Functional Renormalization-Group Equations Approach to the Transition to Chaos

Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 24)


The functional renormalization-group equations approach to the study of the universal scaling properties of period doubling and intermittency is reviewed. The differential-equation method of obtaining the exact solutions for intermittency is explained in detail.


Exact Solution Functional Equation Period Doubling Composition Rule Stochastic Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review and references, see, for example, B. Hu, Phys. Rep. 91, 233 (1982)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J.-P. Eckmann, Rev. Mod. Phys. 53, 643 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    M. J. Feigenbaum, J. Stat. Phys.19, 25 (1978); 21, 669 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    P. Manneville and Y. Pomeau, Phys. Lett. 75A, 1 11979 ); Physica 1D, 219 (1980); Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980)Google Scholar
  5. 5.
    J.-P. Eckmann, L. Thomas and P. Wittwer, J. Phys. A14, 3153 (1981)MathSciNetADSMATHGoogle Scholar
  6. 6.
    J. E. Hirsch, B. A. Huberman and D. J. Scalapino, Phys. Rev. A25, 519 (1982) J. E. Hirsch, M. Nauenberg and D. J. Scalapino, Phys. Lett. 87A, 391 (1982)Google Scholar
  7. 7.
    B. Hu and J. Rudnick, Phys. Rev. Lett. 48, 1645 (1982); Phys. Rev. A26, 3035 (1982); “Differential-Equation Approach to Functional Equations: Exact Solutions for Intermittency,” University of Houston preprint (1983)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J. P. Crutchfield, M. Nauenberg and J. Rudnick, Phys. Rev. Lett. 46, 933 (1981)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    B. Shraiman, C. E. Wayne and P. C. Martin, Phys. Rev. Lett. 46, 935 (1981)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • B. Hu
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of HoustonHoustonUSA
  2. 2.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations