Mechanical Excitation and Scission of a Chain

  • Hans-Henning Kausch-Blecken von Schmeling
Conference paper
Part of the Polymers book series (POLYMERS, volume 2)


A chain molecule as part of a thermoplastic body is in thermal contact with other chains and constantly in thermal motion. The atoms vibrate and take part in the more or less hindered rotations of groups and even of chain segments. With no external forces acting all molecular entities try to approach — and fluctuate around — the most probable conformation attainable to them. The action of external forces causes — or maintains — displacements of the chain from those positions and evokes retractive forces. Let us consider a chain or a bundle of chains in thermal contact with the surrounding and at constant volume. The condition of thermodynamic stability of such a system is that the free energy
$$ F = U - TS $$
assume a minimum. The differential changes of the free energy of the system are given by the changes of its internal energy U and its entropy S. Under isothermal conditions has:
$$ dF = dU - TdS $$


Chain Segment Chain Scission Mechanical Excitation Crystal Boundary Chain Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 5

  1. 1.
    P. J. Flory: Principles of Polymer Chemistry, Ithaca, New York: Cornell University Press 1953.Google Scholar
  2. 2.
    L. R. G. Treloar: The Physics of Rubber Elasticity, 2nd Ed., London: Oxford University Press 1958, a) p. 61, b) p. 103ff, c) p. 108.Google Scholar
  3. 3.
    H. M. James, E. Guth: J. Chem. Phys. 11, 455 (1943).CrossRefGoogle Scholar
  4. 4.
    A. Abe, R. L. Jernigan, P. J. Flory: J. Am. Chem. Soc. 88, 631 (1966).CrossRefGoogle Scholar
  5. 5.
    J. P. Flory, A. D. Williams: J. Polymer Sci. A-2, 5, 399 (1967).CrossRefGoogle Scholar
  6. 6.
    P. R. Saunders: J. Polymer Sci. A-2, 2, 3765 (1964).Google Scholar
  7. 7.
    W. Pechhold: Kolloid-Z. Z. Polymere 22S, 1 (1968).CrossRefGoogle Scholar
  8. 8.
    H. G. Zachmann: Kolloid-Z. Z. Polymere 231, 504 (1969).CrossRefGoogle Scholar
  9. 9.
    J. A. Sauer, A. E. Woodward: Polymer Thermal Analysis, II., P. E. Slade, Jr., and L. T. Jenkins, Eds., New York: Dekker, 1970, p. 107.Google Scholar
  10. 10.
    P. B. Bowden: Polymer 9, 449–454 (1968).CrossRefGoogle Scholar
  11. 11.
    D. S. Boudreaux: J. Polymer Sci.: Polymer Phys. Ed. 11, 1285 (1973).Google Scholar
  12. 12.
    W. J. Dulmage, L. E. Contois: J. Polymer Sci. 28, 275 (1958).CrossRefGoogle Scholar
  13. 13.
    T. R. Manley, C. G. Martin: Polymer 14, 491–496 (1973) and ibid. 632–638 (1973).Google Scholar
  14. 14.
    H. Hahn, D. Richter: Colloid + Polymer Sci. 255, 111–119 (1977).CrossRefGoogle Scholar
  15. 15.
    E.G. J. Meixner: Handbuch der Physik, Vol. III/2, S. Flugge, Ed., Berlin: Springer-Verlag 1959, p. 413.Google Scholar
  16. 16.
    D. Langbein: Theory of Van der Waal’s Attraction, Springer Tracts in Modern Physics, Vol. 72, Heidelberg: Springer-Verlag, 1974.CrossRefGoogle Scholar
  17. 17.
    P. Lindenmeyer: Mechanical Behavior of Materials, Kyoto, Japan: Soc. Mat. Sci. 1972, Special Vol., p. 74.Google Scholar
  18. 18.
    H. Scherr: Dissertation Universitat Ulm, Juli 1973.Google Scholar
  19. 19.
    H. H. Kausch: J. Polymer Sci. C 32 (Polymer Symposia), 1 (1971).Google Scholar
  20. 20.
    A. D. Chevychelov: Polymer Science USSR 8, 49 (1966).CrossRefGoogle Scholar
  21. 21.
    H. H. Kausch, D. Langbein: J. Polymer Sci., Polymer Physics, Ed. 11, 1201–1218 (1973).Google Scholar
  22. 22.
    H. H. Kausch, J. Becht: Deformation and Fracture of High Polymers, H. H. Kausch et al., Eds., New York: Plenum Press 1973, p. 317.Google Scholar
  23. 23.
    H. Baur, B. Wunderlich: Fortschr. Hochpolymeren Forsch. 7, 388 (1966).Google Scholar
  24. 24.
    E. W. Fischer, G. Hinrichsen: Kolloid-Z. Z. Polymere 213, 28 (1966).CrossRefGoogle Scholar
  25. 25.
    J. D. Ferry: Viscoelastic Properties of Polymers, 2nd Edition, New York: J. Wiley and Sons, Inc. 1970.Google Scholar
  26. 26.
    A. Kadim: Thesis, Dept. of Chem. Engng., Technion, Israel Institute of Technology, Haifa, Israel 1968.Google Scholar
  27. 27.
    A. H. Abdel-Alim, A. E. Hamielec: J. Appl. Polymer Sci. 77, 3769–3778 (1973).CrossRefGoogle Scholar
  28. 28.
    J. W. Breitenbach, J. K. Rigler, B. A. Wolf: Makromol. Chemie 164, 353–355 (1973).CrossRefGoogle Scholar
  29. 29.
    A. M. Basedow, K. Ebert: Adv. Polymer Sci. (Fortschr. Hochpolymerenforsch.) 22, 83–143 (1977).Google Scholar
  30. 30.
    E. M. Hagerman, C. C. Mentzer: J. Appl. Polymer Sci. 19, 1507–1520 (1975).CrossRefGoogle Scholar
  31. 31.
    Yu. Ya. Gotlib, A. A. Darinskii: Vysokomol. Soyed M 16, 2296–2302 (1974), Polymer Science USSR 16, 2666 (1974).Google Scholar
  32. 32.
    S. N. Zhurkov, V. E. Korsukov: J. Polym. Sci., Polymer Physics Ed. 12, 385–398 (1974).CrossRefGoogle Scholar
  33. 33.
    E. A. Guggenheim: Handbuch der Physik, S. Flugge, Ed., Vol. III/2. Berlin: Springer-Verlag 1959.Google Scholar
  34. 34.
    S. Glasstone, K. J. Laidler, H. Eyring: The Theory of Rate Processes, New York: McGraw-Hill 1941.Google Scholar
  35. 35.
    H. H. Kausch: J. Macromol. Sci., Revs. Macromol. Chem., C4 (2), 243–280 (1970).Google Scholar
  36. 36.
    E. E. Tomashevskii: Soviet Physics - Solid State 12, 2588–2592 (1971).Google Scholar
  37. 37.
    S. N. Zhurkov, V. I. Vettegren’, V. E. Korsukov: 2nd Internat. Conf. Fracture, Brighton, England April 1969, paper 47.Google Scholar
  38. 38.
    H. I. Bernstein: Spectrochim. Acta 18, 161 (1962).CrossRefGoogle Scholar
  39. 39.
    P. J. Sheth, J. F. Johnson, R. S. Porter: Polymer 18, 741–742 (1977), C. B. Wu, P. J. Sheth, J. F. Johnson: Polymer 18, 822–824 (1977).Google Scholar
  40. 40.
    J. Skelton, W. D. Freeston, Jr., H. K. Ford: Appl. Polymer Symposia 12, 111–135 (1969).Google Scholar
  41. 41.
    U. G. Gafurov, 1.1. Novak: Polymer Mechanics 5/1, 160–161 (1972).Google Scholar
  42. 42.
    S. N. Zhurkov, V. I. Vettegren’, V. E. Korsukov, 1.1. Novak: Soviet Physics - Solid State 11/2, 233–237 (1969).Google Scholar
  43. 43.
    B. E. Read, D. A. Hughes, D. C. Barnes, F. W. M. Drury: Polymer 13, 485 - 494 (1972).CrossRefGoogle Scholar
  44. 44.
    P. Bouriot: Premier Colloque du Groupe Franpais de Physique des Polymeres, Strasbourg, 21–22 mai 1970.Google Scholar
  45. 45.
    S. Sikka: PhD Thesis: Application of FTIR to study external stress effects on the PETP backbone, University of Utah, Salt Lake City, December 1976. S. Sikka, K. Knutson: to be published.Google Scholar
  46. 46.
    V. S. Kuksenko, V. A. Ovchinnikov, A. I. Slutkser: Vysokomol. soyed All 9, 1953–1957 (1969).Google Scholar
  47. 47.
    H. Hahn: Personal communication.Google Scholar
  48. 48.
    S. H. Gibson, J. S. Holt, P. S. Hope: J. Polym. Phys. Ed. A2-17, 1375–1394 (1979).CrossRefGoogle Scholar
  49. 49.
    D. H. Reneker: J. Polym. Sci. 59, 39 (1962).Google Scholar
  50. 50.
    D. H. Reneker, J. Mazur: Polymer 24, 1387–1400 (1983).CrossRefGoogle Scholar
  51. 51.
    D. P. Pope, A. Keller: Colloid & Polym. Sci. 256, 751 (1978).Google Scholar
  52. 52.
    A. Keller, J. A. Odell: The Extensibility of Macromolecules in Solution - A New Focus for Macromolecular Science, IUPAC Bucharest, 1983, Colloid + Polymer Sci. 263, 181 (1985)CrossRefGoogle Scholar
  53. 53.
    J. A. Odell, A. Keller, M. J. Miles: Polymer Comm. 24, 7 (1984).Google Scholar
  54. 54.
    A. Keller: Bristol, personal communication 1984 (to be published) J. Polymer Sci., Polymer Phys. Ed. 24 (1986).Google Scholar
  55. 55a.
    E. W. Merrill, P. Leopairat: Polym. Eng. Sci. 20, 505 (1980).CrossRefGoogle Scholar
  56. 55b.
    E. W. Merrill, A. F. Horn: Polymer Commun. 25, 144 (1984).Google Scholar
  57. 56.
    I. B. Crist, Jr., J. Oddershede, J. R. Sab in, J. W. Perram, M. A. Ratner: J Polym. Sci.: Polym. Phys. Ed. 22, 881 (1984)CrossRefGoogle Scholar
  58. 57.
    A. I. Melker, A. V. Ivanov: Phys. Stat. Sol. (a) 84, 417 (1984).CrossRefGoogle Scholar
  59. 58.
    G. R. Strobl, R. Eckel: J. Polym. Sci.: Polym. Phys. Ed. 14, 913 (1976). M. Kobayashi, K. Sakagami, H. Tadokoro: J. Chem. Phys. 78, 6391 (1983).CrossRefGoogle Scholar
  60. 59.
    R. P. Wool, R. H. Boyd: J. Appl. Phys. 51, 5116–5124 (1980). The references used by Wool and Boyd to compile the diagram shown in Fig. 5.1 are the following: T. Miyazawa: J. Polym. Sci. 55, 215 (1961). T. Shimanouchi, M. Asahina, and S. Enemoto: Polym. Sci. 59, 93 (1962). M. Asahina and S. Enemoto: J. Polym. Sci. 59, 101 (1962). I. Sakurada, U. Nukushina, and T. Ito: J. Polym. Sci. 57, 651 (1962). I. Sakurada, T. Ito, and K. Nakamae: J. Polym. Sci. 15, 75 (1966). R. N. Britton, R. Jakeways, and M. Ward: J. Mater. Sci. 11, 2057 (1976). J. Clements, R. Jakeways, and I. M. Ward: Polymer 19, 639 (1978). R. A. Feldkamp, G. Venkaterman, and J. S. King: In Neutron Inelastic Scattering (IAEA, Vienna, 1968), Vol. II, p. 159. A. Odajima and T. Maeda: J. Polym. Sci. C 15, 55 (1966). J. F. Rabolt and B. Fanconi: J. Polym. Sci. B 15, 12 (1977). R. G. Schaufele and T. Shimanouchi: J. Chem. Phys. 42, 3605 (1967). P. J. Barham and A. Keller: J. Polym. Sci., Poly. Lett. Ed. 17, 591 (1979). D. S. Boudreaux: J. Polym. Sci. 11, 1285 (1973). B. Christ, M. A. Ratner, A. L. Brower, and J. R. Sabin: J. Appl. Phys. 50, 6047 (1979). G. Wobser and S. Blasenbrey: Kolloid, Z. Z. Polym. 241, 985 (1970). R. L. McCullough, A. J. Eisenstein, and D. F. Weikart: J. Polym. Sci. 15, 1837 (1977). G. Zerbi and L. Piseri: J. Chem. Phys. 49, 3840 (1968).Google Scholar
  61. 60.
    M. Maroncelli, S. P. Qi, H. L. Strauss, R. G. Snyder: J. Amer. Chem. Soc. 104, 6237 (1982).CrossRefGoogle Scholar
  62. 61.
    P. J. Flory, D. Y. Yoon, K. A. Dill: Macromol. 17, 862 (1984).CrossRefGoogle Scholar
  63. 62.
    D. Y. Yoon, P. J. Flory: Macromol. 17, 868 (1984).CrossRefGoogle Scholar
  64. 63.
    M. Maroncelli, H. L. Strauss, R. G. Snyder: personal communication 1984 (to be published J. Chem. Phys.).Google Scholar
  65. 64.
    I. H. Hall, M. G. Pass: Polymer 17, 807 (1976).CrossRefGoogle Scholar
  66. 65.
    H. W. Siesler: Makromol. Chemie, 180, 2261 (1979).CrossRefGoogle Scholar
  67. 66.
    H. W. Siesler: J. Polymer Sci., Polymer Letters Ed., 17, 453 (1979).CrossRefGoogle Scholar
  68. 67.
    A. Garton, D. J. Carlsson, L. L. Holmes, D. M. Wiles: J. Appl. Polym. Sci., 25, 1505 (1980).CrossRefGoogle Scholar
  69. 68.
    K. Holland-Moritz, H. W. Siesler: Polymer Bulletin 4, 165 (1981).CrossRefGoogle Scholar
  70. 69.
    R. L. McCullough, A. J. Eisenstein, D. F. Weikart: J. Polym. Sci., Polym. Phys. Ed. 15, 1805 and 1837 (1977).CrossRefGoogle Scholar
  71. 70.
    D. B. Roitman, B. H. Zimm: J. Chem. Phys. 81, 6333 and ibid. 6348 and 6356 (1984).Google Scholar
  72. 71.
    P. Pincus: Macromolecules 10, 210 (1977). Y. Rabin, J. W. Dash: ibid. 18, 442 (1985).Google Scholar
  73. 72.
    T. Q. Nguyen and H. H. Kausch discuss in their recent papers (J. Colloid and Polymer Sci. 263, 306 (1985) and ibid. 264, 1 (1986) and Chimia 40, 129 (1986)) firstly the effect of temperature on the mechanical degradation of diluted polystyrene solutions (in dioxan and dekalin) in elongational flow which was created by forcing the fluid through a steep contraction. Thermal activation had little influence on the yield for chain scission in this system due to the short residence time and transient strain rate inherent to this type of flow. Chain scission in both solvents showed a weak negative activation energy which could only be partially accounted for by a change in solvent viscosity with temperature. Below the 0- temperature in dekalin solutions an abrupt decrease in chain scission was recorded after phase separation. Formation of interchain aggregates below the 0-point gave rise to a transient topological network. These physical crosslinks prevented the macromolecule from being fully stretched under flow and exerted a protective effect by lowering the local axial stress acting on the chain. Secondly the authors investigated the effect of the form of the flow field (laminar or turbulent regime) on the degradation. They found that chain scission in laminar flow was appreciable only for exceptionally large molecules (Mw JOLL 107 g mol-1) in a viscous solvent; otherwise it was provoked by the onset of turbulence in flow.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hans-Henning Kausch-Blecken von Schmeling
    • 1
  1. 1.Laboratoire de Polymères, Département des MatériauxÉcole Polytechnique Fédérale de LaussanneSuisse

Personalised recommendations