Chlorophyll a/Chlorophyll b Ratios of Chlorella vulgaris in Blue or Red Light

  • W. Kowallik
  • R. Schürmann
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


From the experiments of Voskresenskaya in the early 1950’s it is well known that in higher plants growth in blue light results in a greater formation of protein, while that in red light leads to an accumulation of carbohydrates. In the meantime these results have been confirmed repeatedly also for several lower plants, including the “model autotroph” Chlorella. Therefore, by now this effect of different wavelengths of the visible spectrum appears to be a universal phenomenon in the plant kingdom (for references see Kowallik [17]. Efforts to elucidate these specific influences of light quality have preferably concentrated on examinations of changes in the activities of photosynthetic as well as respiratory enzymes, which in some cases indeed have been found increased on blue irradiation (Ruyters this Vol.). Additionally, attention has also been focused on possible regulations in the formation of the photosynthetic apparatus. Chlorophyll biosynthesis and the formation of the different chlorophyll protein species have been in the center of these investigations, which sometimes revealed clear differences between blue- or red-treated plants [1, 3, 19, 21, 24].


Blue Light Light Quality Fluence Rate Chloroplast Development Euglena Gracilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akoyunoglou G, Anni H, Kalosakas K (1980) The effect of light quality and the mode of illumination on chloroplast development in etiolated bean leaves. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 473–484CrossRefGoogle Scholar
  2. 2.
    Armond PA, Staehelin LA, Arntzen CJ (1977) Spatial relationship of photosystem I and photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol 73: 400–418PubMedCrossRefGoogle Scholar
  3. 3.
    Brinkmann G, Senger H (1980) Blue light regulation of chloroplast development in Scene- desmus mutant C-2A In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidel-berg New York, pp 526–540Google Scholar
  4. 4.
    Butler WL, Kitajima M (1974) A tripartite model for chloroplast fluorescence. In: Avron M (ed) Proc 3rd Int Congr Photosynth. Elsevier, Amsterdam, pp 13–24Google Scholar
  5. 5.
    Butler WL, Kitajima M (1975) Energy transfer between photosystem II and photosystem I in chloroplasts. Biochim Biophys Acta 396: 72–85PubMedCrossRefGoogle Scholar
  6. 6.
    Dolphin WD (1970) Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiol 46: 685–691PubMedCrossRefGoogle Scholar
  7. 7.
    Dresbach Ch (1973) Lichtwirkungen auf die Bildung von Photosynthesepigmenten bei Mu-tanten von Ankistrodesmus und Chlorella. Thesis, Univ KölnGoogle Scholar
  8. 8.
    Dresbach Ch, Kowallik W (1974) Eine fördernde Wirkung von Blaulicht auf die Carotinoidbildung einer gelben Chlorella-Mutante. Planta 120: 291–297CrossRefGoogle Scholar
  9. 9.
    Evangelatos GP, Akoyunoglou G (1980) A rapid separation method of leaf pigments by thin layer chromatography on silica gel. 5th Int Congr Photosynth, Halkidiki, Greece, p 150Google Scholar
  10. 10.
    Gross JA, Stroz R (1969) Photostimulation of carotenoid biosynthesis in a nonphotosynthetic Euglena mutant. Plant Physiol Suppl 44: 41Google Scholar
  11. 11.
    Harding RW, Shropshire W (1980) Photocontrol of carotenoid biosynthesis. Annu Rev Plant Physiol 31: 217–238CrossRefGoogle Scholar
  12. 12.
    Holden M (1976) Chlorophylls. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments, Vol II. Academic, London New York, pp 1–37Google Scholar
  13. 13.
    Humbeck K, Senger H (1984) Influence of light qualities on the formation of chlorophyll- protein complexes. This volumeGoogle Scholar
  14. 14.
    Hundrieser J, Richter G (1982) Blue light induced synthesis of ribulosebisphosphate carboxylase in cultured plant cells. Plant Cell Rep 1: 115–118CrossRefGoogle Scholar
  15. 15.
    Ke B, Vernon LP, Chaney TH (1972) Photoreduction of cytochrome b559 in a photosystem II subchloroplast particle. Biochim Biophys Acta 256: 345–357PubMedCrossRefGoogle Scholar
  16. 16.
    Kowallik W (1962) Über die Wirkung des blauen und roten Spektralbereichs auf die Zusammensetzung und Zellteilung synchronisierter Chlorellen. Planta 58: 337 - 365CrossRefGoogle Scholar
  17. 17.
    Kowallik W (1982) Blue light effects on respiration. Annu Rev Plant Physiol 33: 51–72CrossRefGoogle Scholar
  18. 18.
    Kowallik W, Bartling D (1984) Increase in RNA by blue light in a Chlorophyllfree Chlor¬ella mutant. This volumeGoogle Scholar
  19. 19.
    Lichtenthaler HK, Buschmann C, Rahmsdorf U (1980) The importance of blue light for the development of sun-type chloroplasts. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 485–494CrossRefGoogle Scholar
  20. 20.
    McKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322Google Scholar
  21. 21.
    Richter G, Reihl W, Wietoska B, Beckmann J (1980) Blue light-induced development of thylakoid membranes in isolated seedling roots and cultured plant cells. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 465–472CrossRefGoogle Scholar
  22. 22.
    Roe JH (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem 212: 335–343PubMedGoogle Scholar
  23. 23.
    Ruyters G (1984) Effects of blue light on enzymes. This volumeGoogle Scholar
  24. 24.
    Schiff JA (1980) Blue light and the photocontrol of chloroplast development in Euglena. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 495–511CrossRefGoogle Scholar
  25. 25.
    Thornber JP (1975) Chlorophyll-proteins: Light-harvesting and reaction center components of plants. Annu Rev Plant Pyhsiol 26: 127–158CrossRefGoogle Scholar
  26. 26.
    Tobin EM (1981) White light effects on the m-RNA for the lightharvesting chlorophyll a/b protein in Lemna gibba L.G-3. Plant Physiol 67: 1078–1083PubMedCrossRefGoogle Scholar
  27. 27.
    Wallen DG, Geen GH (1971) Light quality and concentration of proteins, RNA, DNA and photo synthetic pigments in two species of marine plankton algae. Mar Biol 10: 44–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • W. Kowallik
  • R. Schürmann
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Germany

Personalised recommendations