Skip to main content

Liver Glutaminase

  • Conference paper

Abstract

The original observation that extracts of liver contain considerable gluta- mine-hydrolysing activity was reported by Krebs in 1935 [1]. Errera [2] demonstrated that the major part of the glutaminase activity was dependent on added phosphate and was located in the particulate fraction of the liver. Definitive evidence that glutaminase is a mitochondrial enzyme was first obtained by Guha [3]. Liver extracts also contain a phosphate-independent glutamine-hydrolysing activity located in the supernatant fraction [2, 4–6]. This activity is stimulated by maleate and represents a partial reaction of γ -glutamyltransferase (EC 2.3.2.2) [7]. In a careful reinvestigation of the characteristics of glutamine hydrolysis in rat liver extracts, Horowitz and Knox [8] showed that 90% of the glutamine hydrolysing activity was phosphate-de- pendent and located in the mitochondria and was thus catalysed by the enzyme now classified as glutaminase (EC 3.5.1.2)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krebs HA (1935) Metabolism of amino acids. The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29: 1951–1959

    PubMed  CAS  Google Scholar 

  2. Errera M (1949) Liver glutaminases. J Biol Chem 178: 483–493

    PubMed  CAS  Google Scholar 

  3. Guha SR (1962) Glutaminases of gluinea-pig liver mitochondria: on the possible nature of phosphate and non-phosphate activated glutaminases of guinea-pig liver mitochondria. Enzymologia 24: 310–326

    PubMed  CAS  Google Scholar 

  4. Katunuma N, Huzino A, Tomino I (1966) Organ specific control of glutamine metabolism. Adv Enzyme Regul 5: 55–69

    Article  Google Scholar 

  5. Pestana A, Marco R, Sols A (1968) Allosteric glutaminase in rat liver of likely regulatory significance. FEBS Lett 1: 317–319

    Article  PubMed  CAS  Google Scholar 

  6. Katsunuma T, Temma M, Katunuma N (1968) Allosteric nature of a glutaminase isozyme in rat liver. Biochem Biophys Res Commun 32: 433–437

    Article  PubMed  CAS  Google Scholar 

  7. Tate SS, Meister A (1975) Identity of maleate-stimulated glutaminase with γ-glutamyl transpeptidase in rat kidney. J Biol Chem 250: 4619–4627

    PubMed  CAS  Google Scholar 

  8. Horowitz ML, Know WE (1968) A phosphate activated glutaminase in rat liver different from that in kidney and other tissues. Enzymol Biol Clin 9: 241–255

    CAS  Google Scholar 

  9. Huang YZ, Knox WE (1976) A comparative study of glutaminase isozymes and rat tissues. Enzyme 21: 408–426

    PubMed  CAS  Google Scholar 

  10. Curthoys NP, Kuhlenschmidt T, Godfrey SS, Weiss RF (1976) Phosphate-dependent glutaminase from rat kidney. Cause of increased activity in response to acidosis and identity with glutaminase from other tissues. Arch Biochem Biophys 172: 162–167

    Article  PubMed  CAS  Google Scholar 

  11. McGivan JD, Lacey JH, Joseph SK (1980) Localization and some properties of phosphate-de- pendent glutaminase in disrupted liver mitochondria. Biochem J 192: 537–542

    PubMed  CAS  Google Scholar 

  12. Kalra J, Brosnan JT (1973) Localization of glutaminase in rat liver. FEBS Lett 37: 325–328

    Article  PubMed  CAS  Google Scholar 

  13. McGivan JD, Bradford NM (1983) Influence of phospholipids on the activity of phosphate-dependent glutaminase in extracts of rat-liver mitochondria. Biochem J 214: 649–652

    PubMed  CAS  Google Scholar 

  14. Charles R (1968) Mitochondrial citrulline synthese: een ammoniak fixerend en ATP verbruikend proces. PhD thesis, Univ Amsterdam, Rototype, Amsterdam

    Google Scholar 

  15. Joseph SK, McGivan JD (1978) The effects of ammonium chloride and bicarbonate on the activity of glutaminase in isolated liver mitochondria. Biochem J 176: 837–844

    PubMed  CAS  Google Scholar 

  16. Verhoeven AJ, Van Iwaarden JF, Joseph SK, Meijer AJ (1983) Control of rat-liver glutaminase by ammonia and pH. Eur J Biochem 133: 241–244

    Article  PubMed  CAS  Google Scholar 

  17. McGivan JD, Bradford NM (1983) Characteristics of the activation of glutaminase-by ammonia in sonicated rat-liver mitochondria. Biochim Biophys Acta 759: 296–302

    Article  PubMed  CAS  Google Scholar 

  18. Baverel G, Lund P (1979) A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J 184: 599–606

    PubMed  CAS  Google Scholar 

  19. Kovacevic Z (1978) Mechanism of carrier-mediated glutamine transport across the inner mitochondrial membrane. In: Guder WG, SchmidtU (eds) Biochemical nephrology. Huber, Bern, pp 254–264

    Google Scholar 

  20. Joseph SK, Meijer AJ (1981) The inhibitory effects of sulphydryl reagents on the transport and hydrolysis of glutamine in rat-liver mitochondria. Eur J Biochem 119: 523–529

    Article  PubMed  CAS  Google Scholar 

  21. Kovacevic Z, Bajin K (1982) Kinetics of glutamine efflux from liver mitochondria loaded with the 14C-labeled substrate. Biochim Biophys Acta 687: 291–295

    Article  PubMed  CAS  Google Scholar 

  22. Groen AK, Wanders RJA, Westerhoff HV, Van der Meer R, Tager JM (1982) Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem 257: 2754–2757

    PubMed  CAS  Google Scholar 

  23. Kovacevic Z (1976) Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine. Biochim Biophys Acta 430: 399–412

    Article  PubMed  CAS  Google Scholar 

  24. Hird FJR, Marginson MA (1968) The formation of ammonia from glutamine and glutamate by mitochondria from rat liver and kidney. Arch Biochem Biophys 127: 718–724

    Article  PubMed  CAS  Google Scholar 

  25. Blackburn EH, Hird FJR (1972) Metabolism of glutamine and glutamate by rat liver mitochondria. Arch Biochem Biophys 152: 258–264

    Article  PubMed  CAS  Google Scholar 

  26. Lacey JH, Bradford NM, Joseph SK, McGivan JD (1981) Increased activity of phosphate-de-pendent glutaminase in liver mitochondria as a result of glucagon treatment of rats. Biochem J 194: 29–33

    PubMed  CAS  Google Scholar 

  27. Deaciuc IV, Petrescu I (1980) Regulation of glutamine catabolism in the perfused guinea-pig liver in relation to ureogenesis and gluconeogenesis. Int J Biochem 12: 605–618

    Article  PubMed  CAS  Google Scholar 

  28. Joseph SK, McGivan JD, Meijer AJ (1981) The stimulation of glutamine hydrolysis in isolated rat liver mitochondria by Mg2+ depletion and hypo-osmotic incubation conditions. Biochem J 194: 35–41

    PubMed  CAS  Google Scholar 

  29. Azzi A, Azzone GF (1966) Swelling and shrinkage phenomena in liver mitochondria. Reversible swelling changes linked to transport of monovalent cations stimulated by valinomycin. Biochim Biophys Acta 113: 445–456

    PubMed  CAS  Google Scholar 

  30. Halestrap AP (1978) Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem J 172: 389–398

    PubMed  CAS  Google Scholar 

  31. Joseph SK, McGivan JD (1978) The effect of ammonium chloride and glucagon on the metabolism of glutamine in isolated liver cells from starved rats. Biochim Biophys Acta 543: 16–28

    Article  PubMed  CAS  Google Scholar 

  32. Armston AE, Halestrap AP, Scott RD (1982) The nature of the changes in liver mitochondrial function induced by glucagon treatment of rats. The effects of intramitochondrial volume, aging and benzyl alcohol. Biochim Biophys Acta 681: 429–439

    Google Scholar 

  33. Joseph SK, Verhoeven AJ, Meijer AJ (1981) Effect of trifluoperazine on the stimulation by Ca2+-dependent hormones of gluconeogenesis from glutamine in isolated hepatocytes. Biochim Biophys Acta 677: 506–511

    Article  PubMed  CAS  Google Scholar 

  34. Corvera S, García-Sáinz JA (1981) arAdrenoreceptor activation stimulates ureogenesis in rat hepatocytes. Eur J Pharmacol 72: 387–390

    Google Scholar 

  35. Corvera S, García-Sáinz JA (1982) Vasopressin and angiotensin II stimulate ureogenesis through increased mitochondrial citrulline production. Life Sci 31: 2493–2498

    Article  PubMed  CAS  Google Scholar 

  36. Corvera S, García-Sáinz JA (1983) Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagon. Biochem J 210: 957–960

    PubMed  CAS  Google Scholar 

  37. Hulbert AJ, Augee ML, Raison JK (1976) The influence of thyroid hormones on the structure and function of mitochondrial membranes. Biochim Biophys Acta 455: 597–601

    Article  PubMed  CAS  Google Scholar 

  38. Joseph SK, Bradford NM, McGivan JD (1978) Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells. Biochem J 176: 827–836

    PubMed  CAS  Google Scholar 

  39. Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255: 4011–4019

    PubMed  CAS  Google Scholar 

  40. Hayes MR, McGivan JD (1982) Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes. Biochem J 204: 365–368

    PubMed  CAS  Google Scholar 

  41. Aikawa T, Matsutaka H, Yamamoto H, Okyda T, Ishikawa E, Kawano T, Matsumara E (1973) Gluconeogenesis and amino acid metabolism. Inter-organal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J Biochem 74: 1003–1017

    PubMed  CAS  Google Scholar 

  42. Rémésy C, Demigné C, Aufrére J (1978) Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J 170: 321–329

    Google Scholar 

  43. Háussinger D, Gerok W, Sies H (1983) Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta 755: 272–278

    Article  PubMed  Google Scholar 

  44. Brosnan JT, Williamson DH (1974) Mechanisms for the formation of alanine and aspartate on rat liver in vivo after administration of ammonium chloride. Biochem J 138: 453–462

    PubMed  CAS  Google Scholar 

  45. Lund P, Watford M (1976) Glutamine as a precursor of urea. In: Grisolia S, Báguena R, Mayor F (eds) The urea cycle. Wiley, New York, pp 479–488

    Google Scholar 

  46. Cooper AJL, Meister A (1974) Isolation and properties of a new glutamine transaminase from rat kidney. J Biol Chem 249: 2554–2561

    PubMed  CAS  Google Scholar 

  47. Meister A (1980) Catalytic mechanism of glutamine synthetase; overview of glutamine metabolism. In: Mora J, Palacios R (eds) Glutamine: metabolism, enzymology, and regulation. Academic Press, London New York, pp 1–39

    Google Scholar 

  48. Lund P (1971) Control of glutamine synthesis in rat liver. Biochem J 124: 653–660

    PubMed  CAS  Google Scholar 

  49. Saheki T, Katunuma N (1975) Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. Urea synthesis with ammonia and glutamine as nitrogen sources. J Biochem 77: 659–669

    PubMed  CAS  Google Scholar 

  50. Akerboom TPM, Bookelman H, Zuurendonk PF, Van der Meer R, Tager JM (1978) Inramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem 84: 413–420

    Article  PubMed  CAS  Google Scholar 

  51. Sterman R, Decker K (1978) Differential response of ATP and orthophosphate in cytosol and mitochondria of rat hepatocytes to treatment with Pi and D-galactosamine. FEBS Lett 95: 214–216

    Article  Google Scholar 

  52. Lund P, Brosnan JT, Eggleston LV (1970) The regulation of ammonia metabolism in mammalian tissues. In: Bartley W, Kornberg HA, Quayle JR (eds) Essays in cell metabolism. Wiley, London, pp 167–188

    Google Scholar 

  53. Chamalaun RAFM, Tager JM (1970) Nitrogen metabolism in the perfused rat liver. Biochim Biophys Acta 222: 119–134

    Article  PubMed  CAS  Google Scholar 

  54. Háussinger D, Weiss L, Sies H (1975) Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin-free perfused rat liver. Eur J Biochem 52: 421–431

    Article  PubMed  Google Scholar 

  55. Háussinger D, Akerboom TPM, Sies H (1980) The role of pH and the lack of a requirement for hydrogencarbonate in the regulation of hepatic glutamine metabolism. Hoppe-Seyler’s Z Physiol Chem 361: 955–1001

    Article  Google Scholar 

  56. Nordmann R, Petit MA, Nordmann J (1972) Recherches sur le mécanisme de l’accumulation intra-hépatique d’acides aminés dicarboxyliques au cours de l’intoxication ammoniacale. Biochimie 54: 1473–1478

    Article  PubMed  CAS  Google Scholar 

  57. Meijer AJ, Hensgens HESJ (1982) Ureogenesis. In: Sies H (ed) Metabolic compartmentation. Academic Press, London New York, pp 259–286

    Google Scholar 

  58. Lusty CJ (1978) Carbamoylphosphate synthetase I of rat-liver mitochondria. Purification, properties, and polypeptide molecular weight. Eur J Biochem 85: 373–383

    Article  PubMed  CAS  Google Scholar 

  59. Soboll S, Elbers R, Scholz R, Heldt HW (1980) Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Hoppe Seyler’s Z Physiol Chem 361: 69–76

    Article  PubMed  CAS  Google Scholar 

  60. Hoek JB, Nicholls DG, Williamson JR (1980) Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem 255: 1458–1464

    PubMed  CAS  Google Scholar 

  61. Sainsbury GM (1980) The distribution of ammonia between hepatocytes and extracellular fluid. Biochim Biophys Acta 631: 305–316

    Article  PubMed  CAS  Google Scholar 

  62. Wanders RJA, Hoek JB, Tager JM (1980) Origin of the ammonia found in protein-free extracts of rat-liver mitochondria and rat hepatocytes. Eur J Biochem 110: 197–202

    Article  PubMed  CAS  Google Scholar 

  63. Lund P (1980) Glutamine metabolism in the rat. FEBS Lett 117: K86–K92

    Article  PubMed  Google Scholar 

  64. Rognstad R (1977) Sources of ammonia for urea synthesis in isolated rat liver cells. Biochim Biophys Acta 496: 249–254

    Article  PubMed  CAS  Google Scholar 

  65. Krebs HA, Hems R, Lund P, Halliday D, Read WWC (1978) Sources of ammonia for mammalian urea synthesis. Biochem J 176: 733–737

    PubMed  CAS  Google Scholar 

  66. Hensgens HESJ, Meijer AJ (1980) Inhibition of urea-cycle activity by high concentrations of alanine. Biochem J 186: 1–4

    PubMed  CAS  Google Scholar 

  67. Lueck JD, Miller LL (1970) The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver. J Biol Chem 245: 5491–5497

    PubMed  CAS  Google Scholar 

  68. Oliver J, Koelz AM, Costello J, Bourke E (1977) Acid-base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur J Clin Invest 7: 445–449

    Article  PubMed  CAS  Google Scholar 

  69. Schworer CM, Mortimore GE (1979) Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 76: 3169–3173

    Article  PubMed  CAS  Google Scholar 

  70. Titheradge MA, Haynes RC (1980) The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. Arch Biochem Biophys 201: 44–55

    Article  PubMed  CAS  Google Scholar 

  71. Williamson JR, Meijer AJ, Ohkawa K (1974) Interrelation between anion transport, ureogenesis and gluconeogenesis in isolated rat liver cells. In: Lundquist F, Tygstrup N (eds) Regulation of hepatic metabolism. Munksgaard, Copenhagen, pp 457–479

    Google Scholar 

  72. Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2: 567–570

    PubMed  CAS  Google Scholar 

  73. Häussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269–275

    Article  PubMed  Google Scholar 

  74. Gaasbeek Janzen JW, Moorman AFM, Lamers WH, Los JA, Charles R (1981) The localization of carbamoyl-phosphate synthase in adult rat liver. Biochem Soc Trans 9: 279 P

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer- Verlag Berlin Heidelberg

About this paper

Cite this paper

Mcgivan, J.D., Bradford, N.M., Verhoeven, A.J., Meijer, A.J. (1984). Liver Glutaminase. In: Häussinger, D., Sies, H. (eds) Glutamine Metabolism in Mammalian Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69754-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69754-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69756-2

  • Online ISBN: 978-3-642-69754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics