Advertisement

Blue Light Effects in Marine Macroalgae

  • M. J. Dring
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The red, brown and green seaweeds, which together make up the marine macroalgae, constitute a taxonomically unorthodox and artificial collection of plants. They are united, however, by the range of habitats which they occupy — marine benthic sites from the upper intertidal to the lower limit of the photic zone in all optical water types [16] — and it is the variety of light climates that they experience in this habitat range [11] that makes their responses to light of particular interest. The diversity of photosynthetic pigments within this group of plants also indicates that the group has evolved different physiological solutions to at least one photobiological problem, and suggests that the photobiology of these plants would repay detailed study. Nevertheless, the investigation of nonphotosynthetic effects of light on marine macroalgae has been slow to develop and, although a wide range of blue light effects has now been reported, this is the first review to concentrate specifically and solely on the responses of seaweeds to blue light. Some of the responses have, however, been covered by recent reviews of photomorphogenesis in marine macroalgae [11, 20], and the blue light effects in one rather exceptional genus, the giant-celled green alga Acetabularia, are described elsewhere in this Volume by Schmid. Another macroalga which exhibits blue light effects is the siphonaceous chrysophyte Vaucheria, but this genus has been excluded from the present review, partly because most species are found in fresh or brackish waters rather than in strictly marine habitats, and partly because it was featured at the first Blue Light Conference [2].

Keywords

Brown Alga Marine Macroalgae Green Seaweed Blue Light Response Negative Phototropism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentrup FW (1963) Vergleichende Untersuchungen zur Polaritätsinduktion durch das Licht an der Equisetumspore und der Fucuszygote. Planta 59: 472–491CrossRefGoogle Scholar
  2. 2.
    Briggs WR, Blatt MR (1980) Blue light responses in the siphonaceous alga Vaucheria. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 261–268CrossRefGoogle Scholar
  3. 3.
    Büggeln RG (1974) Negative phototropism of the haptera of Alaria esculenta (Laminariales). J Phycol 10: 80–82Google Scholar
  4. 4.
    Clauss H (1970) Effect of red and blue light on morphogenesis and metabolism of Acetabularia mediterranea. In: Brächet J, Bonotto S (eds) Biology of Acetabularia. Academic Press, London New York, pp 177–191Google Scholar
  5. 5.
    Dennison DS (1979) Phototropism. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, New Ser, vol VII. Physiology of movements. Springer, Berlin Heidelberg New York, pp 506–566Google Scholar
  6. 6.
    Dring MJ (1967) Phytochrome in red alga.Porphyra tenera. Nature (London) 215: 1411–1412CrossRefGoogle Scholar
  7. 7.
    Dring MJ (1981) Photosynthesis and development of marine macrophytes in natural light spectra. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, London New York, pp 297–314Google Scholar
  8. 8.
    Dring MJ, Lüning K (1975) Induction of two-dimensional growth and hair formation by blue light in the brown alga Scytosiphon lomentaria. Z Pflanzenphysiol 75: 107–117Google Scholar
  9. 9.
    Dring MJ, Lüning K (1975) A photoperiodic response mediated by blue light in the brown alga Scytosiphon lomentaria. Planta 125: 25–32CrossRefGoogle Scholar
  10. 10.
    Dring MJ, Lüning K (1981) Photomorphogenesis of brown algae in the laboratory and in the sea. Int Seaweed Symp 8: 159–166Google Scholar
  11. 11.
    Dring MJ, Lüning K (1983) Photomorphogenesis of marine macroalgae. In: Shropshire W, Mohr H (eds) Encyclopedia of plant physiology, New Ser, vol XVI. Photomorphogenesis. Springer, Berlin Heidelberg New York, pp 545–568Google Scholar
  12. 12.
    Dring MJ, West JA (1983) Photoperiodic control of tetrasporangium formation in the red alga Rhodochorton purpureum. Planta 159: 143–150CrossRefGoogle Scholar
  13. 13.
    Eger-Hummel G (1980) Blue-light photomorphogenesis in mushrooms (Basidiomycetes). In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 555–562CrossRefGoogle Scholar
  14. 14.
    Haupt W (1982) Light-mediated movement of chloroplasts. Annu Rev Plant Physiol 33: 205–233CrossRefGoogle Scholar
  15. 15.
    Howland GP, Edwards EE (1979) Photomorphogenesis of fern gametophytes. In: Dyer AF (ed) The experimental biology of ferns. Academic Press, London New York, pp 393–434Google Scholar
  16. 16.
    Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, pp 1–231Google Scholar
  17. 17.
    Kowallik W (1982) Blue light effects on respiration. Annu Rev Plant Physiol 33: 51–72CrossRefGoogle Scholar
  18. 18.
    Kumke J (1973) Beiträge zur Periodizität der Oogon-Entleerung bei Dictyota dichotoma (Phaeophyta). Z Pflanzenphysiol 70: 191–210Google Scholar
  19. 19.
    Lüning K (1980) Critical levels of light and temperature regulating the gametogenesis of three Laminaria spp. (Phaeophyceae). J Phycol 16: 1–15CrossRefGoogle Scholar
  20. 20.
    Lüning K (1981) Photomorphogenesis of reproduction in marine macroalgae. Ber Dtsch Bot Ges 94: 401–417Google Scholar
  21. 21.
    Lüning K (1981) Egg release in gametophytes of Laminaria saccharina: induction by darkness and inhibition by blue light and U.V. Br Phycol J 16: 379–393CrossRefGoogle Scholar
  22. 22.
    Lüning K, Dring MJ (1975) Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light. Mar Biol 29: 195–200CrossRefGoogle Scholar
  23. 23.
    Lüning K, Dring MJ (1984) Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar Biol: in pressGoogle Scholar
  24. 24.
    Lüning K, Neushul M (1978) Light and temperature demands for growth and reproduction of laminarian gametophytes in Southern and Central California. Mar Biol 45: 297–309CrossRefGoogle Scholar
  25. 25.
    Mohr H (1980) Interaction between blue light and phytochrome in photomorphogenesis. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 97–109CrossRefGoogle Scholar
  26. 26.
    Mosebach G (1938) Über den Einfluss des Lichtes auf die Polarisierung des befruchteten Eies von Cystoseira barbata. Ber Dtsch Bot Ges 56: 210–225Google Scholar
  27. 27.
    Müller S, Qauss H (1976) Aspects of photomorphogenesis in the brown alga Dictyota dichotoma. Z Pflanzenphysiol 78: 461–465Google Scholar
  28. 28.
    Nultsch W, Pfau J, Rüffer U (1981) Do correlations exist between chromatophore arrangement and photosynthetic activity in seaweeds? Mar Biol 62: 111–117CrossRefGoogle Scholar
  29. 29.
    Rentschier HG (1967) Photoperiodische Induktion der Monosporenbildung bei Porphyra tenera Kjellm. (Rhodophyta - Bangiophyceae). Planta 76: 65–74CrossRefGoogle Scholar
  30. 30.
    Rietema H, Breeman AM (1982) The regulation of the life history of Dumontia contorta in comparison to that of several other Dumontiaceae ( Rhodophyta ). Bot Mar 25: 569–576Google Scholar
  31. 31.
    Russo VEA, Galland P, Toselli M, Volpi L (1980) Blue light induced differentiation Phycornyces blakesleeanus. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 563–569CrossRefGoogle Scholar
  32. 32.
    Shropshire W (1979) Stimulus perception. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, New Ser, vol VII. Physiology of movements. Springer, Berlin Heidelberg New York, pp 10–41Google Scholar
  33. 33.
    Terborgh J (1965) Effects of red and blue light on the growth and morphogenesis of Acetabularia crenulata. Nature (London) 207: 1360–1363CrossRefGoogle Scholar
  34. 34.
    Terry LA, Moss BL (1980) The effect of photoperiod on receptacle initiation in Ascophyllumnodosum ( L.) Le Jol. Br Phycol J 15: 291–301Google Scholar
  35. 35.
    Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London, pp 1–444Google Scholar
  36. 36.
    Voskresenskaya NP (1972) Blue light and carbon metabolism. Annu Rev Plant Physiol 23: 219–234CrossRefGoogle Scholar
  37. 37.
    Waaland SD, Nehlsen W, Waaland JR (1977) Phototropism in a red alga, Griffithsia pacifica. Plant Cell Physiol 18: 603–612Google Scholar
  38. 38.
    Weisenseel MH (1979) Induction of polarity. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, New Ser, vol VII. Physiology of movements. Springer, Berlin Heidelberg New York, pp 485–505Google Scholar
  39. 39.
    Zumft WG, Castillo F, Hartmann KM (1980) Flavin-mediated photoreduction of nitrate by nitrate reductase of higher plants and microorganisms. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 422–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. J. Dring
    • 1
  1. 1.Botany DepartmentThe Queen’s UniversityBelfastNorthern Ireland

Personalised recommendations