Advertisement

Nonequilibrium Current Noise Generated by Ordered Ion Transport Processes in Biological Membranes

  • Eckart Frehland
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 22)

Abstract

Electric phenomena, such as the directed (vectorial) transport of charges across biological membranes, play an important role in a number of biological processes, e.g. the ion transport through hydrophilic pathways (called channels or pores) is the molecular mechanism responsible for the nerve excitation phenomena. Photosynthesis, the subject of the contribution of H.T. Witt, is also connected with the vectorial transfer of charges across the membranes.

Keywords

Shot Noise State Diagram Current Noise Vectorial Process High Applied Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lax: Rev. Mod. Phys. 32, 25 (1960)ADSMATHCrossRefGoogle Scholar
  2. 2.
    K.M. van Vliet, J.R. Fassett: In Fluctuation Phenomena in Solids, ed. by R. Burgess ( Academic, New York 1965 )Google Scholar
  3. 3.
    H. Nyquist: Phys. Rev. 32, 110 (1928)ADSCrossRefGoogle Scholar
  4. 4.
    H.B. Callen, T.A. Welton: Phys. Rev. 83, 34 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    H.B. Callen, R.F. Greene: Phys. Rev. 86, 702 (1952)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    P. Läuger, G. Stark: Biochim. Biophys. Acta 211, 458 (1970)CrossRefGoogle Scholar
  7. 7.
    G. Stark, B. Ketterer, R. Benz, P. Läuger: Biophys. J. 11, 981 (1971)CrossRefGoogle Scholar
  8. 8.
    P. Läuger: In Membrane Transport Processes, Vol.3, ed. by C.F. Stevens and R.W. Tsien ( Raven, New York 1979 )Google Scholar
  9. 9.
    B. Hille: In Membrane Transport Processes, Vol.3, ed. by C.F. Stevens and R.W. Tsien ( Raven, New York 1979 )Google Scholar
  10. 10.
    A.L. Hodgkin, R.D. Keynes: J. Physiol. 128, 61 (1955)Google Scholar
  11. 11.
    B. Hille, W. Schwarz: J. Gen. Physiol. 72, 409 (1978)CrossRefGoogle Scholar
  12. 12.
    E. Frehland, W. Stephan: J. theor. Biol. (1983, in press); W. Stephan, E. Frehland: J. theor. Biol. (1983, in press); W. Stephan, B. Kleutsch, E. Frehland: J. theor. Biol. (1983, in press)Google Scholar
  13. 13.
    E. Frehland: Biophys. Struct. Mech. 5, 91 (1979)CrossRefGoogle Scholar
  14. 14.
    E. Frehland, T. Hoshiko, S. Machlup: Biochim. Biophys. Acta (1983, in press)Google Scholar
  15. 15.
    P. Läuger, W. Stephan, E. Frehland: Biochim. Biophys. Acta 602 (1980)Google Scholar
  16. 16.
    E. Frehland: Biophys. Chem. 8, 255 (1978); 10, 128 (1979)CrossRefGoogle Scholar
  17. 17.
    E. Frehland: Stochastic Transport Processes in Discrete Biological Systems. Lecture Notes in Biomathematics, Vol. 47 ( Berlin, Heidelberg, New York 1982 )Google Scholar
  18. 18.
    N. Wiener: Acta Math. 55, 117 (1930)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    V.D. Chen: Advances in Chemical Physics 37, 67 (1978)CrossRefGoogle Scholar
  20. 20.
    F. Jähnig, P.H. Richter: J. Chem. Phys. 64, 4645 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    E. Frehland: To be publishedGoogle Scholar
  22. 22.
    E. Frehland: Biophys. Chem. 12, 63 (1980)CrossRefGoogle Scholar
  23. 23.
    K. Heckmann: Biomembranes 3, 127 (1972)Google Scholar
  24. 24.
    E. Frehland, W. Stephan: Biochem. Biophys. Acta 553, 326 (1979)CrossRefGoogle Scholar
  25. 25.
    W. Schottky: Ann. Physik 57, 541 (1918)ADSCrossRefGoogle Scholar
  26. 26.
    H.A. Kolb, E. Frehland: Biophys. Chem. 12, 21 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Eckart Frehland
    • 1
  1. 1.Fakultäten für Biologie und PhysikUniversität KonstanzKonstanzFed. Rep. of Germany

Personalised recommendations