Advertisement

Permanence and Uninvadability for Deterministic Population Models

  • K. Sigmund
  • P. Schuster
Part of the Springer Series in Synergetics book series (SSSYN, volume 21)

Abstract

The notion of permanence is used to deal with population dynamical systems which are too complicated to allow a detailed analysis of their asymptotic behaviour. This paper offers an exposition of some general mathematical results, illustrated by applications from population genetics, ecology, sociobiology and — somewhat more detailed — from prebiotic evolution.

Keywords

State Space Strange Attractor Stable Attractor Permanent System Permanent Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. O. Peitgen : “A mechanism for spurious solutions of nonlinear boundary value problems”, this volumeGoogle Scholar
  2. 2.
    P. Coullet : “Complex behaviour in macrosysterns near polycritical points”, this volumeGoogle Scholar
  3. 3.
    O. E. Rossler, J. L. Hudson, J. D. Farmer: “Noodle map chaos: a simple example”, this volumeGoogle Scholar
  4. 4.
    R. M. May: Nature 261, 459 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    S. Smale: J.Math.Biol. 3, 5 (1976)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A. Arnedo,P. Coullet, C. Tresser: Physics Letters 79, 259 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Schuster, K. Sigmund, Wolff, R: J.Diff.Equs. 32, 357 (1979)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J. Hofbauer: Monatsh.Math. 91, 233 (1981)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    M. Hirsch: SIAM Math.Analysis 13, 167 (1982)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    H. Gregorius: Int.J.Systems Sci, 8, 863 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Sieveking: to appearGoogle Scholar
  12. 12.
    V. Hutson, W. Moran: J.Math.Biol. 15, 203 (1982)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J. B. S. Hadane, S. D. Jayakar: J.Genet. 58, 237 (1963)CrossRefGoogle Scholar
  14. 14.
    H. Levene: Amer.Nat. 87, 311 (1953)CrossRefGoogle Scholar
  15. 15.
    J. Roughgarden: Theory of Population Genetics and Evolutionary Ecology: an Introduction ( Macmillan, New York, 1979 )Google Scholar
  16. 16.
    H. Gregorius, M. Ziehe: Math.Biosciences 61, 29 (1982)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R. A. Armstrong, R. McGehee: J.Theor.Biol. 56, 499 (1976)CrossRefGoogle Scholar
  18. 18.
    Z. Niteckib: J.Math.Anal. and Appl. 72, 446 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. Hutson, G. T. Vickers: Math.Biosciences 63, 253 (1983)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    J. Maynard Smith: Evolutionary game theory. (Cambridge Univ.Press, 1982 )Google Scholar
  21. 21.
    P. Taylor, L. Jonker, Math.Biosciences 40, 145 (1978)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    J. Hofbauer, P. Schuster, K. Sigmund: J.Theor.Biol. 81, 609 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    E. C. Zeeman: “Population dynamics from game theory” in Springer Lecture notes in Mathematics 81, (1979)Google Scholar
  24. 24.
    M. Eigen, P. Schuster: “The Hypercycle: a Principle of Natural Self-organization (Springer Berlin-Heidelberg, 1978 )Google Scholar
  25. 25.
    M. Eigen, P. Schuster, K. Sigmund, R. Wolff: BioSystems 13, 1 (1980)CrossRefGoogle Scholar
  26. 26.
    J. Hofbauer, P. Schuster, K. Sigmund: J.Math.Biol. 11, 155 (1981)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    J. Hofbauer: SIAM J.Appl.Math., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. Sigmund
    • 1
    • 2
  • P. Schuster
    • 1
    • 2
  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Institut für Theoretische Chemie und StrahlenchemieUniversität WienWienAustria

Personalised recommendations