Abstract

The development of a tomographic technique based on the nuclear magnetic resonance phenomenon appears the most interesting and promising innovation of recent years in medical imaging. Even the first industrially produced prototype instruments presented cross-sectional images of the human body of outstanding quality when compared with first-generation X-ray computed tomograms. The excellent anatomic resolution without the need for ionizing radiation is the reason why NMR tomography1 has attracted such great interest among medical professionals. Nevertheless, NMR imaging is still in the developmental stage, and for the time being optimism should be guarded. The suitability of NMR tomography as a routine diagnostic method has yet to be established by clinical trials that have only recently begun.

Keywords

Hepatitis Cobalt Boron Iodine Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chap. 4

Monographs and Progress Reports

  1. NMR Imaging in biomedicine. Mansfield P, Morris PG, Academic Press, London New York, 1982Google Scholar
  2. Nuclear magnetic resonance imaging in medicine. Kaufman L, Crooks LE, Margulis AR, IgakunShoin, Tokyo, 1981Google Scholar
  3. Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg), Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar

The First NMR-Tomogram

  1. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Lauterbur PC, Nature 242: 190 (1973)Google Scholar

Survey Articles

  1. NMR-Spektroskopie am Menschen. Limbach HH, Nach Chem Techn Lab 28: 860 (1980)Google Scholar
  2. Principles and methods of imaging by proton NMR. Chambron J, Armspach JP, Wecker D, J Biophys Med Nucl 5: 89 (1981)Google Scholar
  3. Physical Principles of NMR-tomography. Loeffler W, Oppelt A, Eur J Radiol 1: 338 (1981)Google Scholar
  4. Kernspin-Tomographie. Ganssen A et al., Computer-Tomogr 10 (1981)Google Scholar
  5. Die Kernspintomographie (KST) und ihre klinischen Anwendungsmöglichkeiten. Zeitler E, Schittenhelm R, Electromedica 49: 2 (1981)Google Scholar
  6. NMR-Tomographie. Roth K, Gronenborn A, Chem i u Zeit 16: 35 (1982)Google Scholar
  7. Kernspinresonanz-Tomographie. Habermehl A, Graul EH, Dtsch Aerztebl 79: 17 (1982)Google Scholar
  8. Initial clinical evaluation of a whole body NMR tomograph. Young IR et al., J Comput Assist Tomogr 6: 1 (1982)Google Scholar
  9. NMR imaging in medicine. Pykett IL, Sci Am 246 (5): 54 (1982)Google Scholar
  10. Principles of NMR imaging. Pykett IL et al., Radiology 143: 157 (1982)Google Scholar
  11. Bildgebende Kernresonanz. Stetter E, Kastler J, Funkschau 1982: 43Google Scholar
  12. Kernspin-Tomographie: Bilder aus torkelnden Atomkernen. Karcher HL, Selecta 50: 4674 (1982)Google Scholar
  13. NMR imaging techniques and applications: A review. Bottomley PA, Rev Sci Instrum 53: 1319 (1982)Google Scholar
  14. NMR imaging. Andrew ER, Acc Chem Res 16: 114 (1983)Google Scholar
  15. Kernspin-Tomographie — “Röntgen” ohne Strahlenbelastung. Zeitler E et al., Dtsch Apothek Z 123: 241 (1983)Google Scholar
  16. Magnetische Kernresonanz. Strecker E, Dtsch Med Wochenschr 108: 551 (1983)Google Scholar
  17. NMR-Tomographie. Buchmann F, Heinzerling J, GIT Lab Med 6: 102 (1983)Google Scholar
  18. Kernmagnetische Resonanz in der Medizin. Oppelt A, Physik i u Zeit 14: 7 (1983)Google Scholar
  19. The diagnostic value of morphology and relaxations time in NMR-imaging of the body. Rupp N, Reiser M, Stetter E, Eur J Radiol 3: 68 (1983)Google Scholar

Imaging Parameters

  1. Visualization of cerebral and vascular abnormalities by NMR imaging. The effect of imaging parameters on contrast. Crooks LE et al., Radiology 144: 843 (1982)Google Scholar
  2. Clinical efficiency of NMR imaging. Crooks LE et al., Radiology 146: 123 (1983)Google Scholar
  3. Signal, noise, and contrast in NMR imaging. Edelstein WA et al., J Comput Assist Tomogr 7: 391 (1983)Google Scholar

Selected Original Publications

  1. NMR tomography of the brain. Holland GN et al., J Comput Assist Tomogr 4: 1 (1980)Google Scholar
  2. NMR tomography of the brain: Coronal and sagittal sections. Holland GN et al., J Comput Assist Tomogr 4: 429 (1980)Google Scholar
  3. NMR tomography of the brain: a preliminary clinical assessment with demonstration of pathology. Hawkes RC et al., J Comput Assist Tomogr 4: 577 (1980)Google Scholar
  4. Imaging of the brain by NMR. Doyle FH et al., Lancet II: 53 (1981)Google Scholar
  5. NMR observations in alcoholic cerebral disorder and the role of vasopressin. Besson JAO et al., Lancet II: 923 (1981)Google Scholar
  6. NMR imaging of brain tumours unrevealed by CT. Einsiede! H Gräfin von, Löffler W, Eur J Radiol 2: 226 (1982)Google Scholar
  7. NMR imaging in Wilson disease. Steiner RE, Young IR et al., J Comput Assist Tomogr 7: 1 (1983)Google Scholar
  8. NMR imaging of Arnold-Chian type I malformation with hydromyelia. Buonanno FS et al., J Comput Assist Tomogr 7: 126 (1983)Google Scholar
  9. NMR-imaging in white matter disease of the brain using spin-echo sequences. Young IR et al., J Comput Assist Tomogr 7: 290 (1983)Google Scholar
  10. NMR imaging of the brain in systemic lupus erythematosus. Steiner RE et al., J Comput Assist Tomogr 7: 461 (1983)Google Scholar
  11. NMR tomography of the central nervous system: Comparison of two imaging sequences. Huk W et al., J Comput Assist Tomogr 7: 468 (1983)Google Scholar
  12. NMR-Untersuchungen bei Erkrankungen des Gehirns und Rückenmarkes. Huk W. In: KernspinTomographie in der Medizin Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  13. Vergleich von NMR und CT anhand direkter Sagittal-Schnitte des Gehirnschädels. Blümm RG. In: Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  14. NMR tomography of the normal heart. Hawkes RC et al., J Comput Assist Tomogr 5: 605 (1981)Google Scholar
  15. NMR imaging of the cardiovascular system: Normal and pathologic findings. Herfkens RJ et al., Radiology 147: 749 (1983)Google Scholar
  16. NMR imaging of the infarcted muscle: A rat model. Kaufman L et al., Radiology 147: 761 (1983)Google Scholar
  17. Three-dimensional display of NMR cardiovascular images. Bottomley PA et al., J Comput Assist Tomogr 7: 172 (1983)Google Scholar
  18. NMR imaging of atherosclerotic disease. Herfkens RJ et al., Radiology 148: 161 (1983)Google Scholar
  19. Erste Ergebnisse der Kernspin-Tomographie bei Gefdßerkrankungen. Zeitler E et al. In: Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  20. Oesophageal carcinoma demonstrated by whole-body NMR imaging. Smith FW et al., Br Med J 282: 510 (1981)Google Scholar
  21. NMR imaging and evaluation of human breast tissue: Preliminary clinical trials. Ross RJ et al., Radiology 143: 195 (1982)Google Scholar
  22. NMR imaging of the thorax. Gamsu G et al., Radiology 147: 473 (1983)Google Scholar
  23. Initial experience with NMR imaging of the human breast. El Yousef SA et al., J Comput Assist Tomogr 7: 215 (1983)Google Scholar
  24. Clinical application of NMR using FONAR technique in diseases of the breast and lung. Keeler EK. In: Kernspin-Tomographie in der Medizin Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo,1983Google Scholar
  25. NMR tomography of the normal abdomen. Hawkes RC, J Comput Assist Tomogr 5: 613 (1981)Google Scholar
  26. NMR imaging of the liver: Initial experience, NMR tomography imaging in liver disease. Smith FW et al., Lancet I: 963: (1981)Google Scholar
  27. NMR imaging of the pancreas. Smith FW et al., Radiology 142: 677 (1982)Google Scholar
  28. NMR imaging of the kidney. Crooks LE, Kaufman L et al., Radiology 146: 425 (1983), 147: 765 (1983)Google Scholar
  29. NMR imaging of the gallbladder. Crooks LE, Kaufman L et al., Radiology 147: 481 (1983)Google Scholar
  30. NMR imaging of the adrenal gland: A preliminary report. Crooks LE et al., Radiology 147: 155 (1983)Google Scholar
  31. NMR imaging of induced renal lesions. London DA, Radiology 148: 167 (1983)Google Scholar
  32. Die Kernspin-Tomographie des Abdomens und des Beckens. Rödl W, Lutz H, Oppelt A. In: Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg):Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  33. Work in progress: NMR anatomy of the larynx and tongue base. Lufkin RB et al., Radiology 148: 173 (1983)Google Scholar
  34. NMR: Normale und pathologische Befunde im HNO Bereich. Zeitler E et al. In: Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  35. Relaxation Rate Enhancement observed in vivo by NMR imaging. Doyle FH et al., J Comput Assist Tomogr 5: 295 (1981)Google Scholar
  36. Ansatzmöglichkeiten für Kontrastmittelanwendungen in der Kemspin-Tomographie. Niendorf HP, Weinmann HJ. In: Kernspin-Tomographie in der Medizin. Wende S, Thelen M (Hrsg) Springer, Berlin Heidelberg New York Tokyo, 1983Google Scholar
  37. NMR study of a paramagnetic nitroxide contrast agent for enhancement of renal structures in experimental animals. Brasch RC et al., Radiology 147: 773 (1983)Google Scholar
  38. Potential oral and intravenous paramagnetic NMR contrast agents. Runge VM et al., Radiology 147: 789 (1983)Google Scholar
  39. Methods of contrast enhancement for NMR imaging and potential applications. Brasch RC, Radiology 147: 781 (1983)Google Scholar
  40. Magnetic field effects on biological systems. Tenford TS, Plenum Press, New York, 1979Google Scholar
  41. NMR in vivo Studies: Known thresholds for health effects. Budinger TF, J Comput Assist Tomogr 5: 800 (1981)Google Scholar
  42. The effects of NMR exposure on living organisms I: A microbial assay. Thomas A, Morris PG, Br J Radiol 54: 615 (1981)Google Scholar
  43. The effects of NMR exposure on living organisms: A genetic study of human lymphocytes. Cooke P, Morris PG, Br J Radio! 54: 622 (1981)Google Scholar
  44. The effects of NMR on patients with cardiac pacemakers. Pavlicek W et al., Radiology 147: 149 (1983)Google Scholar
  45. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in NMR imaging. New PFJ et al., Radiology 147: 139 (1983)Google Scholar
  46. Risiken and Gefahren der NMR-Tomographie. Rinck PA, Dtsch Med Wochenschr 108: 992 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Klaus Roth
    • 1
  1. 1.Fachbereich ChemieInstitut für Organische Chemie der Freien Universität BerlinBerlin 33Germany

Personalised recommendations