Skip to main content

Neurotransmitter Metabolism in Anorexia Nervosa

  • Conference paper
The Psychobiology of Anorexia Nervosa

Abstract

Anorexia nervosa is a psychosomatic disorder in which the interplay between psychological and biological factors is particularly apparent. The illness appears to develop from a variety of psychosocial and sociocultural stressors, but when the syndrome is fully developed the symptoms are stereotyped. It is possible that, at this point, a characteristic neurobiological syndrome exists, such as occurs in endogenous depression. Evidence to support this hypothesis has developed in recent years. A variety of abnormalities of neuroendocrine function indicate hypothalamic dysfunction in the acute, underweight stages of anorexia nervosa (Vigersky and Loriaux 1977). Various neuroendocrine abnormalities documented in anorexia nervosa include abnormal regulation of growth hormone, gonadotropins, thyrotropin-stimulating hormone, cortisol, defects in urinary concentration or dilution, and failure to regulate core body temperature. Investigators in endocrinology have speculated that these endocrine abnormalities might be secondary to changes in brain neurotransmitter function or metabolism. The dexamethasone suppression test, a biological marker of endogenous depression, is abnormal in many patients with anorexia nervosa (Gerner and Gwirtsman 1981). A large amount of data in animals implicates monoamines, particularly catecholamines and serotonin, in the normal hypothalamic regulation of appetite. A catecholamine hypothesis of the etiology of anorexia nervosa and bulimia has been proposed by Leibowitz (Leibowitz, to be published).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baile CA, Della-Fera MA, McLaughlin CL (1980) Opiate antagonist and agonist and feeding in sheep. Fed Proc 39: 782

    Google Scholar 

  • Blessing WW, Sved AF, Reis DJ (1982) Destruction of noradrenergic neurons in rabbit brainstem elevates plasma vasopressin, causing hypertension. Science 217: 661–663

    Article  CAS  PubMed  Google Scholar 

  • Booth DA (1967) Localization of the adrenergic feeding system in the rat diencephalon. Science 158: 515–517

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Swaab J, Dogterom J, van Leeuwen FW (1978) Intra- and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186: 423–433

    Article  CAS  PubMed  Google Scholar 

  • Cantwell DP, Sturzenberger KS, Burroughs J, Salkin B. Green JK (1977) Anorexia nervosa, an affective disorder. Arch Gen Psychiatry 34: 1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1982) The biochemical basis of neuropharmacology, 4th edn. Oxford New York

    Google Scholar 

  • Coppen AJ, Gupta K, Eccleston EG, Wood KM, Arkeling A, de Sousa VFA (1976) Plasma tryptophan in anorexia nervosa. Lancet 1: 961

    Article  CAS  PubMed  Google Scholar 

  • Curzon G, Joseph MH, Knott PH (1972) Effects of immobilization and food deprivation on the rat brain tryptophan metabolism. J Neurochem 19: 1967–1974

    Article  CAS  PubMed  Google Scholar 

  • de Wied D (1976) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19: 685–690

    Article  PubMed  Google Scholar 

  • Ebert MH, Kartzinel R, Cowdry RW, Goodwin FK (1980) Cerebrospinal fluid amine metabolites and the probenecid test. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum, New York, pp 97–110

    Chapter  Google Scholar 

  • Friedman E, Starr N, Gershon S (1973) Catecholamine synthesis and regulation of food intake in the rat. Life Sci 12: 317–326

    Article  CAS  Google Scholar 

  • Fuxe K, Ungerstedt U (1966) Localization of catecholamine uptake in rat brain after intraventricular injection. Life Sci 5: 1817–1824

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Ungerstedt U (1968) Histochemical studies on the effects of (+)-amphetamine, drugs of imipramine groups, and tryptamine on central catecholamine and 5-hydroxtryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Eur J Pharmacol 4: 135–144

    Article  CAS  PubMed  Google Scholar 

  • Gerner RH, Gwirtsman HE (1981) Abnormalities of dexamethasone suppression test and urinary MHPG in anorexia nervosa. Am J Psychiatry 138: 650–653

    CAS  PubMed  Google Scholar 

  • Gershon ES, Hamovit JR, Schrieber JL, Dibble ED, Kaye W, Nürnberger JI, Andersen A, Ebert M (to be published) Anorexia nervosa and major affective disorders associated in families: a preliminary report. In: Guze SB, Ecols FJ, Barrett JE (eds) Childhood psychopathology and development. Raven, New York

    Google Scholar 

  • Gold MS, Redmond DE, Kleber HD (1979) Noradrenergic hyperactivity in opiate withdrawal supported by Clonidine reversal of opiate withdrawal. Am J Psychiatry 136: 100–102

    CAS  PubMed  Google Scholar 

  • Gold PW, Weingartner HL, Ballenger JC, Goodwin FK, Post RM (1978) The effects of des-amino-8-d-arginine vasopressin (DDAVP) on behavior and cognition in patients with primary affective disorder. Lancet 2: 992–995

    Google Scholar 

  • Gold PW, Goodwin FK, Ballenger JC, Robertson GL, Post RM (1981) Central vasopressin function in affective illness. In: de Wied D, Van Keep PA (eds) Hormones and the brain. MTP Press, Brussells, pp 241–253

    Google Scholar 

  • Gold PW, Kaye W, Robertson G, Ebert M (1983) Abnormalities in plasma and cerebrospinal-fluid arginine vasopressin in patients with anorexia nervosa. N Engl J Med 308: 1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Goldman HW, Lehr D, Friedman E (1971) Antagonistic effects of alpha- and beta-adrenergically coded hypothalamic neurons on consummatory behavior in the rat. Nature 231: 453–455

    Article  CAS  PubMed  Google Scholar 

  • Grandison L, Guidotti L (1977) Stimulation of food intake by muscinol and beta endorphin. Neuropharmacology 16: 533–536

    Article  CAS  PubMed  Google Scholar 

  • Gross HA, Lake CR, Ebert MH, Hiegler MG, Kopin IJ (1979) Catecholamine metabolism in primary anorexia nervosa. J Clin Endocrinol Metab 49: 805–809

    Article  CAS  PubMed  Google Scholar 

  • Holtzman SG (1974) Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J. Pharmacol Exp Ther 189: 51–60

    CAS  PubMed  Google Scholar 

  • Jenkins JS, Mather HM, Ang V (1980) Vasopressin in human cerebrospinal fluid. J Clin Endocrinol Metab 50: 364–367

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Wayner MJ, Stein JM (1978) Effects of various periods of food deprivation on serotonin turnover in the lateral hypothalamus. Pharmacol Biochem Behav 9: 529–534

    Article  CAS  PubMed  Google Scholar 

  • Kaye WH, Pickar D, Naber D, Ebert MH (1982) Cerebrospinal fluid opioid activity in anorexia nervosa. Am J Psychiatry 139: 643–645

    CAS  PubMed  Google Scholar 

  • Kopin IJ, Gordon EK, Jimerson DC, Polinsky RJ (1982) Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol. Science 219: 73–75

    Article  Google Scholar 

  • Korf J, Bunney BS, Aghajanian GH (1974) Noradrenergic neurons: morphine inhibition of spontaneous activity. Eur J Pharmacol 25: 165–169

    Article  CAS  PubMed  Google Scholar 

  • Kron L, Katz JL, Gorzynski G, Weiner H (1978) Hyperactivity, in anorexia nervosa: a fundamental clinical feature. Compr Psychiatry 19: 433–440

    Article  CAS  PubMed  Google Scholar 

  • Krulich LA, Giachetti A, Marchlewdkako JA, Hefco E, Jameson HE (1977) On the role of the central noradrenergic and dopaminergic systems in the regulation of TSH secretion in the rat. Endocrinology 100: 496–505

    Article  CAS  PubMed  Google Scholar 

  • Lee PLY (1974) Single-column system for accelerated amino acid analysis of physiological fluids using five lithium buffers. J Biochem Med 10: 107–121

    Article  CAS  Google Scholar 

  • Leibowitz SF (1980) Neurochemical systems of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 3, part a. Dekker, New York, pp 299–437

    Google Scholar 

  • Leibowitz SF (to be published) Noradrenergic function in the medical hypothalamus: potential relation to anorexia nervosa and bulimia

    Google Scholar 

  • Loffstrom A (1977) Catecholamine turnover alterations in discrete areas of the median eminence of the 4- and 5-day cyclic rat. Brain Res 120: 113–131

    Article  Google Scholar 

  • Loullis CC, Feiten DL, Shea PA (1979) HPLC determination of biogenic amines in discrete brain areas in food deprived rats. Pharmacol Biochem Behav 1: 89–93

    Article  Google Scholar 

  • Luerrson TB, Robertson GL (1980) Cerebrospinal fluid vasopressin and vasotocin in health and disease. In: Wood JH (ed) The neurobiology of cerebrospinal fluid. Plenum, New York, pp 613–623

    Chapter  Google Scholar 

  • Margules DL (1979) Beta-endorphin and endoloxone: hormones of the autonomic nervous system for the conservation or expenditure of bodily resources and energy in anticipation of famine or feast. Neurosci Biobehav Rev 3: 155–162

    Article  CAS  Google Scholar 

  • Margules DL, Moisset B, Lewrs MJ, Shibuya H, Pert CB (1978) β-Endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa). Science 202: 988–991

    Google Scholar 

  • McCann SM (1970) Neurohormonal correlates of ovulation. Fed Proc 29: 1888–1970

    CAS  PubMed  Google Scholar 

  • Mecklenberg RS, Loriaux DL, Thompson RH, Anderson AE, Lipsett MB (1974) Hypothalamic dysfunction in patients with anorexia nervosa. Medicine 53: 147–159

    Article  Google Scholar 

  • Naber D, Pickar D, Dionne RW et al. (1980) Assay of endogenous opiate receptor in human CSF and plasma. Subst Alcohol Actions Misuse 1: 83–91

    CAS  PubMed  Google Scholar 

  • Naber D, Cohen RM, Pickar D et al. (1981) Episodic secretion of opioid in human plasma and monkey CSF: evidence for a diurnal rhythm. Life Sci 28: 931–935

    Article  CAS  PubMed  Google Scholar 

  • Perlow M, Ebert M, Gordon E, Ziegler MG, Lake CR, Chase TN (1978) The circadian variation of catecholamine metabolism in the subhuman primate. Brain Res 139: 101–113

    Article  CAS  PubMed  Google Scholar 

  • Pirke KM, Spyra B (1982) Catecholamine turnover in the brain and the regulation of luteinizing hormone and corticosterone in starved male rats. Acta Endocrinol (Kbh) 100: 168–176

    CAS  Google Scholar 

  • Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143: 191–194

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213: 1256–1259

    Article  CAS  PubMed  Google Scholar 

  • Ritter RC, Epstein AN (1975) Control of meal size by central noradrenergic action. Proc Natl Acad Sci USA 72: 3740–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ritter S, Wise CD, Steil L (1975) Neurochemical regulation of feeding in the rat. J Comp Physiol Psychol 88: 515–517

    Article  Google Scholar 

  • Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33: 333–385

    Google Scholar 

  • Robertson GL, Shelton RL, Athar S (1976) The osmoregulation of vasopressin. Kidney Int 10: 25–37

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez EM, Heller H (1970) Antidiuretic activity and ultrastructure of the toad choroid plexus. J Endocrinol 46: 83–91

    Article  CAS  PubMed  Google Scholar 

  • Rubinow DR, Post RM, Pickar D (to be published) Relationship between urinary free Cortisol and CSF opioid binding activity in depressed patients and normal volunteers. Psychol Res

    Google Scholar 

  • Russell GFM (1967) The nutritional disorder in anorexia nervosa. J Psychosom Res 11: 141–149

    Article  CAS  PubMed  Google Scholar 

  • Sawyer CH, Hilliard J, Kanematsu S, Scaramuzzi R, Blake CA (1974) Effects of intra-ventricular infusions of norepinephrine and dopamine on LHH release and ovulation in the rabbit. Neuroendocrinology 101: 1064–1070

    Google Scholar 

  • Scapagnini U, Annunziato L, Clementi G, Di Renzo GF, Schetini G, Fiore Preziosi P (1977) Chronic depletion of brain catecholamines and thyrotropin secretion in the rat. Endocrinology 101: 1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Slangen JL, Miller NE (1969) Pharmacological tests for the function of hypothalamic norepinephrine in eating behavior. Physiol Behav 8: 885–890

    Google Scholar 

  • Smythe GA (1977) The role of serotonin and dopamine in hypothalamic-pituitary function. Clin Endocrinol (Oxf) 7: 325–341

    Article  CAS  Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28: 475–478

    Article  CAS  PubMed  Google Scholar 

  • van Wimersma-Greidanus TH, de Wied D (1976) Modulation of passive avoidance behavior of rats by intracerebroventricular administration of antivasopressin serum. Behav Biol 18: 325–333

    Article  PubMed  Google Scholar 

  • Vigersky RA, Loriaux DL (1977) Anorexia nervosa as a model of hypothalamic dysfunction. In: Vigersky RA (ed) Anorexia nervosa. Raven, New York, pp 109–122

    Google Scholar 

  • Vigersky RA, Loriaux DL, Anderson AE, Lipsett ME (1976) Anorexia nervosa: behavioral and hypothalamic aspects. J Clin Endocrinol Metab 42: 517–538

    Google Scholar 

  • Weil-Malherbe H, Axelrod J, Tomchick R (1959) Blood-brain barrier for adrenaline. Science 129: 1226–1227

    Article  CAS  PubMed  Google Scholar 

  • Weiner RI, Ganong WH (1978) Role of brain monoamines and histamine in regulation of anterior pituitary secretion. Physiol Rev 58: 905–976

    CAS  PubMed  Google Scholar 

  • Weingartner H, Gold P, Ballenger JG, Smallberg S, Summers R, Post R, Goodwin FK (1981) Effects of vasopressin on human memory functions. Science 211: 601–603

    Article  CAS  PubMed  Google Scholar 

  • Wurtman RJ (1967) Effects of nutrients and circulating precursors on the synthesis of brain neurotransmitters. In: Garattini S, Samanin R (eds) Central mechanisms of anorectic drugs. Raven, New York, pp 267–294

    Google Scholar 

  • Zimmerman EA, Robinson AG (1976) Hypothalamic neurons secreting vasopressin and neurophysin. Kidney Int 10: 12–24

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebert, M.H., Kaye, W.K., Gold, P.W. (1984). Neurotransmitter Metabolism in Anorexia Nervosa. In: Pirke, K.M., Ploog, D. (eds) The Psychobiology of Anorexia Nervosa. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69594-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69594-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13196-0

  • Online ISBN: 978-3-642-69594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics