31P-NMR Studies in Scenedesmus C-2A’ in Darkness and Blue Light

  • T. Oh-Hama
  • G. Ruyters
  • K. Furihata
  • H. Seto
  • S. Miyachi
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Blue light stimulates carbohydrate degradation and respiration of green algae (review: [8, 10, 12]); the underlying mechanism, however, is not well understood. Since all reactions are enzyme-catalyzed, enzymes are certainly candidates for regulation. Indeed several enzymes have been reported to be blue light-stimulated (see Ruyters this Vol.). The finding of a blue light-mediated enhancement of PEP carboxylase and pyruvate kinase activity [6, 9], together with the reported blue light-enhanced carbohydrate breakdown of a chlorophyll-free Chlorella mutant under anaerobic conditions [7] strongly indicates an important role of the glycolytic pathway in these blue light phenomena. Since the demonstrated changes in maximal catalytic activities of pyruvate kinase and PEPCase occur too slowly to account for the quick stimulation of respiration and carbohydrate breakdown [19], these processes might be regulated by changes in the concentration of effectors, cofactors and substrate of regulatory enzymes. However, except for adenosine phosphates [11], no data on the level of these compounds and their possible changes in blue light are available.


Green Alga Blue Light Intact Cell Pyruvate Kinase Phosphate Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brinkmann G, Senger H (1980) Blue light regulation of chloroplast development in Scenedesmus mutant C-2A’. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 526–540CrossRefGoogle Scholar
  2. 2.
    Colman A, Gadian DG (1976) 31P nuclear-magnetic-resonance studies on the developing embryos of Xenopus laevis. Eur J Biochem 61: 387–396Google Scholar
  3. 3.
    Elgavish A, Elgavish GA, Halmann M (1980) Intracellular phosphorus pools in intact algal cells. FEBS Lett 117: 137–142PubMedCrossRefGoogle Scholar
  4. 4.
    Gadian DG, Radda GK, Richards RE, Seely PJ (1979) 31P NMR in living tissue: The road from a promising to an important tool in biology. In: Shulman RG (ed) Biological appli-cation of magnetic resonance. Academic, London New York, pp 463–535Google Scholar
  5. 5.
    Kallas T, Dahlquist FW (1981) Phosphorous-31 nuclear magnetic resonance analysis of in-ternal pH during photosynthesis in the Cyanobacterium Synechococcus. Biochemistry 20: 5900–5907PubMedCrossRefGoogle Scholar
  6. 6.
    Kamiya A, Miyachi S (1975) Blue light-induced formation of phosphoenolpyruvate car-boxylase in colorless Chlorella mutant cells. Plant Cell Physiol 16: 729–736Google Scholar
  7. 7.
    Kowallik W (1969) Eine fördernde Wirkung von Blaulicht auf die Säureproduktion anaerob gehaltener Chlorell’en. Planta 87: 372–384CrossRefGoogle Scholar
  8. 8.
    Kowallik W (1982) Blue light effects on respiration. Annu Rev Plant Physiol 33: 51–72CrossRefGoogle Scholar
  9. 9.
    Kowallik W, Ruyters G (1976) Über Aktivitätssteigerungen der Pyruvat-Kinase durch Blaulicht oder Glucose bei einer chlorophyllfreien Chlorella-Mutante. Planta 128: 11–14CrossRefGoogle Scholar
  10. 10.
    Kowallik W, Schätzle S (1980) Enhancement of carbohydrate degradation of blue light. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 344–360CrossRefGoogle Scholar
  11. 11.
    Kowallik W, Scheil I (1976) Lichtbedingte Veränderungen des ATP-Spiegels bei einer chlorophyllfreien Chlorella-Mutante. Planta 131: 105–108CrossRefGoogle Scholar
  12. 12.
    Miyachi S, Kamiya A, Miyachi S (eds) (1977) Wavelength effects of incident light on carbon metabolism in Chlorella cells. In: Biological solar energy conversion. Academic, London New York, pp 167–182Google Scholar
  13. 13.
    Miyachi S, Kanai R, Mihara S, Miyachi Sh, Aoki S (1964) Metabolic roles of inorganic poly¬phosphates in Chlorella cells. Biochim Biophys Acta 93: 625–634PubMedCrossRefGoogle Scholar
  14. 14.
    Moon RB, Richards JH (1973) Determination of intracellular pH by P magnetic resonance. J Biol Chem 248: 7276–7278PubMedGoogle Scholar
  15. 15.
    Nicolay K, Scheffers WA, Bruineberg PM, Kaptein R (1982) Phosphorus-31 nuclear magnetic resonance studies of intracellular pH, phosphate compartmentation and phosphate transport in yeasts. Arch Microbiol 133: 83–89CrossRefGoogle Scholar
  16. 16.
    Ogawa S, Rottenberg H, Brown TR, Shulman RG, Castillo CL, Glynn P (1978) High resolution 31P nuclear magnetic resonance study of rat liver mitochondria. Proc Natl Acad Sei USA 75: 1796–1800CrossRefGoogle Scholar
  17. 17.
    Oh-hama T, Senger H (1975) The development of structure and function in chloroplast of greening mutants of Scenedesmus III. Biosynthesis of 6-aminolevulinic acid. Plant Cell Physiol 16: 395–405Google Scholar
  18. 18.
    Oh-hama T, Hase E (1978) Blue light effect on chlorophyll formation in Chlorella protothecoides. Photochem Photobiol 27: 199–202CrossRefGoogle Scholar
  19. 19.
    Ruyters G (1981) Effects of blue light on respiration and enzyme activity in a yellow Chlorella mutant. In: Akoyunoglou G (ed) Proc 5th Int Congr Photosynth, vol V. Balaban Int Sei Serv, Philadelphia, pp 905–914Google Scholar
  20. 20.
    Ruyters G (1983) Effects of blue light on enzymes. This volumeGoogle Scholar
  21. 21.
    Salhany JM, Yamane T, Shulman RG, Ogawa S (1975) High resolution 31P nuclear magnetic resonance studies of intact yeast cells. Proc Natl Acad Sei USA 72: 4966–4970CrossRefGoogle Scholar
  22. 22.
    Steup M, Pirson A (1974) Über den Einfluß des blauen und roten Spektralbereichs auf Phosphatfraktionen, besondere Polyphosphate, bei Grünalgen. Biochem Physiol Pflanz 166: 447–459Google Scholar
  23. 23.
    Turner JF, Turner DH (1980) The regulation of glycolysis and pentose phosphate pathway. In: Davies DD (ed) The biochemistry of plants, vol II. Academic, London New York pp 279–316Google Scholar
  24. 24.
    Watanabe M, Oh-hama T, Miyachi S (1980) Light-induced carbon metabolism in an early stage of greening in wild type and mutant C-2A’ cells of Scenedesmus obliquus. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 332–343Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • T. Oh-Hama
    • 1
  • G. Ruyters
    • 1
  • K. Furihata
    • 1
  • H. Seto
    • 1
  • S. Miyachi
    • 1
  1. 1.Institute of Applied MicrobiologyUniversity of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations