Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 22))

  • 153 Accesses

Abstract

There are many systems in physics where macroscopic order appears by some sort of self-organization out of microscopic disorder. Hydrodynamic flows may be among the oldest and most studied examples - I only need to recall the ordered flows appearing in thermal convection or in Couette flows. Optical systems - and there first of all lasers - display this phenomenon of self-organization in an even more spectacular way, creating a highly directed and coherent emission from many independent atoms. The laser has therefore emerged as a paradigmatic model in the field of ‘synergetics’ [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haken, Synergetics, Springer Series in Synergetics Vol. 1, Springer, New York 1976

    Google Scholar 

  2. Hydrodynamic Instabilities and the Transition to Turbulence, H.L. Swinney, J.P. Gollub ed., Topics in Applied Physics Vol. 45, Springer, New York 1981

    Google Scholar 

  3. A.Z. Grasyuk, A.N. Oravskii, Radiotekh. Elektron. 9, 524 (1964)

    Google Scholar 

  4. H. Haken, Z. Physik 190, 327 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Haken, Phys. Lett. 53A, 77 (1975)

    Google Scholar 

  6. R. Graham, Chaos in Simple Laser Systems, Workshop on Coupled Nonlinear Oscillators Los Alamos 1981, to appear

    Google Scholar 

  7. L.E. Casperson, IEEE J. Quant. Electronics 14 756 (1978); Phys. Rev. A21, 911 (1980); A23, 248 (1981)

    Google Scholar 

  8. N.B. Abraham, T. Chyba, M. Coleman, R.S. Gioggia, N.J. Halas, L.M. Hoffer, S.N. Lin, M. Maeda, and J.C. Wesson in ‘Third New Zealand Symposium on Laser Physics’, Lecture Notes in Physics, eds. D.F. Walls and J. Harvey, Springer, New York 1983

    Google Scholar 

  9. C.O. Weiss, A. Godone, A. Olafsson, Phys. Rev. A, to appear; C.O. Weiss, private communications

    Google Scholar 

  10. R.S. Gioggia, N.B. Abraham, Self-Pulsing Instabilities and Chaos in a Single-Mode Inhomogeneously Broadened Fabry-Perot Laser, preprint 1983

    Google Scholar 

  11. R. Graham, in Progress in Optics Vol. XII, ed. E. Wolf, North Holland 1974, p. 234

    Google Scholar 

  12. H.J. Scholz, T. Yamada, H. Brand, R. Graham, Phys. Lett. 82A, 321 (1981)

    Google Scholar 

  13. R. Graham, Quantum Noise and Strange Attractors, preprint 1983

    Google Scholar 

  14. H. Haken, Laser Theory, Encyclopedia of Physics 25/2c (1970)

    Google Scholar 

  15. R. Bonifacio, P. Schwendimann, F. Haake, Phys. Rev. A4, 302 (1971); A4, 854 (1971); F. Haake, this volume

    Google Scholar 

  16. L.M. Narducci, D.K. Bandy, L.A. Lugiato, N.B. Abraham, Stability Analysis of a Single-Mode Inhomogeneously Broadened Laser, preprint 1983

    Google Scholar 

  17. P. Mandel, Casperson’s instability: analytic results, preprint 1983

    Google Scholar 

  18. S.T. Hendow, M. Sargent III, Opt. Comm. 40, 385 (1982); 43, 59 (1982)

    Article  ADS  Google Scholar 

  19. R. Graham, Y. Cho, Opt. Comm., to appear

    Google Scholar 

  20. S. Newhouse, D. Ruelle, F. Takens, Comm. Math. Phys. 64, 35 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. G. Casati, B.V. Chirikov, F.M. Izraelev, J. Ford, in Lecture Notes in Physics 93, Springer New York 1979, p. 334

    Google Scholar 

  22. L. Mandel, Proc. Phys. Soc. (London) 71, 1037 (1958); R.J. Glauber in Quantum Optics and Electronics, ed. De Witt, Blandin, Cohen Tannoudji, Gordon and Breach, New York 1965

    Google Scholar 

  23. P. Carruthers, M.M. Nieto, Phys. Rev. Lett. 14, 387 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. M. Dörfle, R. Graham, Phys. Rev. A27, 1096 (1983)

    Article  MathSciNet  Google Scholar 

  25. E.P. Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  26. J.L. Kaplan, J.A. Yorke, Lecture Notes in Mathematics 730, 228 (1979)

    Google Scholar 

  27. R. Graham, Phys. Rev. A, to appear

    Google Scholar 

  28. D. Mayer, G. Roepstorff, J. Stat. Phys. 31, 309 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graham, R. (1984). Chaos in Lasers. In: Frehland, E. (eds) Synergetics — From Microscopic to Macroscopic Order. Springer Series in Synergetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69540-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69540-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69542-1

  • Online ISBN: 978-3-642-69540-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics