Skip to main content
  • 148 Accesses

Abstract

In the short time since the appearance of the German edition, the steadily increasing number of publications on the biological and medical applications of NMR have attested to the efficacy of this technique. The following is designed to provide a brief insight into current research trends. An appended selection from the literature will help facilitate the reader’s access to recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chap. 5 and 6

Brain

  • Cerebral metabolic studies in vivo by phosphorous-31 NMR. Prichard JW et al., Proc Natl Acad Sci USA 80: 2748 (1983)

    Google Scholar 

  • High-resolution proton NMR study of cerebral hypoxia in vivo. Behar KL et al., Proc Natl Acad Sci USA 80: 4945 (1983)

    Google Scholar 

  • Developmental changes of creatin kinase metabolism in rat brain. Norwood WI et al., Am J Physiol 244: C205 (1983)

    Google Scholar 

  • In vivo measurement of phosphorous-31 nuclear magnetic resonance spectrum of aging mouse brain. Golczewski JA et al., Physiol Chem Phys 15: 13 (1983)

    Google Scholar 

  • In vivo flux between phosphocreatine and ATP determined by two-dimensional phosphorous NMR. Balaban RS et al., J Biol Chem 258: 12787 (1983)

    Google Scholar 

  • Noninvasive observations offluorinated anesthetics in rabbit brain by fluorine-19 NMR. Wyrwicz AM et al., Science 222: 428 (1983)

    Google Scholar 

  • 31 P-NMR studies on the metabolism of high-energy phosphorus compounds in the living rat brain: the effect of halothane anesthesia and hypoxia. Yuasa T et al., Brain Nerve 35: 1089 (1983)

    Google Scholar 

Kidney

  • Phosphorous-31 nmr studies of energy metabolism in perfused rat kidney. Rhodes RS et al., J Surg Res 35: 373 (1983)

    Google Scholar 

  • Enhanced recovery of renal ATP with postischemic infusion of ATP-magnesium chloride determined by phosphorous-31 NMR. Siegel NJ et al., Am J Physiol 245: F530 (1983)

    Google Scholar 

Liver

  • Simultaneous carbon-13 and phosphorous-31 NMR studies of perfused rat liver. Cohen SM, J Biol Chem 258: 14294 (1983)

    Google Scholar 

  • Application of NMR to the study of liver physiology and disease. Cohen SM, Hepatology (Baltimore) 3: 738 (1983)

    Google Scholar 

  • Natural abundance carbon-13 nmr spectroscopy of liver and adipose tissue of the living rat. Canioni P, Alger JR, Shulman RG, Biochemistry 22: 4974 (1983)

    Google Scholar 

  • Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nmr. Sillerud LO, Shulman RG, Biochemistry 22: 1087 (1983)

    Google Scholar 

  • Phosphorous-31 NMR in the study of liver metabolism in vivo. Quistorff B, Engkagul A, Chance B, Pharmacol Biochem Behav 18: 241 (1983)

    Google Scholar 

Heart

  • Phosphorous-31 NMR studies of enzyme kinetics in perfused hearts from thyroidectomized rats. Seymour AL et al., Biochem Soc Trans 11: 376 (1983)

    Google Scholar 

  • The temperature-dependence of steady-state creatine kinase fluxes in rat cardiac muscle. Metthews PM et al., Biochem Soc Trans 11: 174 (1983)

    Google Scholar 

  • The temperature dependence of creatine kinase fluxes in the rat heart. Matthews PM et al., Biochim Biophys Acta 763: 140 (1983)

    Google Scholar 

  • Nuclear magnetic resonance. Dawson MJ, Card Metab 1983: 309

    Google Scholar 

  • Phosphorus-31 NMR study of the recovery characteristics of high energy phosphate compounds and intracellular pH after global ischemia in the perfused guinea pig heart. Brooks WM et al., J Mol Cell Cardiol 15: 495 (1983)

    Google Scholar 

  • In vivo phosphorus-31 NMR studies of myocardial high-energy phosphate metabolism during anoxia and recovery. Neurohr KJ et al., FEBS Lett 159: 207 (1983)

    Google Scholar 

  • The relationship between global myocardial ischemia, left ventricula function, myocardial redox state, and high energy phosphate profile. A phosphorus-31 NMR study. Whitman G et al., J Surg Res 35: 332 (1983)

    Google Scholar 

  • Abnormal phosphocreatine metabolism in perfused diabetic hearts. A31 P NMR study. Pieper GM et ai, Biochem J 210: 477 (1983)

    Google Scholar 

  • Observation of a second phosphate pool in the perfused rat heart by phosphorus-31 NMR: is this the mitochondrial phosphate? Garlick PB et al., J Mol Cell Cardiol 15: 855 (1983)

    Google Scholar 

  • Glycolysis is not activated by pH in the Langendorffheart at pH values above 5.7. Bailey IA et al., Biochem Soc Trans 11: 278 (1983)

    Google Scholar 

  • Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 NMR study. Pernot AC et al., Circulation 67: 1296 (1983)

    Google Scholar 

  • Nuclear magnetic resonance and positron emission tomography in cerebral vascular disease. Budinger TF, Cerebrovasc Dis 13:7 (1983)

    Google Scholar 

  • A protective effect of insulin on reperfusing the ischemic rat heart shown using phosphorus-31 NMR. Seymour AM et al., Biochim Biophys Acta 762: 525 (1983)

    Google Scholar 

  • Protective effect of nifedipine in myocardial ischemia assesses by phosphorus-31 NMR. Ruigrok TJC et al., Eur Heart J 4C: 109 (1983)

    Google Scholar 

  • Mathematical analysis of isotope labeling in the citric acid cycle with applications to carbon-13 nmr studies in perfused rat hearts. Chance EM et al., J Biol Chem 258: 13785 (1983)

    Google Scholar 

  • High-resolution proton NMR studies of perfused rat hearts. Ugurbil K et al., FEBS Lett 167:73 (1984)

    Google Scholar 

Muscle

  • A proton-NMR study on lactate and intracellular pH in frog muscle. Seo Yet al., Jpn J Physio133: 721 (1983)

    Google Scholar 

  • Fatigue in retrospect and prospect: phosphorus-31 NMR studies of exercise performance. Chance B et al., Int Ser Sport Sci 13: 859 (1983)

    Google Scholar 

  • Phosphorus NMR spectroscopy of cat biceps and soleus muscles. Kushmerick MJ et al., Exp Med Biol 159: 303 (1983)

    Google Scholar 

  • Phosphorus-31 NMR studies of smooth muscle from guinea pig tenia coll. Vogel HJ et al., Biosci Rep 3: 863 (1983)

    Google Scholar 

  • The effect of exercise on skeletal-muscle intracellular pH in normal and phosphorylase kinase-deficient mice: a phosphorus-31 NMR study. Stevens AN et al., Biochem Soc Trans 11: 92 (1983) Energetics of smooth muscle tenia cecum of guinea pig: a phosphorus-31 NMR study. Vermue NA, Nicolay K, FEBS Lett 156: 293 (1983)

    Google Scholar 

  • Bioenergetics of intact human muscle: A phosphorus-31 NMR study. Taylor SJ et al., Mol Biol Med 1: 77 (1983)

    Google Scholar 

  • Proton NMR of intact muscle at 11 T. Arns C et al., FEBS Lett. 165: 231 (1984)

    Google Scholar 

Tumors

  • Differences in metabolite levels upon differentiation of intact neuroblastoma and glioma cells observed by proton NMR spectroscopy. NavonG et al., FEBS Lett 162: 320 (1983)

    Google Scholar 

  • A simple approach for in vivo phosphorus-31 NMR spectral studies of rat tumors. Block RE et al., J Magn Reson 53: 509 (1983)

    Google Scholar 

  • In vivo phosphorus-31 NMR study of the metabolism of mucine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia. Evanochko WT et al., Proc Natl Acad Sci USA 80: 334 (1983)

    Google Scholar 

  • Loss of high-energy phosphate following hyperthermia demonstrated by in vivo phosphorus-31 NMR spectroscopy. Lilly MB et al., Cancer Res 44: 633 (1984)

    Google Scholar 

  • Monitoring response of chemotherapy of intact human tumours by 31 P NMR. Ross B et al., Lancet 8378: 641 (1984)

    Google Scholar 

Whole-body NMR Spectroscopy

  • Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Bottomley PA et al., Radiology 150: 441 (1984)

    Google Scholar 

NMR Tomography

  • The Hammersmith clinical experience with NMR. Steiner RE, Clin Radio! 34: 13 (1983)

    Google Scholar 

  • Clinical prospects of NMR. Worthington BS, Clin Radiol 34: 3 (1983)

    Google Scholar 

  • NMR imaging: An overview of the physical principles, clinical potential, and interrelationship with radionuclide imaging. Partain CL et al., Nile! Med Ann 1983: 231

    Google Scholar 

  • Clinical magnetic resonance imaging. Margulis AR, Higgins CB, Kaufman L, Crooks LE (Ed) Radiology Research and Education Foundation, San Francisco 1983

    Google Scholar 

  • Measurement of spin-lattice relaxation times in NMR imaging. Pykett IL et al., Phys Med Biol 28: 723 (1983)

    Google Scholar 

  • A comparison of the noise characteristics of projection reconstruction and two-dimensional Fourier transformations. Ortendahl DA et al., IEEE Trans Nuel Sci NS 30: 692 (1983)

    Google Scholar 

  • Real-time NMR clinical imaging in paediatrics. Mansfield Pet al., The Lancet 8362: 1281 (1983)

    Google Scholar 

  • High-Resolution magnetic resonance imaging. Crooks LE et al., Radiology 150: 163 (1984)

    Google Scholar 

  • Dünnschicht-NMR-Imaging mit einem neuen T2-gewichteten 3-D- Verfahren. Friedburg H et al., Fortschr Röntgenstr 140: 464 (1984)

    Google Scholar 

  • Serial NMR imaging in patients with cerebral infarction. Sipponen JT et al., J Comput Ass Tomogr 7: 585 (1983)

    Google Scholar 

  • NMR imaging of tumors in the posterior fossa. McGinnis BD et al., J Comput Assist Tomogr 7: 575 (1983)

    Google Scholar 

  • NMR imaging of intracerebral hemorrhage in the acute and resolving phases. Sipponen JT et al., J Comput Assist Tomogr 7: 954 (1983)

    Google Scholar 

  • NMR evaluation of stroke. Bryan RN et al., Radiology 149: 189 (1983)

    Google Scholar 

  • Kernspintomogramm eines im CT nur unzureichend dargestellten Germinoms. Stober T, Huber G, Huk W, Fortschr Röntgenstr 139: 648 (1983)

    Google Scholar 

  • NMR imaging of the posterior fossa: 50 cases. Bydder GM et al., Clin Radiology 34: 173 (1983)

    Google Scholar 

  • NMR imaging in multiple sclerosis. Lukes SA et al. Ann Neurol 13: 592 (1983)

    Google Scholar 

  • Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Bottomley PA et al., Radiology 150: 441 (1984)

    Google Scholar 

  • Cerebral abnormalities: Use of calculated T1 and T2 magnetic resonance images for diagnosis. Mills CM et al., Radiology 150: 87 (1984)

    Google Scholar 

  • Magnetic resonance imaging of brain tumors: measurement of T1. Tsutomu A et al., Radiology 150: 95 (1984)

    Google Scholar 

  • Chronic subdural hematoma: demonstration by magnetic resonance. Sipponen JT et al., Radiology 150: 79 (1984)

    Google Scholar 

  • Head trauma evaluated by magnetic resonance and computed tomography: a comparison. Han JS et al., Radiology 150:71 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the orbit: A premiinary experience. Han JS et al., Radiology 150: 755 (1984)

    Google Scholar 

  • Primary intracranial tumor imaging: A comparison of magnetic resonance and CT Brant-Zawadski M et al., Radiology 150: 435 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the neck: Part I normal anatomy. Stark DD et al., Radiology 150: 447 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the neck: Part II pathological findings. Stark DD et al., Radiology 150: 455 (1984)

    Google Scholar 

  • NMR of pulmonaty arteriovenous fistula: effects offlow. Webb WR et al., J Comput Assist Tomogr 8: 155 (1984)

    Google Scholar 

  • Cross-sectional imaging (CT, NMR) of branchial cysts: report of three cases. Kreipke DL, Lingemann RE, J Comp Assist Tomogr 8: 114 (1984)

    Google Scholar 

  • The effect of pulmonary edema on proton NMR relaxation times. Skalina S et al., Invest Radiol 19: 7 (1984)

    Google Scholar 

  • Multiplane magnetic resonance imaging of the heart and major vessels. Higgins CB et al., AJR 142: 661 (1984)

    Google Scholar 

  • NMR: Principles of blood flow imaging. Mills CM et al., MR 142: 165 (1984)

    Google Scholar 

  • Gated magnetic resonance imaging of congenitial cardiac malformations. Fletcher BD et al., Radiology 150: 137 (1984)

    Google Scholar 

  • Cardiac imaging using gated magnetic resonance. Lanzer Pet al., Radiology 150: 121 (1984)

    Google Scholar 

  • Volume and planar gated cardiac magnetic resonance imaging: A correlative study of normal anatomy with Thallium-201 SPECT and cadaver sections. Go RT et al., Radiology 150: 129 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the thorax in childhood. Brasch RC et al., Radiology 150: 463 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the pericardium: Normal and pathologic findings. Stark DD et al., Radiology 150: 469 (1984)

    Google Scholar 

  • Magnetic resonance imaging of the breast. El Yousef SJ et al., Radiology 150: 761 (1984)

    Google Scholar 

  • Multisectional saggital and coronal magnetic resonance imaging of the mediastinum and hila. Webb WR et al., Radiology 150: 475 (1984)

    Google Scholar 

  • NMR imaging of experimentally induced liver disease. Stark DD et al., Radiology 148: 743 (1983)

    Google Scholar 

  • NMR imaging in the evaluation of the liver: a preliminary experience. Borkowski GP et al., J Comput Assist Tomogr 7: 768 (1983)

    Google Scholar 

  • Die klinisch-radiologische Bedeutung der verschiedenen Untersuchungsparameter in der NMR-Tomographie des Abdomens. Rupp N et al., Fortschr Röntgenstr 139: 359 (1983)

    Google Scholar 

  • Corona! NMR imaging of the abdomen at 0.5 Tesla. Kressel HY et al., Radiology J Comput Assist Tomogr 8:29 (1984)

    Google Scholar 

  • Magnetic resonance and CT of the normal and diseased pancreas: a comparative study. Stark DD et al., Radiology 150: 153 (1984)

    Google Scholar 

  • Chronic liver disease: evaluation by magnetic resonance. Stark DD et al., Radiology 150: 149 (1984)

    Google Scholar 

  • Hepatic tumors: magnetic resonance and CT appearance. Moss AA et al., Radiology 150: 141 (1984)

    Google Scholar 

  • Magnetic resonance imaging of transfusional hemosiderosis complicating thalassemia major. Brasch RC et al., Radiology 150: 767 (1984)

    Google Scholar 

  • Fetal imaging by NMR: a study in goats. Foster MA et al., Radiology 149: 193 (1983)

    Google Scholar 

  • Erfahrungen bei der NMR-Tomographie des Skelettsystems. Reiser M, Rupp N, Stetter E, Fortschr Röntgenstr 139: 365 (1983)

    Google Scholar 

  • NMR contrast enhancement study of the gastrointestinal tract of rats and a human volunteer using nontoxic oral iron solutions. Wesbey GE et al., Radiology 149: 175 (1983)

    Google Scholar 

  • Intravenous chelated Gadolinium as a contrast agent in NMR imaging of cerebral tumours. Bydder GM et al., The Lancet 8375: 485 (1984)

    Google Scholar 

  • Contrast-enhanced NMR imaging. Brasch RC et al., AJR 142: 625 (1984)

    Google Scholar 

  • Characteristics of Gadolinium-DTPA complex. Weinmann H et al., AJR 142: 619 (1984)

    Google Scholar 

  • Intravenous chelated Gadolinium as a contrast agent in NMR imaging of cerebral tumours. Bydder GM et al., Lancet 8375: 485 (1984)

    Google Scholar 

  • In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 NMR. Haselgrove JC et al., Science 220: 1170 (1983)

    Google Scholar 

  • NMR: In vivo proton chemical shift imaging. Pykett IL, Rosen BR, Radiology 149: 197 (1983)

    Google Scholar 

  • Spatial mapping of the chemical shift in NMR. Mansfield P, J Phys D 16: L235 (1983)

    Google Scholar 

  • Three-dimensional Fourier transform NMR imaging. High resolution chemical-shift-resolved planar imaging. Hall LD et al., J Magn Reson 56: 314 (1984)

    Google Scholar 

  • NMR imaging/spectroscopy system to study both anatomy and metabolism. Bottomley PA et al., Lancet 2 (8344): 273 (1983)

    Google Scholar 

  • Spatially resolved high resolution spectroscopy by,fourdimensional“ NMR. Maudsley AA et al., J Magn Reson 51: 147 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, K. (1984). Addendum. In: NMR-Tomography and -Spectroscopy in Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69741-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69741-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13442-8

  • Online ISBN: 978-3-642-69741-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics