Blue Light Effects on Morphogenesis and Metabolism in Acetabularia

  • R. Schmid
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Most of the investigations on photomorphogenesis deal with higher plants or multicellular organisms. Because of the high degree of complexity of these organisms, it was of special interest to extend photomorphogenetic studies upon more primitive organisms and attention has been driven to lower fungi and unicellular algae. Among the unicellular algae Acetabularia proves to be particularly suitable. First the morphogenetic events during the vegetative phase of its life cycle are well defined, and second the strict localization of the single nucleus inside the rhizoid allows, by a simple procedure, the production of enucleated cell fragments for investigations on regulatory mechanisms.


Blue Light Circadian Clock Unicellular Alga Protoplasmic Streaming Hydroxypyruvate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson JM, Waldron JC, Thome WW (1978) Chlorophyll-protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure. FEBS Lett 92: 227–233CrossRefGoogle Scholar
  2. 2.
    Blatt MR, Briggs WR (1980) Blue light induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga Vaucheria sessilis. Planta 147: 355–362CrossRefGoogle Scholar
  3. 3.
    Böhme H, Reimer S, Trebst A (1971) On the role of plastoquinone in photosynthesis: The effect of dibromothymoquinone, an antagonist of plastoquinone, on non-cyclic and cyclic electron flow systems in isolated chloroplasts. Z Naturforsch 26b: 341–352Google Scholar
  4. 4.
    Clauss H (1963) Über den Einfluß von Rot- und Blaulicht auf das Wachstum kernhaltiger Teile von Acetabularia mediterranea. Naturwissenschaften 50: 719CrossRefGoogle Scholar
  5. 5.
    Clauss H (1968) Beeinflussung der Morphogenese, Substanzproduktion und Proteinzunahme von Acetabularia mediterranea durch sichtbare Strahlung. Protoplasma 65: 49–80CrossRefGoogle Scholar
  6. 6.
    Clauss H (1970) Effect of red and blue light on morphogenesis and metabolism of Acetabularia mediterranea. In: Brächet J, Bonotto S (eds) Biology of Acetabularia. Academic Press, London New York, pp 177–191Google Scholar
  7. 7.
    Clauss H (1970) Der Einfluß von Rot- und Blaulicht auf die Hillaktivität von Acetabularia Chloroplasten. Planta 91: 32–37CrossRefGoogle Scholar
  8. 8.
    Clauss H (1972) Der Einfluß von Rot- und Blaulicht auf die Photosynthese von Acetabularia mediterranea und auf die Verteilung des assimilierten Kohlenstoffs. Protoplasma 74: 357–379CrossRefGoogle Scholar
  9. 9.
    Clauss H (1973) Regulation der Morphogenese von Acetabularia durch Licht. In: Vom Gen zum Genus — Beiträge zur Zellforschung. Freie Univ Berlin, Pressedienst Wiss, pp 45–59Google Scholar
  10. 10.
    Clauss H (1979) Auslösung der circadianen Photosynthese-Rhythmik bei Acetabularia durch Blaulicht. Protoplasma 99: 341–346CrossRefGoogle Scholar
  11. 11.
    Dazy AC, Puiseux-Dao S, Durand M, Santa-Maria A (1981) The effects of blue and red light on streaming recovery and RNA transport after dark treatment in Acetabularia mediterranea. Protoplasma 105: 354Google Scholar
  12. 12.
    DeFabo E (1980) On the nature of the blue light photoreceptor: Still an open question. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 187–197CrossRefGoogle Scholar
  13. 13.
    Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate/polyaerylamide gel electrophoresis of thylakoid membranes at 4°C: Characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76: 111–115PubMedCrossRefGoogle Scholar
  14. 14.
    Gradmann D (1978) Green light (550 nm) inhibits electrogenic Cl− pump in the Acetabularia membrane by permeability increase for the carrier ion. J Membr Biol 44: 1–24CrossRefGoogle Scholar
  15. 15.
    Hämmerling J (1934) Über formbildende Substanzen bei Acetabularia mediterranea, ihre räumliche und zeitliche Verteilung und ihre Herkunft. Roux’ Arch Entwicklungsmech Org 131: 1–81CrossRefGoogle Scholar
  16. 16.
    Kamiya Y, Miyachi S (1974) Effects of blue light on respiration and carbon dioxide fixation in colourless Chlorella mutant cells. Plant Cell Physiol 15: 927–937Google Scholar
  17. 17.
    Koop H-U, Schmid R, Heunert H-H, Milthaler B (1978) Chloroplast migration: A new circadian rhythm in Acetabularia. Protoplasma 97: 301–310CrossRefGoogle Scholar
  18. 18.
    Mizukami M, Wada S (1981) Action spectrum for light-induced chloroplast accumulation in a marine coenocytic green alga, Bryopsis plumosa. Plant Cell Physiol 22: 1245–1255Google Scholar
  19. 19.
    Nicki B, Maass I, Schmid R (1982) Posttranscriptional control of enzyme activity in Acetabularia. Induction by blue light. In: Eur Symp Photomorphogen Plants. Reading UK Book Abstr, p 56Google Scholar
  20. 20.
    Paques M, Sironval C, Bonotto S (1979) On chloroplast movement in the stalk of Acetabularia mediterranea. In: Bonotto S, Kefeli V, Puiseux-Dao S (eds) Developmental biology of Acetabularia. Elsevier, Amsterdam, pp 155–162Google Scholar
  21. 21.
    Paques M, Brouers M (1981) Chloroplast phototaxis in Acetabularia mediterranea. Protoplasma 105: 360–361Google Scholar
  22. 22.
    Puiseux-Dao S, Borghi H, Dazy AC, Durand M (1983) Effects of white, red, and blue light on the electrical activity, the cellular streaming, the rRNA transport and the morphogenesis in Acetabularia. In: Abstr Xlth Int Seaweed Symp, Quindao, ChinaGoogle Scholar
  23. 23.
    Richter G (1962) Die Wirkung von blauer und roter Strahlung auf die Morphogenese von Acetabularia. Naturwissenschaften 49: 238CrossRefGoogle Scholar
  24. 24.
    Richter G, Kirschstein MJ (1966) Regeneration und Photosynthese-Leistung kernhaltiger Zell-teilstücke von Acetabularia in blauer und roter Strahlung. Z Pflanzenphysiol 54: 106–117Google Scholar
  25. 25.
    Satoh K (1982) Further characterization of the photosystem II chlorophyll a-protein complex purified from digitonin extracts of spinach chloroplasts. Polypeptide composition. In: Akoyounoglou G (ed) Photosynthesis, vol III. Balaban Int Sci Serv, Philadelphia, pp 607–616Google Scholar
  26. 26.
    Schael U, Clauss H (1968) Die Wirkung von Rotlicht und Blaulicht auf die Photosynthese von Acetabularia mediterranea. Planta 78: 98–114CrossRefGoogle Scholar
  27. 27.
    Schmid R (1978) Zur Frage der Beteiligung des Zellkerns an den blaulichtabhängigen Photomorphosen bei Acetabularia mediterranea. Dissertation, Freie Univ BerlinGoogle Scholar
  28. 28.
    Schmid R (1981) Effects of blue light on the circadian rhythm in Acetabularia mediterranea. Protoplasma 105: 364Google Scholar
  29. 29.
    Schmid R, Clauss H (1974) Die Vermehrung der Chloroplasten von Acetabularia im Rot- und Blaulicht. Protoplasma 82: 283–287PubMedCrossRefGoogle Scholar
  30. 30.
    Schmid R, Clauss H (1975) Multiplication and protein content of chloroplasts of Acetabularia mediterranea in blue light after prolonged irradiation with red light. Protoplasma 85: 315–325CrossRefGoogle Scholar
  31. 31.
    Schmid R, Clauss H (1977) Is the nucleus involved in the blue light mediated photomorphoses in Acetabularia mediterranea? In: Woodcock CLF (ed) Progress in Acetabularia research. Academic Press, London New York, pp 255–269Google Scholar
  32. 32.
    Schmid R, Idziak E, Tünnermann M (1982) Changes in the blue light sensitivity of morpho-genesis of Acetabularia after a short blue light pulse. In: Eur Symp Photomorphogen Plants. Reading UK Book Abstr, pp 66Google Scholar
  33. 33.
    Schmid R et al (1984) in preparationGoogle Scholar
  34. 34.
    Schweiger H-G, Broda H, Wolff D (1981) Simultaneous recording of two circadian rhythms in an individual cell of Acetabularia. Protoplasma 105: 365Google Scholar
  35. 35.
    Terborgh JW (1965) Effects of red and blue light on the growth and morphogenesis of Acetabularia crenulata. Nature (London) 207: 1360–1363CrossRefGoogle Scholar
  36. 36.
    Terborgh JW (1966) Potentiation of photosynthetic oxygen evolution in red light by small quantities of monochromatic blue light. Plant Physiol 41: 1401–1410PubMedCrossRefGoogle Scholar
  37. 37.
    Williams NS, Terborgh JW (1970) Protoplasmic streaming in red light potentiated by small quantities of blue light in Acetabularia crenulata. Plant Physiol Suppl 46: 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. Schmid
    • 1
  1. 1.Institut für Pflanzenphysiologie und ZellbiologieFreie Universität BerlinBerlin 33Germany

Personalised recommendations