Skip to main content

Local Synaptic Modification Can Lead to Organized Connectivity Patterns in Associative Memory

  • Conference paper
Synergetics — From Microscopic to Macroscopic Order

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 22))

  • 152 Accesses

Abstract

Without their cerebral cortex people seem to be unable to perform the more interesting types of behavior. On the other hand the cortex is anatomically and electrophysiologically surprisingly uniform. So all the different important capabilities that have been attributed: to different cortical areas seem to be achieved by invoking almost the same machinery. How is this possible?

We propose that the cortex is merely a large memory. The organizing principle of this memory is simple and local: local correlations in cortical activity are stored by enhancing the local connectivity between the active elements. This principle (called Hebb’s law) leads to the long-term storage of “preferred” global activity patterns in the cortex (called cell assemblies). Each of these patterns can be activated by any sufficiently large part of it.

Viewed as a retrieval procedure in a memory, this process is known as self-addressing or as autoassociation in the context of associative memories. As a data storage technique, Hebb’s local rule or the corresponding global mechanism of autoassociation turn out to be indeed efficient, even for the purposes of todays large computer memories. As for the cerebral cortex, there is now experimental evidence for variable synaptic connectivities obeying Hebb’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari S.-I. (1977): Neural theory of association and concept-formation. Biol.Cybern. 26, 175

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson J.A, (1972): A simple neural network generating an interactive memory. Math.Biosc. 14, 197

    Article  MATH  Google Scholar 

  3. Baranyi A.and Feher O. (1981): Intracellular studies on cortical synaptic plasticity. Exp.Brain Res. 41, 124–134

    Google Scholar 

  4. Braitenberg V. (1978): Cell assemblies in the cerebral cortex. In: Theoretical Approaches to Complex Systems(Heim R.,Palm G.,eds.). Springer,Berlin Heidelberg New York

    Google Scholar 

  5. Braitenberg V. (1984): Vehicles. MIT Press (to appear)

    Google Scholar 

  6. Carr J. (1975): Applications of Centre Manifold Theory. Lecture Notes, Brown University,Providence

    Google Scholar 

  7. Cowan J. (1984): In Proceedings of the International Symposium on Synergetics. Springer, Berlin Heidelberg New York (to appear)

    Google Scholar 

  8. Fukushima K. (1975): Cognitron: a self-organizing multilayered neural network. Biol.Cybern. 20, 121

    Article  Google Scholar 

  9. Gabor D. (1969): Associative holographic memories. IBM J.Res.Dev. 13, 156

    Article  Google Scholar 

  10. Haken H. (1977): Synergetics. An Introduction. Nonequilibrium Phase Transitions in Physics, Chemistry and Biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Hebb D.O. (1949): The Organization of Behaviour. John Wiley, New York

    Google Scholar 

  12. Hebb D.O. (1958): Textbook of Psychology. Saunders, Philadelphia London Tonronto

    Google Scholar 

  13. Hoffstaedter D.R. (1979): Gödel, Escher, Bach. Basic books, Plenum Press, New York

    Google Scholar 

  14. Iooss G. and Joseph D.D. (1980): Elementary Stability and Bifurcation Theory. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  15. Katz B. (1966): Nerve, Muscle and Synapse. Mc Graw-Hill, New York

    Google Scholar 

  16. Koch C., Poggio T. and Torre V. (1982): Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil.Trans.R.Soc.London Ser.B 298, 227–264

    Article  ADS  Google Scholar 

  17. Kohonen T. (1977): Associative Memory. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  18. Levy W.B.and Steward O. (1979): Synapses as associative memory elements in the hippocampal formation. Brain Res. 175, 233–245

    Google Scholar 

  19. Malsburg von der C. (1973): Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85

    Article  Google Scholar 

  20. Marr D. (1969): A theory of cerebellar cortex. J.Physiol. 202, 437

    Google Scholar 

  21. Marr D. (1971): Simple memory. Philos.Trans.R.Soc.London,Ser.B 262 /23

    Google Scholar 

  22. Mc Culloch W.S. and Pitts W. (1943): A logical calculus of the ideas immanent in nervous activity. Bull.Math.Biophys. 5, 115

    Article  MathSciNet  Google Scholar 

  23. Nass M.M.and Cooper L.N. (1975): A theory for the development of feature detecting cells in visual cortex. Biol.Cybern. 19, 1

    Google Scholar 

  24. Palm G. (1980): On associative memory. Biol.Cybern. 36, 19

    Article  MATH  Google Scholar 

  25. Palm G. (1981): Towards a theory of cell assemblies. Biol.Cybern. 39, 181

    Article  MathSciNet  MATH  Google Scholar 

  26. Palm G. (1981): On the storage capacity of an associative memory with randomly distributed storage elements. Biol.Cybern. 39, 125

    Article  MathSciNet  MATH  Google Scholar 

  27. Palm G. (1982): Rules for synaptic changes and their relevance for the storage of information in the brain. In: Cybernetics and Systems Research (Trappl R.,ed.). North-Holland Publishing Company

    Google Scholar 

  28. Palm G. (1982): Neural Assemblies.An Alternative Approach to Artificial Intelligence. Springer, Berlin Heidelberg New York

    Google Scholar 

  29. Palm G. and Braitenberg V. (1979): Tentative contributions of neuroanatomy to nerve net theories. In: Progress in cybernetics and systems research, vol. III (Trappl R.,Klir G.J., Ricciardi L. eds.). Wiley, New York

    Google Scholar 

  30. Palm G. and Schüz A. (1984): (in preparation)

    Google Scholar 

  31. Praitenberg F. (1981): Berühmte Tiroler im Ausland. Arunda 11, 70

    Google Scholar 

  32. Rauschecker J.P. and Singer W. (1981): The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J.Physiol. 310, 215

    Google Scholar 

  33. Steinbuch K. (1961): Die Lernmatrix. Kybernetik 1, 36

    Article  MATH  Google Scholar 

  34. Uttley A.M. (1956): Conditional probability machines and conditioned reflexes. In: Automata studies ( Shannon L.E., Mc Carthy I.,eds.) Univ.Press,Princeton N.J.

    Google Scholar 

  35. Walter W. Gray (1953): The Living Brain. W.W. Norton and Co., New York

    Google Scholar 

  36. Wiener N. (1948): Cybernetics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Palm, G. (1984). Local Synaptic Modification Can Lead to Organized Connectivity Patterns in Associative Memory. In: Frehland, E. (eds) Synergetics — From Microscopic to Macroscopic Order. Springer Series in Synergetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69540-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69540-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69542-1

  • Online ISBN: 978-3-642-69540-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics