Multiple Effects of the Flavin Quencher Potassium Iodide on Light- and Dark-Processes in the Green Alga Mougeotia

  • E. Schönbohm
  • E. Schönbohm
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Blue light, as well as near-UV, induces and controls many physiological processes [5, 13, 14, 15]. Mostly it is an open question whether the photoreceptor is a carotenoid, a flavin or another unknown photoreceptor. Various experiments have been attempted to test the role of flavins as blue/UV-photoreceptor pigments. Often the effect of potassium iodide (KI), known as a very effective quencher of the triplet excited state of flavins in vitro [25, 26] has been tested also in vivo [3, 6, 7, 8, 9, 10, 12, 16, 17, 22, 23, 24, 27, 28]. Most of the authors concluded that KI affected the blue light photoreceptor rather than secondary processes, and that an iodide inhibition was consistent with a flavin as the photoreceptor pigment. But in Mougeotia it was shown that KI not only inhibited the blue light-dependent strong light movement but also the weak light response, which is mediated by phytochrome; this inhibition could also be achieved if KI was given after the red light induction phase [17, 18]. Recently we have demonstrated that this inhibitory KI-effect on the chloroplast movement of Mougeotia under weak light as well as under strong light can be abolished completely by ATP or ADP given simultaneously with KI but not by ITP or IDP [21].


Phenolic Compound Difference Spectrum Potassium Iodide Euglena Gracilis Increase Incubation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen RA, Sowers IA (1968) Optimum conditions for bonding of plant phenols to insoluble polyvinyl pyrrolidone. Phytochemistry 7: 293–301CrossRefGoogle Scholar
  2. 2.
    Colombetti G, Häder DP, Lenci F, Quaglia M (1982) Phototaxis in Euglena gracilis: Effect of sodium azid and triphenylmethyl phosphonium ion on the photosensory transduction chain. Curr Microbiol 7: 281–284Google Scholar
  3. 3.
    Diehn B, Kint B (1970) The flavin nature of the photoreceptor molecule for phototaxis in Euglena. Physiol Chem Phys 2: 483–488Google Scholar
  4. 4.
    Guba F (1950) Effect of halogen ions on F-actin. Nature (London) 165: 439CrossRefGoogle Scholar
  5. 5.
    Haupt W, Schönbohm E (1970) Light-oriented chloroplast movements. In: Halldal P (ed) Photo- biology of microorganisms. Wiley-Interscience, London New York Sydney Toronto, pp 283– 307Google Scholar
  6. 6.
    Kowallik W (1968) Über die Wirkung von Kaliumjodid auf die lichtstimulierte endogene Atmung von Algen. Planta 79: 122–127CrossRefGoogle Scholar
  7. 7.
    Lenci F, Colombetti G, Häder D-P (1984) Primary events in the sensory transduction of the negative phototaxis in flagellate, Euglena gracilis. In pressGoogle Scholar
  8. 8.
    Leong TY, Briggs WR (1982) Evidence from studies with acifluorfen for participation of a flavin-cytochrome complex in blue light photoreception for phototropism of oat coleoptiles. Plant Physiol 70: 875–881PubMedCrossRefGoogle Scholar
  9. 9.
    Mayer F (1966) Lichtinduzierte Chloroplastenverlagerung bei Selaginella martensii. Untersuchungen zur Identifizierung des Photoreceptors durch Anwendung von Quencher-Substanzen. Z Pflanzenphysiol 55: 65–70Google Scholar
  10. 10.
    Meyer AM (1969) Versuche zur positiven und zur negativen phototropischen Krümmung der,4ve/i0koleoptile. Z Pflanzenphysiol 60: 418–433Google Scholar
  11. 11.
    Middlebrook M, Szent-Györgyi A (1955) The action of iodide on oxidative phosphorylation. Biochim Biophys Acta 18: 407–410PubMedCrossRefGoogle Scholar
  12. 12.
    Mikolajczyk E, Diehn B (1975) The effect of potassium iodide on photophobic responses in Euglena: Evidence for two photoreceptor pigments. Photochem Photobiol 22: 269–271Google Scholar
  13. 13.
    Muñoz V, Butler WL (1975) Photoreceptor pigment for blue light inNeurospora crassa. Plant Physiol 55: 421–426PubMedCrossRefGoogle Scholar
  14. 14.
    Schmid GH (1970) Photoregulation von Flavinenzymen durch Blaulicht. Ber Dtsch Bot Ges 83: 399–415Google Scholar
  15. 15.
    Schmidt W (1980) Physiological bluelight reception. In: Dunitz JD, Goodenough JB, Hemmerich P, Ibers JA, Jorgensen CK, Neilands JB, Reinen D, Williams RJP (eds) Structure and bonding, vol 41. Springer, Berlin Heidelberg New York, pp 1–44Google Scholar
  16. 16.
    Schmidt W, Hart J, Filner P, Poff KL (1977) Specific inhibition of phototropism in corn seedlings. Plant Physiol 60: 736–738PubMedCrossRefGoogle Scholar
  17. 17.
    Schönbohm E (1967) Die Hemmung der positiven und negativen Phototaxis des Mougeotia- Chloroplasten durch Iodid-Ionen. Z Pflanzenphysiol 56: 366–374Google Scholar
  18. 18.
    Schönbohm E (1969) Untersuchungen über den Einfluß von Photosynthesehemmstoffen und Halogeniden auf die Starklicht- und Schwachlichtbewegung des Chloroplasten von Mougeotia spec. Z Pflanzenphysiol 60: 255–269Google Scholar
  19. 19.
    Schönbohm E (1972) Die Wirkung von SH-Blockern sowie von Licht und Dunkel auf die Ver-ankerung der Afow£eo/70-Chloroplasten im cytoplasmatischen Wandbelag. Z Pflanzenphysiol 66: 113–132Google Scholar
  20. 20.
    Schönbohm E (1975) Der Einfluß von Colchicin sowie von Cytochalasin B auf fádige Plasma-strukturen, auf die Verankerung der Chloroplasten sowie auf die orientierte Chloroplastenbe- wegung. Ber Dtsch Bot Ges 88: 211–224Google Scholar
  21. 21.
    Schönbohm E, Schönbohm E (1984) Zur Problematik des in-vivo-Einsatzes von Kalium-Iodid und Natrium-Azid als spezifische Triplett-Quencher von Flavinen. Biochem Physiol Pflanz 179: 95–108Google Scholar
  22. 21a.
    Schönbohm E, Schönbohm E (1984) Biophenole: Steuernde Faktoren bei der lichtorientierten Chloroplastenbewegung? Biochem Physiol Pflanz, in pressGoogle Scholar
  23. 22.
    Scholz A (1976) Lichtorientierte Chloroplastenbewegung bei Hormidium flaccidum: Verschie-dene Methoden der Lichtrichtungsperzeption und die wirksamen Pigmente. Z Pflanzenphysiol 77: 422–436Google Scholar
  24. 23.
    Seitz K (1967) Eine Analyse der für die lichtabhängigen Bewegungen des Chloroplasten verant-wortlichen Photoreceptorsysteme bei Vallisneria spiralis ssp. torta. Z Pflanzenphysiol 57:96– 104Google Scholar
  25. 24.
    Seitz K (1970) Zur Frage der Jodid-Wirkung auf die Starklicht-Bewegung der Chloroplasten von Vallisneria spiralis ssp. torta. Z Pflanzenphysiol 62: 63–69Google Scholar
  26. 25.
    Song PS, Metzler DE (1967) Photochemical degradation of flavins - IV. Studies of the anaero-bic photolysis of riboflavin. Photochem Photobiol 6: 691–709Google Scholar
  27. 26.
    Song PS, Moore TA (1968) Mechanism of the photodephosphorylation of menadiol diphos-phate. A model for bioquantum conversion. J Am Chem Soc 90: 6507Google Scholar
  28. 27.
    Widell S, Björn LO (1976) Light-induced absorption changes in etiolated coleoptiles. Physiol Plant 36: 305–309CrossRefGoogle Scholar
  29. 28.
    Zenk MH (1967) Untersuchungen zum Phototropismus der /4vew7-Koleoptile: I: Photooxida- tionen in vivo. Z Pflanzenphysiol 56: 57–69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • E. Schönbohm
  • E. Schönbohm
    • 1
  1. 1.Botanisches Institut, Fachbereich BiologieUniversität MarburgMarburgGermany

Personalised recommendations