far, a wide range of physiological capabilities seems realized in this ancient branch of evolution, including heterotrophism, chemoautotrophism and use of captured light [8]. Within the family Halobacteriaceae the species Halobacterium halobium is particularly well adapted to use sunlight in its brightly irradiated salty environment, i.e., the Dead Sea, other salt lakes and alterns close to the coast line. While bacteriocarotenoids function as screening pigments, photoactive retinal-proteins (rhodopsin-like photoreceptors) capture light and channel the photons into photoenergetic and/or photosen- sory processes. Two photoactive retinal proteins from the halobacterial membrane have been well characterized so far (Fig. 1): bacteriorhodpsin (BR)2 as a light-driven electrogenic proton pump [11], and halorhodopsin (HR)2 apparently to mediate electrogenic chloride influx [8a, 13].

Keywords

Permeability Photosynthesis Tral Photolysis Suspen 

Abbreviations and halobacterial photoreceptor-mutants used

BR

bacteriorhodopsin

HR

halorhodopsin

SR

slow rhodopsin-like photoreceptor

F

Faraday constant Mutant strain Rl Ml [22] : BR+ HR+ SR+ Mutant strain L-33 [23]: BR HR+ SR+

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogomolni RA, Baker RA, Lozier RH, Stoeckenius W (1980) Action spectrum and quantum efficiency for proton pumping in Halobacterium halobium. Biochemistry 19: 2152–2159PubMedCrossRefGoogle Scholar
  2. 2.
    Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in photo- tactic Halobacterium halobium. Proc Natl Acad Sei USA 79: 6250–6254CrossRefGoogle Scholar
  3. 3.
    Dencher NA, Hildebrand E (1979) Sensory transduction in Halobacterium halobium: Retinal protein pigment controls UV-induced behavioral response. Z Naturforsch 34c: 841–847Google Scholar
  4. 4.
    Hartmann KM (1983) Action spectroscopy. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysics. Springer, Berlin Heidelberg New York, pp 115–144Google Scholar
  5. 5.
    Hildebrand E, Dencher N (1975) Two photosystems controlling behavioural responses of Halobacterium halobium. Nature (London) 257: 46–48CrossRefGoogle Scholar
  6. 6.
    Hildebrand E, Schimz A (1983) Photosensory behavior of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium. Photochem Photobiol 37: 581–584CrossRefGoogle Scholar
  7. 7.
    Hildebrand E, Schimz A (1983) Consecutive formation of sensory photosystems in growing Halobacterium halobium. Photochem Photobiol 38: 593–597CrossRefGoogle Scholar
  8. 8.
    Kandier O (1981) Archaebakterien und Phylogenie der Organismen. Naturwissenschaften 68: 183–192CrossRefGoogle Scholar
  9. 8a.
    Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin: a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Comm 78: 237–243PubMedCrossRefGoogle Scholar
  10. 9.
    Nultsch W, Hader M (1978) Photoakkumulation bei Halobacterium halobium. Ber Dtsch Bot Ges 91: 441–453Google Scholar
  11. 10.
    Oesterhelt D, Hess B (1973) Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem 37: 316–326PubMedCrossRefGoogle Scholar
  12. 11.
    Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sei USA 70: 2853–2857CrossRefGoogle Scholar
  13. 12.
    Schimz A, Sperling W, Hildebrand E, Köhler-Hahn D (1982) Bacteriorhodopsin and the sensory pigment of the photosystem 565 in Halobacterium halobium. Photochem Photobiol 36: 193–196CrossRefGoogle Scholar
  14. 13.
    Schobert B, Lanyi JK (1982) Halorhodopsin is alightdriven chloride pump. J Biol Chem 257: 10306–10313PubMedGoogle Scholar
  15. 14.
    Schreckenbach Th (1978) The properties of bacteriorhodopsin and its incorporation into artificial systems. In: Barber J (ed) Photosynthesis in relation to model systems. Elsevier/North- Holland Biomedical Press, Amsterdam New York, pp 189–209Google Scholar
  16. 15.
    Spudich JL, Stoeckenius W (1979) Photosensory and chemosensory behavior of Halobacterium halobium. Photobiochem Photobiophys 1: 43–53Google Scholar
  17. 16.
    Stackebrandt E, Woese CR (1981) The evolution of prokaryotes. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Soc Gen Microbiol. Univ Press, Cambridge, pp 1–31Google Scholar
  18. 17.
    Stavenga DG, This volumeGoogle Scholar
  19. 18.
    Traulich B, Hildebrand E, Schimz A, Wagner G, Lanyi JK (1983) Halorhodpsin and photosensory behavior in Halobacterium halobium mutant strain L-33. Photochem Photobiol 37:577– 579Google Scholar
  20. 19.
    Traulich B, Wagner G (1983) Photosensory behavior of Halobacterium halobium. Bioscience, 33: 583–584CrossRefGoogle Scholar
  21. 20.
    Wagner G (1981) Action spectra of ATP synthesis in the halobacterial mutants Rt M1 and L-33: Photoenergetic and photosensory implications. Discussion paper: EMBO Workshop Halo- phil Microorg, Ischia, ItalyGoogle Scholar
  22. 21.
    Wagner G, Geissler G, Linhardt R, Mollwo A, Vonhof A (1980) Light dependent ion transport processes and photosensory transduction in Halobacterium halobium. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: Current conceptual issues. Elsevier/North- Holland Biomedical Press, Amsterdam New York, pp 641–644Google Scholar
  23. 22.
    Wagner G, Hartmann R, Oesterhelt D (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. Eur J Biochem 89: 169–179PubMedCrossRefGoogle Scholar
  24. 23.
    Wagner G, Oesterhelt D, Krippahl G, Lanyi JK (1981) Bioenergetic role of halorhodopsin in Halobacterium halobium cells. FEBS Lett 131: 341–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • G. Wagner
    • 1
  1. 1.Botanisches Institut Ider Justus-Liebig-UniversitätGiessenGermany

Personalised recommendations