Leukemia pp 263-274 | Cite as

Problems in Differentiation Pathways and Cellular Targets for Leukemogens Group Report

  • D. Boettiger
  • M. D. Cooper
  • T. Graf
  • M. F. Greaves
  • A. U. Harlozinska-Szmyrka
  • R. Jaenisch
  • R. G. Lynch
  • J. J. T. Owen
  • M. Potter
Conference paper
Part of the Life Sciences Research Reports book series (DAHLEM, volume 30)

Abstract

The problem of the relationship between the normal processes of cell differentiation and leukemogenic transformation was examined by tracing the normal pathways for cell differentiation to identify potential targets for the leukemogenic transformation, as reflected in the characteristics of leukemic cells and by examination of the effects of introducing or activating specific oncogenes through infection with RNA tumor viruses.

Keywords

Lymphoma Leukemia Arsene Sarcoma Glycosaminoglycan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Adams, S.L.; Boettiger, D.; Focht, R.; Holtzer, H.; and Pacifici, M. 1982. Regulation of the synthesis of extracellular matrix components in chondroblasts transformed by a temperature sensitive mutant of Rous sarcoma virus. Cell 30: 373–384.PubMedCrossRefGoogle Scholar
  2. (2).
    Bakhshi, A.; Minowada, J.; Arnold, A.; Cossman, J.; Jensen, J.; Whang-Peng, J.; Waldman, T.; and Korsmeyer, S. 1983. Lymphoid blast crises of chronic myelogenous leukemia represent stages in the development of B-cell precursors. New Engl. J. Med. 309: 826–831.PubMedCrossRefGoogle Scholar
  3. (3).
    Boettiger, D., and Durban, E.M. 1980. Progenitor cell populations can be infected by RNA tumor viruses, but transformation is dependent on the expression of specific differentiated cell functions. Cold S. H. Symp. Quant. Biol. 44: 1249–1254.Google Scholar
  4. (4).
    Boettiger, D., and Durban, E.M. 1984. Target cells for avian myeloblastosis virus in embryonic yolk sac and the relationship of cell differentiation to cell transformation. J. Virol. 49: 841–847.PubMedGoogle Scholar
  5. (5).
    Durban, E.M., and Boettiger, D. 1981. Differential effects of transforming avian RNA tumor viruses on avian macrophages. Proc. Natl. Acad. Sci. USA 78: 3600–3604.PubMedCrossRefGoogle Scholar
  6. (6).
    Lenz, J., and Haseltine, W.A. 1983. Localization of the leukemogenic determinants of SL3-3, an ecotropic, XC positive murine leukemia virus of AKR mouse origin. J. Virol. 47: 317–328.PubMedGoogle Scholar
  7. (7).
    Lipsett, L.; Brugghe, J.S.; and Boettiger, D. 1984. Expression of the Rous sarcoma virus src gene in avian macrophages fails to elicit a transformed cell phenotype. Mol. Cell. Biol. 4: 1420–1424.Google Scholar
  8. (8).
    Shanley, D.J.; Cossu, G.; Boettiger, D.; Holtzer, H.; and Pacifici, M. 1983. Transformation by Rous sarcoma virus induces similar patterns of glycosaminoglycan synthesis in chick embryo skin fibroblasts and vertebral chondroblasts. J. Biol. Chem. 258: 810–816.PubMedGoogle Scholar
  9. (9).
    Tsichlis, P.; Strauss, G.; and Hu, L.F. 1983. A common region for proviral DNA intregration in Moloney murine leukemia virus induced rat thymic lymphoma. Nature 302: 445–449.PubMedCrossRefGoogle Scholar
  10. (10).
    Weiss, R.; Teich, N.; Varmus, H.; and Coffin, J. 1982. Molecular Biology of Tumor Viruses: RNA Tumor Viruses, 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1985

Authors and Affiliations

  • D. Boettiger
  • M. D. Cooper
  • T. Graf
  • M. F. Greaves
  • A. U. Harlozinska-Szmyrka
  • R. Jaenisch
  • R. G. Lynch
  • J. J. T. Owen
  • M. Potter

There are no affiliations available

Personalised recommendations