Advertisement

Leukemia pp 147-162 | Cite as

Multiple Mechanisms of Oncogene Activation in Viral and Nonviral Neoplasia

  • W. S. Hayward
Conference paper
Part of the Life Sciences Research Reports book series (DAHLEM, volume 30)

Abstract

The oncogenic potential of a proto-oncogene can be “activated” by many different types of mutational events, including insertion of proviral control sequences, gene amplification, translocation, and point mutations within regulatory or coding sequences. The mechanisms by which a specific proto-oncogene can most readily be activated probably reflects unique structural and biological characteristics of the gene involved. The c-myc gene can be activated by a variety of mechanisms, but each appears to induce changes in expression of the gene. By contrast, members of the c-ras gene family appear to be preferentially activated by point mutations within coding sequences. Induction of a fully malignant state may require activation of more than one proto-oncogene and/or multiple mutational events within a single gene.

Keywords

Long Terminal Repeat Mutational Event NIH3T3 Cell Burkitt Lymphoma Bovine Leukemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Alitalo, L.; Schwab, M.; Lin, C.C.; Varmus, H.E.; and Bishop, J.M. 1983. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl. Acad. Sci. USA 80: 1707–1711.PubMedCrossRefGoogle Scholar
  2. (2).
    Bishop, J.M. 1981. Enemies within: The genesis of retrovirus oncogenes. Cell 23: 5–6.PubMedCrossRefGoogle Scholar
  3. (3).
    Blair, D.G.; Oskarsson, M.; Wood, T.G.; McClements, W.L.; Fischinger, P.J.; and Vande Woude, G.F. 1981. Activation of the transforming potential of a normal cell sequence: A molecular model for oncogenesis. Science 212: 941–943.PubMedCrossRefGoogle Scholar
  4. (4).
    Calame, K.; Kim, S.; Lalley, P.; Hill, R.; Davis, M.; and Hood, L. 1982. Molecular cloning of translocations involving chromosome 15 and the immunoglobulin C gene from chromosome 12 in two murine plasmacytomas. Proc. Natl. Acad. Sci. USA 79: 6994–6998.PubMedCrossRefGoogle Scholar
  5. (5).
    Chang, E.H.; Furth, M.E.; Scolnick, E.M.; and Lowy, D.R. 1982. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297: 479–483.PubMedCrossRefGoogle Scholar
  6. (6).
    Collins, S., and Groudine, M. 1982. Amplification of endogenous myc-related DNA sequences in a human myeloid leukemia cell line. Nature 298: 679–681.PubMedCrossRefGoogle Scholar
  7. (7).
    Cooper, G.M. 1982. Cellular transforming genes. Science 217: 801–806.PubMedCrossRefGoogle Scholar
  8. (8).
    Cooper, G.M., and Neiman, P.E. 1981. Two distinct candidate transforming genes of lymphoid leukosis virus induced neoplasms. Nature 292: 857–858.PubMedCrossRefGoogle Scholar
  9. (9).
    Crittenden, L.B., and Kung, H.J. 1984. Mechanisms of induction of lymphoid leukosis and related neoplasms by avian leukosis viruses. In Mechanisms of Viral Leukemogenesis, eds. J.M. Goldman and J.W. Jarret, pp. 64–88. Edinburgh, Scotland: Churchill Livingston Books.Google Scholar
  10. (10).
    Dalla-Favera, R.; Bregni, M.; Erikson, J.; Patterson, D.; Gallo, R.C.; and Croce, C.M. 1982. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79: 7824–7827.PubMedCrossRefGoogle Scholar
  11. (11).
    Dalla-Favera, R.; Wong-Staal, F.; and Gallo, R.C. 1982. Onc gene amplification in promyelocytic leukemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 299: 61–63.PubMedCrossRefGoogle Scholar
  12. (12).
    DeFeo, D.; Gonda, M.A.; Young, H.A.; Chang, E.H.; Lowy, D.R.; Scolnick, E.M.; and Ellis, R.W. 1981. Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc. Natl. Acad. Sci. USA 78: 3328–3332.PubMedCrossRefGoogle Scholar
  13. (13).
    Der, C.J.; Krontiris, T.G.; and Cooper, G.M. 1982. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc. Natl. Acad. Sci. USA 79: 3637.PubMedCrossRefGoogle Scholar
  14. (14).
    Diamond, A.; Cooper, G.M.; Ritz, J.; and Lane, M.-A. 1983. Identification and molecular cloning of the human Blym transforming gene activated in Burkitt’s lymphomas. Nature 305: 112–116.PubMedCrossRefGoogle Scholar
  15. (15).
    Duesberg, P.H. 1983. Retroviral transforming genes in normal cells? Nature 304: 219–226.PubMedCrossRefGoogle Scholar
  16. (16).
    Fung, Y.-K.; Fadly, A.M.; Crittenden, L.B.; and Kung, H.-J. 1981. On the mechanism of retrovirus-induced avian lymphoid leukosis: Deletion and integration of the proviruses. Proc. Natl. Acad. Sci. USA 78: 3418–3422.PubMedCrossRefGoogle Scholar
  17. (17).
    Fung, Y.-K.; Lewis, W.G.; Kung, H.-J.; and Crittenden, L.B. 1983. Activation of the cellular oncogene c-erb B by LTR insertion: Molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33: 357–368.PubMedCrossRefGoogle Scholar
  18. (18).
    Goldfarb, M.; Shimizu, K.; Perucho, M.; and Wigler, M. 1982. Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature 296: 404–409.PubMedCrossRefGoogle Scholar
  19. (19).
    Gonda, T.J.; Sheiness, D.K.; and Bishop, J.M. 1982. Transcripts from the cellular homologs of retroviral oncogenes: distribution among chicken tissues. Mol. Cell Biol. 2: 617–624.PubMedGoogle Scholar
  20. (20).
    Hayday, A.C.; Gillies, S.D.; Saito, H.; Wood, C.; Wiman, K.; Hayward, W.S.; and Tonegawa, S. 1984. Activation of translocated human c-myc gene transcription in a non-HodgkinTs lymphoma by an immunoglobulin gene-associated transcriptional enhancer element. Nature 307: 334–340.PubMedCrossRefGoogle Scholar
  21. (21).
    Hayward, W.S.; Neel, B.G.; and Astrin, S.M. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475–480.PubMedCrossRefGoogle Scholar
  22. (22).
    Hayward, W.S.; Neel, B.G.; and Astrin, S.M. 1982. Avian leukosis viruses: Activation of cellular oncogenes. In Advances in Viral Oncology, ed. G. Klein, vol. 1, pp. 207–233. New York: Raven Press.Google Scholar
  23. (23).
    Hayward, W.S.; Shih, C.-K.; and Moscovici, C. 1983. Induction of bursal lymphoma by myelocytomatosis virus-29 (MC29). In Cetus- UCLA Symposium on Tumor Viruses and Differentiation, pp. 279–287. New York: Liss.Google Scholar
  24. (24).
    Kettman, R.; Deschamps, J.; Couez, D.; Claustriaux, J.J.; Palm, R.; and Burny, A. 1983. Chromosome integration domain for bovine leukemia provirus in tumors. J. Virol. 47: 146–150.Google Scholar
  25. (25).
    Klein, G. 1981. Changes in gene dosage and gene expression: a common denominator in the tumorigenic action of viral oncogenes and non-random chromosomal changes. Nature 294: 313–318.PubMedCrossRefGoogle Scholar
  26. (26).
    Land, H.; Parada, L.F.; and Weinberg, R.A. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304; 596–602.PubMedCrossRefGoogle Scholar
  27. (27).
    Marcu, K.H.; Harris, L.J.; Stanton, L.W.; Erikson, J.; Watt, R.; and Croce, C.M. 1983. Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. Proc. Natl. Acad. Sci. USA 80: 519–523.PubMedCrossRefGoogle Scholar
  28. (28).
    Muller, R.; Tremblay, J.M.; Adamson, E.D.; and Verma, I.M. 1983. Tissue and cell-type specific expression of two human c-onc genes. Nature 304: 454–456.PubMedCrossRefGoogle Scholar
  29. (29).
    Murray, M.J.; Cunningham, J.M.; Parada, L.F.; Dautry, F.; Lebowitz, P.; and Weinberg, R.A. 1983. The HL60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33: 749–757.PubMedCrossRefGoogle Scholar
  30. (30).
    Neel, B.G.; Gasic, G.P.; Rogler, C.E.; Skalka, A.M.; Papas, T.; Astrin, S.M.; and Hayward, W.S. 1982. Molecular cloning of virus-cell junctions from ALV-induced lymphomas: Comparison with the normal c-myc gene. J. Virol. 44: 158–166.PubMedGoogle Scholar
  31. (31).
    Neel, B.G.; Hayward, W.S.; Robinson, H.L.; Fang, J.; and Astrin, S.M. 1981. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 23: 323–334.PubMedCrossRefGoogle Scholar
  32. (32).
    Neiman, P.E.; Jordon, L.; Weiss, R.A.; and Payne, L.N. 1980. In Viruses in Naturally Occurring Cancers, eds. M. Essex, G. Todaro, and H. zer Hausen, pp 519–528. Cold Spring Harbor Laboratories.Google Scholar
  33. (33).
    Nishikura, K.; ar-Rushdi, A.; Erikson, J.; Watt, R.; Rovera, G.; and Croce, C.M. 1983. Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc. Natl. Acad. Sci. USA 80: 4822–4862.PubMedCrossRefGoogle Scholar
  34. (34).
    Noori-Daloii, M.R.; Swift, R.A.; Kung, H.-J.; Crittenden, L.B.; and Witter, R.L. 1981. Specific integration of REV proviruses in avian bursal lymphomas. Nature 294: 574–575.PubMedCrossRefGoogle Scholar
  35. (35).
    Nowell, P.C., and Hungerford, D.A. 1960. A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497–1499.Google Scholar
  36. (36).
    Parada, L.F.; Tabin, C.J.; Shih, C.; and Weinberg, R.A. 1982. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297: 474–478.PubMedCrossRefGoogle Scholar
  37. (37).
    Payne, G.S.; Bishop, J.M.; and Varmus, H.E. 1982. Multiple arrangements of viral DNA and an activated host oncogene (c-myc) in bursal lymphomas. Nature 295: 209–213.PubMedCrossRefGoogle Scholar
  38. (38).
    Rechavi, G.; Givol, D.; and Canaani, E. 1982. Activation of a cellular oncogene by DNA rearrangement: possible involvement of an IS-like element. Nature 300: 607–611.PubMedCrossRefGoogle Scholar
  39. (39).
    Reddy, E.P.; Reynolds, R.K.; Santos, E.; and Barbacid, M. 1982. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–152.PubMedCrossRefGoogle Scholar
  40. (40).
    Robins, T.; Bister, K.; Garon, C.; Papas, T.; and Duesberg, P. 1982. Structural relationship between a normal chicken DNA locus and the transforming gene of the avian acute leukemia virus MC29. J. Virol. 41: 635–642.PubMedGoogle Scholar
  41. (41).
    Rowley, J.D. 1982. Identification of the constant chromosome regions involved in human hematologic malignant disease. Science 216: 749–751.PubMedCrossRefGoogle Scholar
  42. (42).
    Ruley, H.E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606.PubMedCrossRefGoogle Scholar
  43. (43).
    Saito, H.; Hayday, A.C.; Wiman, K.; Hayward, W.S.; and Tonegawa, S. 1983. Activation of c-myc gene by translocation: a model for translational control. Proc. Natl. Acad. Sci. USA 80: 7476–7480.PubMedCrossRefGoogle Scholar
  44. (44).
    Shen-Ong, G.L.C.; Keath, E.J.; Piccoli, S.P.; and Cole, M.D. 1982. Novel myc oncogene RNA from abortive immunoglobulin gene recombination in mouse plasmacytomas. Cell 31: 443–452.PubMedCrossRefGoogle Scholar
  45. (45).
    Shih, C.-K.; Linial, M.; and Hayward, W.S. 1984. Nucleotide sequence of the 5r flanking region of avian c-myc coding region: localization of a noncoding exon that is absent from myc transcripts in most ALV induced lymphomas. Proc. Natl. Acad. Sci. USA 81: 4697–4701.PubMedCrossRefGoogle Scholar
  46. (46).
    Tabin, C.J.; Bradley, S.M.; Bargmann, C.I.; Weinberg, R.A.; Papageorge, A.G.; Scolnick, E.M.; Dhar, R.; Lowy, D.R.; and Change, E.H. 1982. Mechanism of activation of a human oncogene. Nature 300: 143.PubMedCrossRefGoogle Scholar
  47. (47).
    Taub, R.; Kirsch, I.; Morton, C.; Lenoir, G.; Swan, D.; Tronick, S.; Aaronson, S.; and Leder, P. 1982. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. USA 79: 7837–7841.PubMedCrossRefGoogle Scholar
  48. (48).
    Teich, N.; Wyke, J.; Mak, T.; Bernstein, A.; and Hardy, W. 1982. Molecular Biology of Tumor Viruses: Part I II. RNA Tumor Viruses, eds. R. Weiss, N. Teich, H.E. Varmus, and J. Coffin. Cold Spring Harbor Laboratory.Google Scholar
  49. (49).
    Varmus, H.E. 1982. Form and function of retroviral proviruses. Science 216: 812–820.PubMedCrossRefGoogle Scholar
  50. (50).
    Vennstrom, B.; Sheiness, D.; Zabielski, J.; and Bishop, J.M. 1982. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J. Virol. 42: 773–779.PubMedGoogle Scholar
  51. (51).
    Watt, R.; Stanton, L.W.; Marcu, K.B.; Gallo, R.C.; Croce, C.M.; and Rovera, G. 1983. Nucleotide sequence of cloned cDNA of human c-myc oncogene. Nature 303: 725–728.PubMedCrossRefGoogle Scholar
  52. (52).
    Weinberg, R.A. 1982. Transforming genes of nonvirus-induced tumors. In Advances in Viral Oncology, ed. G. Klein, vol. I, pp. 235–241. New York: Raven Press.Google Scholar
  53. (53).
    Yasuhito, Y.; Srivastava, S.K.; Dunn, C.Y.; Rhim, J.S.; Reddy, E.P.; and Aaronson, S.A. 1983. Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303: 775–779.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1985

Authors and Affiliations

  • W. S. Hayward
    • 1
  1. 1.Sloan-Kettering Institute for Cancer ResearchNew YorkUSA

Personalised recommendations