The Analytic Structure of Turbulent Flows

  • U. Frisch
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 24)


The topics discussed include (i) the relation between the Painlevé property and integrability, (ii) high-frequency intermittency and complex-time singularities, (iii) possible real singularities of the 3-D Euler equations and how they can traced by going into the complex domain, (iv) short time behaviour of non-linear PDE’s with entire initial data.


Euler Equation Burger Equation Complex Singularity Real Singularity Short Time Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Painlevé: Leçons sur la Théorie Analytique des Equations Différentielles (Hermann, Paris 1897 )Google Scholar
  2. 2.
    S. Kowalevskaya: Acta Math. 12, 177 (1889) and 14, 81 (1890)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Hille: Ordinary Differential Equations in the Complex Domain ( Wiley, New-York 1976 )MATHGoogle Scholar
  4. 4.
    R. Nakach: “Self-Similar solutions of Nonlinear Evolution Equations of Physical Significance”, in “Plasma Physics Nonlinear Theory and Experiments”, ed. H. Wilhelmsson, pp. 456–474 ( Plenum, New York 1977 )Google Scholar
  5. 5.
    M.J. Ablowitz, A. Ramani and H. Segur: Lett, al Nuovo Cimento 23, 333 (1978)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.J. Ablowitz, A. Ramani and H. Segur: J. Math. Phys. 21, 715 and 21, 1006 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    J. Weiss, M. Tabor and G. Carnevale: J. Math. Phys. 24, 522 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    J. Weiss: “The Painlevé Property for Partial Differential Equations. II. Bäcklund Transformations, Lax Pairs, and the Schwarzian Derivative”, J. Math. Phys (in press); “The Caudrey-Dodd-Gibbon Equation and a Class of Integrable Systems”, preprint, La Jolla Institute (1983)Google Scholar
  9. 9.
    M. Jimbo, M.D. Kruskal and T. Miwa: Phys. Lett. 92A, 59 (1982)MathSciNetADSGoogle Scholar
  10. 10.
    A. Ramani, B. Dorizzi and B. Grammaticos: Phys. Rev. Lett. 49, 1539 (1982)MathSciNetADSCrossRefGoogle Scholar
  11. 13.
    J. Weiss: “Analytic Structure of the Hénon-Heiles System” in “Mathematical Methods in Hydrodynamics”, A.I.P. Conf. Proc. 88, A.I.P. (1982)Google Scholar
  12. 14.
    B.B. Mandelbrot: in “Nonlinear Dynamics” ed. R.H.G. Helleman pp. 249–259, Ann. N.Y. Acad. Sci. 357 (1980)Google Scholar
  13. 15.
    Y. Kuramoto: Suppl. Progr. Theor. Phys. 64, 346 (1978)ADSCrossRefGoogle Scholar
  14. 16.
    U. Frisch and R. Morf: Phys. Rev A23, 2673 (1981)ADSCrossRefGoogle Scholar
  15. 17.
    U. Frisch: “Fully Developed Turbulence, Singularities and Intermittency”, Proc. Les Houches 1981 “Chaotic Behaviour in Deterministic Systems” (North Holland 1983 )Google Scholar
  16. 18.
    M.E. Brachet, D.I. Meiron, S.A. Orszag, B.G. Nickel, R.H. Morf and U. Frisch: J. Fluid Mech. 130, 411 (1983)ADSMATHCrossRefGoogle Scholar
  17. 19.
    U. Frisch and J.L. Gautero: “Backscattering and Localization of High-Frequency Waves in a one-Dimensional Random Medium”, preprint, Observatoire de Nice (1983)Google Scholar
  18. 20.
    F. Anselmet, Y. Gagne, E.J. Hopfinger and R.A. Antonia: “High Order Velocity Structure Functions in Turbulent Shear Flows”, preprint Institut de Mécanique de Grenoble (1983)Google Scholar
  19. 21.
    U. Frisch: “Fully Developed Turbulence and Intermittency”, in Proc. Int. School of Phys. “Enrico Fermi”, Course 88, ed. M. Ghil., to be published (North Holland 1984 )Google Scholar
  20. 22.
    U. Frisch, P.L. Sulem and M. Nelkin: J. Fluid Mech 87, 719 (1978)ADSMATHCrossRefGoogle Scholar
  21. 23.
    B.B. Mandelbrot: J. Fluid Mech 62, 331 (1974)ADSMATHCrossRefGoogle Scholar
  22. 24.
    P.G. Saffman: “Lectures on Homogeneous Turbulence” in “Topics in Nonlinear Physics” ed. N. Zabusky, pp. 485–614 (Springer 1969 )Google Scholar
  23. 25.
    S. Kida: J. Fluid Mech. 93, 337 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 26.
    J.D. Fournier and U. Frisch: “L’équation de Burgers Déterministe et Statistique”, J. Méc. Théor. Appi. Paris, in press (1983)Google Scholar
  25. 27.
    M. E. Brächet: “Simulation à Haute Résolution d’Ecoulements Bidimensionnels”, preprint Observatoire de Nice (1983)Google Scholar
  26. 28.
    S.A. Orszag: “Statistical Theory of Turbulence”; Proc. Les Houches 1973 “Fluid Dynamics”, ed. R. Balian and J.L. Peube p. 235 (Gordon and Breach 1977 )Google Scholar
  27. 29.
    R. H. Morf, S.A. Orszag and U. Frisch: Phys. Rev. Lett 44, 572 (1980)MathSciNetADSCrossRefGoogle Scholar
  28. 30.
    C. Sulem, P.L. Sulem and H. Frisch: J. Comp. Phys. 50, 138 (1983)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 31.
    F. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo, A. Vulpiani: J. Phys. (Paris) 43, 707 (1982)MathSciNetCrossRefGoogle Scholar
  30. 32.
    R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani: “Relaxation to Different Stationary States in the Fermi-Pasta-Ulam Model” preprint Università di Firenze, Fisica (1983)Google Scholar
  31. 33.
    B. Bassetti, P. Butera and M. Raciti: “Complex Poles, Spatial Intermittencies and Energy Transfer in a Classical Nonlinear String”, preprint Instit. Sci. Fis. Università degli studi di Milano (1983)Google Scholar
  32. 34.
    R.H. Morf, S.A. Orszag, D.I. Meiron, U. Frisch and M. Meneguzzi: Proc. 7th Intl. Conf. on numerical Methods in Fluid Dynamics (ed. R.W. MacCormack and W.C. Reynolds); Lecture Notes in Physics 141, 292 (Springer 1981 )Google Scholar
  33. 35.
    U. Frisch, A. Pouquet, P.L. Sulem and M. Meneguzzi: “The Dynamics of two-Dimensional Ideal Magnetohydrodynamics”, in “Two Dimensional Turbulence”, J. Mee. Théor. Appl. (Paris) special issue p. 191 (1983)Google Scholar
  34. 36.
    L. Hörmander: Linear Partial Differential Operators (Springer 1963)MATHGoogle Scholar
  35. Additional references: H. Yoshida: “Necessary condition for the existence of algebraic first integrals, I and II”, Celestial Mech. in press (1983); “Self-Similar Natural Boundaries of Non-Integrable Dynamical Systems in the complex t Plane, these Proceedings; A type of second order linear ordinary differential equations with periodic coefficients for which the characteristic exponents have exact expressions”, Celestial Mech. in press (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • U. Frisch
    • 1
  1. 1.Observatoire de NiceCNRSNice CedexFrance

Personalised recommendations