CSF Studies in Schizophrenia: A Multidimensional Approach

  • Wagner F. Gattaz
  • T. Gasser
  • H. Beckmann


The aim of the present study was the simultaneous investigation of different neuronal systems in a group of schizophrenic patients and healthy controls in order to investigate their possible role in the disease, their interrelationship, and the effects of neuroleptic drugs upon their function. We have investigated the brain metabolism through the determination of the concentrations of hormones, neurotransmitters, and their major metabolites in the cerebrospinal fluid (CSF).


Schizophrenic Patient Brief Psychiatric Rate Scale Homovanillic Acid Neuroleptic Drug Multidimensional Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén NE, Bedard P (1971) Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J Pharm Pharmacol 23: 460–462PubMedCrossRefGoogle Scholar
  2. Asberg M, Träskman L, Thorén P (1976) 5-HIAA in the cerebrospinal fluid. Arch Gen Psychiat 33: 1193–1197PubMedGoogle Scholar
  3. Ashcroft G, Crawford T, Ecclestone D, Sharman D, MacDougall E, Stanton J, Binns J (1966) 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet ii: 1049–1052CrossRefGoogle Scholar
  4. Banki CM, Molnär G (1980) Cerebrospinal fluid 5-hydroxyindoleacetic acid as an index of central serotonergic processes. Psychiat Res 5: 23–32CrossRefGoogle Scholar
  5. Barbeau A (1962) Pathogenesis of Parkinson’s disease: a new hypothesis. Can Med Assoc J 87: 802–807PubMedGoogle Scholar
  6. Bartholini G, Stadler H, Lloyd KG (1973) Cholinergic-dopaminergic interactions in the extrapyramidal system. Advanc Neurol 3: 233–241Google Scholar
  7. Bartholini G, Stadler H, Gadea-Ciria M, Lloyd KG (1976) The use of the push-pull cannula to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacology 15: 515–519PubMedCrossRefGoogle Scholar
  8. Beckmann H, Reynolds GP, Sandler M, Waldmeier P, Lauber J, Riederer P, Gattaz WF (1982) Phenylethylamine and phenylacetic acid in CSF of schizophrenics and healthy controls. Arch Psychiatr Nervenkr 232: 463–471CrossRefGoogle Scholar
  9. Beckmann H, Lang RE, Gattaz WF (to be published) Vasopressin-oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. PsychoneuroendocrinologyGoogle Scholar
  10. Bird ED, Barnes J, Iversen LL, Spokes EG, Mackay AVP, Shepherd M (1977) Increased brain dopamine and reduced glutamic acid decarboxilase and choline acetyltransferase activity in schizophrenia and related psychoses. Lancet ii: 1157–1159CrossRefGoogle Scholar
  11. Bird ED, Spokes EG, Iversen LL (1979) Brain norepinephrine and dopamine in schizophrenia. Science 204: 93–94PubMedCrossRefGoogle Scholar
  12. Bowers MB (1973) 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacology 28:309–318Google Scholar
  13. Bowers MB, Henninger GR, Gerbode FA (1969) Cerebrospinal fluid 5-hydroxyindoleacetic acid in psychiatric patients. Int J Neuropharmacol 8: 255–262PubMedCrossRefGoogle Scholar
  14. Carroll BJ (1976) Limbic system-adrenal cortex regulation in depression and schizophrenia. Psychosom Med 38: 106–121PubMedGoogle Scholar
  15. Crow TJ, Owen F, Cross AJ, Johnstone EC, Joseph MH, Longden A (1980) The dopamine receptor as the site of the primary disturbance in the type I syndrome of schizophrenia. In: Usdin E et al. (eds) Enzymes and neurotransmitters in mental disease. Wiley, New York, pp 559–572Google Scholar
  16. Ebstein RP, Biederman J, Rimon R, Zohar J, Belmaker RH (1976) Cyclic GMP in the CSF of patients with schizophrenia before and after neuroleptic treatment. Psychopharmacology 51: 71–74PubMedCrossRefGoogle Scholar
  17. Farley IF, Price KS, McCullough E, Deck JHN, Hordynski W, Hornykiewicz O (1978) Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic fore- brain. Science 200: 456–458PubMedCrossRefGoogle Scholar
  18. Gasser T, Möcks J (1983) Graphical representation of multidimensional EEG data and classificatory aspects. Electroencephalogr Clin Neurophysiol 55: 609–612PubMedCrossRefGoogle Scholar
  19. Gattaz WF, Gattaz D, Beckmann H (1982a) Glutamate in schizophrenics and healthy controls. Arch Psychiat Nervenkr 231: 221–225PubMedCrossRefGoogle Scholar
  20. Gattaz WF, Waldmeier P, Beckmann H (1982b) CSF monoamine metabolites in schizophrenic patients. Acta Psychiat Scand 66: 350–360PubMedCrossRefGoogle Scholar
  21. Gattaz WF, Cramer H, Beckmann H (1983a) Low CSF concentration of cyclic GMP in schizophrenia. Br J Psychiatry 142: 288–291PubMedCrossRefGoogle Scholar
  22. Gattaz WF, Riederer P, Reynolds GP, Gattaz D, Beckmann H (1983b) Dopamine and noradrenalinin the cerebrospinal fluid of schizophrenic patients. Psychiat Res 8: 243–250CrossRefGoogle Scholar
  23. Gattaz WF, Kattermann R, Gattaz D, Beckmann H (1983c) Magnesium and calcium in the CSF of schizophrenic patients and healthy controls: correlations with cyclic GMP. Biol Psychiat 18: 935–939PubMedGoogle Scholar
  24. Gomes UCR, Shanley BC, Potgieter L, Roux JT (1980) Noradrenergic overactivity in chronic schizophrenia: evidence based on cerebrospinal fluid noradrenaline and cyclic nucleotide concentrations. Br J Psychiatry 137: 346–351PubMedCrossRefGoogle Scholar
  25. Heinrich K (1976) Psychopharmaka in Klinik und Praxis. Thieme, StuttgartGoogle Scholar
  26. Helmchen H, Hippius H (1967) Depressive Syndrome im Verlauf neuroleptischer Therapie. Nervenarzt 38: 455–458PubMedGoogle Scholar
  27. Johnson JL (1972) Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res 37: 1–19PubMedCrossRefGoogle Scholar
  28. Kizer JS, Youngblood WW (1978) Neurotransmitter systems and central neuroendocrine regulation. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 465–486Google Scholar
  29. Lake CR, Sternberg DE, Van Kämmen DP, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunny WE (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science 207: 331–333PubMedCrossRefGoogle Scholar
  30. Langer DH, Brown GL, Docherty JP (1981) Dopamine receptor supersensitivity and schizophrenia: a review. Schizophrenia Bull 7: 208–223Google Scholar
  31. McGlashan TH, Carpenter WT (1976) Postpsychotic depression in schizophrenia. Arch Gen Psychiat 33: 231–239PubMedGoogle Scholar
  32. Murphy BEP, Cosgrove JB, Mcllguham MC, Pattee CJ (1967) Adrenal corticoid levels in human cerebrospinal fluid. Can Med Assoc J 97: 13–17PubMedGoogle Scholar
  33. Persson T, Roos B-E (1969) Acid metabolites from monoamines in cerebrospinal fluid of chronic schizophrenics. Br J Psychiatry 115: 95–98PubMedCrossRefGoogle Scholar
  34. Post RM, Kotin J, Goodwin FK, Gordon EK (1973) Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. Am J Psychiatry 130: 67–72PubMedGoogle Scholar
  35. Rowlands GJ, Roberts PJ (1980) Activation of dopamine receptors inhibit calcium-dependent glutamate release from corticostriatal terminals in vitro. Eur J Pharmacol 62: 241–242PubMedCrossRefGoogle Scholar
  36. Sedvall G, Alfredsson G, Bjerkenstedt L, Eneroth P, Fyrö B, Härnryd C, Swahn CG, Wisel A, Wode-Helgodt B (1975) Selective effects of psychoactive drugs on levels of monoamine metabolites and prolactin in cerebrospinal fluid of psychiatric patients. In: Airaksinen M (ed) Proceedings of the sixth congress of pharmacology. Forssan Kiijapaino y oy, Forssa, vol 3, pp 255–267Google Scholar
  37. Sedvall GC, Wode-Helgodt B (1980) Aberrant monoamine metabolite levels in CSF and family history of schizophrenia. Arch Gen Psychiat 37: 1113–1116PubMedGoogle Scholar
  38. Smith CC, Tallman JF, Post RM (1976) An examination of baseline and drug induced levels of cyclic nucleotides in the cerebrospinal fluid of controls and psychiatric patients. Life Sei 19: 131–136CrossRefGoogle Scholar
  39. Snyder S (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133: 197–202PubMedGoogle Scholar
  40. Snyder SH, Banergee SP, Yamamma HI, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia. Science 184: 1243–1253PubMedCrossRefGoogle Scholar
  41. Spitzer RL, Endicott J, Robins E (1975) Research diagnostic criteria. Instrument No. 58. New York State Psychiatric Institute, New YorkGoogle Scholar
  42. Stadler H, Lloyd KG, Gadea-Ciria M, Bartholini G (1973) Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res 55: 476–480PubMedCrossRefGoogle Scholar
  43. Stadler H, Gadea-Ciria M, Bartholini G (1975) In vivo release of endogenous neurotransmitters in cat limbic regions: effect of chlorpromazine and of electrical stimulation. Naunyn-Schmiedebergs Arch Pharmacol 288: 1–6PubMedCrossRefGoogle Scholar
  44. Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–1036 SternbergGoogle Scholar
  45. DE, Van Kämmen DP, Lake CR, Ballenger JC, Marder SR, Bunney WE (1981) The effect of pimozide on CSF norepinephrine in schizophrenia. Am J Psychiatry 138: 1045–1051PubMedGoogle Scholar
  46. Trabucchi M, Cheney DL, Racagne G, Costa E (1975) In vivo inhibition of striatal acetylcholine turnover by L-dopa, apomorphine and (+)-amphetamine. Brain Res 85: 130–134PubMedCrossRefGoogle Scholar
  47. Winblad B, Bucht G, Gottfries CG, Roos B-E (1979) Monoamines and monoamine metabolites in brain from demented schizophrenics. Acta Psychiat Scand 60: 17–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Wagner F. Gattaz
  • T. Gasser
  • H. Beckmann

There are no affiliations available

Personalised recommendations