Skip to main content

Experimental Testing of Antianginal Drugs in Animals

  • Chapter
Clinical Pharmacology of Antianginal Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 76))

Abstract

One of the major problems in finding relevant experimental methods to assess substances of potential therapeutic value is the fact that it is very difficult to mimic human disease in animal experiments. Human disease is, in most instances, a multifactorial event, which runs an individual course in each patient, with a variable outcome. The aim of an experimental model of a disease should, therefore, be to include the main pathogenetic factors for this disease. Animal models used for drug testing are mostly artificially induced diseases or disturbances of normal physiologic function and are very seldom naturally occurring diseases in animals displaying symptoms similar to human disease. The natural occurrence of cardiac insufficiency in dogs, for example, is not sufficiently frequent to allow the complete testing of potentially useful drugs in a relevant setup. The Syrian golden hamster, on the other hand, would fulfill some criteria for drug testing, but has the big disadvantage of being too small to allow complete hemodynamic assessment of the dysfunction or of drug effects. Another great problem is the availability of the experimental animals and the legal restrictions which further limit the species available for use in establishing the therapeutic efficacy of a drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agress CM, Rosenberg MJ, Jacobs HI, Binder MJ, Schneiderman A, Clark WC (1982) Protracted shock in the closed–chest dog following coronary embolisation with graded microspheres. Am J Physiol 170: 536–549

    Google Scholar 

  2. Alexander JA, Sealy WC, Greenfied JC (1969) Improved technique for implanting electromagnetic flowmeter probes on the coronary artery. J Appl Physiol 27: 139–140

    PubMed  CAS  Google Scholar 

  3. Allen JB, Laadt JR (1950) The effect of the level of the ligature on mortality following ligation of the circumflex coronary artery in the dog. Am Heart J 39: 273–278

    PubMed  CAS  Google Scholar 

  4. Allison TB, Holsinger JW (1977) Transmural metabolic gradients in the normal dog left ventricle: effect of right atrial pacing. Am J Physiol 233: H217–221

    PubMed  CAS  Google Scholar 

  5. Bache RJ, McHale PA, Greenfied JC (1977) Transmural myocardial perfusion during restricted coronary inflow in the awake dog. Am J Physiol 232: H645–651

    PubMed  CAS  Google Scholar 

  6. Ball RM, Bache RJ (1976) Distribution of myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ Res 38: 60–66

    PubMed  CAS  Google Scholar 

  7. Bardenheuer H, Schrader J (1983) Relationship between oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51: 263–271

    Google Scholar 

  8. Bassingthwaighte JB, Strandell T, Donals DE (1968) Estimation of coronary blood flow by washout of diffusabel indicators. Circ Res 23: 259–278

    PubMed  CAS  Google Scholar 

  9. Battler A, Froelicher VF, Gallagher KP, Kemper WS, Ross J (1980) Dissociation between regional myocardial dysfunction and ECG changes during ischemia in the conscious dog. Circulation 62: 735–744

    PubMed  CAS  Google Scholar 

  10. Beck A, Zimpfer M, Raberger G (1982) Inhibition of the carotid chemoreceptor reflex by enflurane in chronically instrumented dogs. Naunyn–Schmiedebergs Arch Pharmacol 321: 145–148

    PubMed  CAS  Google Scholar 

  11. Becker L, Ferreira R, Thomas M (1974) Comparison of 3 6Rb and microsphere estimates of left ventricular blood flow distribution. J Nucl Med 15: 969–973

    PubMed  CAS  Google Scholar 

  12. Berman JK, Fields DC, Judy H, Mori V, Parker RJ (1956) Gradual vascular occlusion. Surgery 39: 399–410

    PubMed  CAS  Google Scholar 

  13. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204: 317–322

    PubMed  CAS  Google Scholar 

  14. Bing RJ (1965) Cardiac metabolism. Physiol Rev 45: 171–213

    PubMed  CAS  Google Scholar 

  15. Bing RJ, Bennish A, Bluemchen G, Cohen A, Gallagher JP, Zaleski EJ (1964) The determination of coronary flow equivalent with coincidence counting technic. Circulation 29: 833–846

    PubMed  CAS  Google Scholar 

  16. Bishop SP, White FC, Bloor CM (1976) Regional myocardial blood flow during acute myocardial infarction in the conscious dog. Circ Res 38: 429–438

    PubMed  CAS  Google Scholar 

  17. Bloor CM, White FC (1972) Functional development of the coronary collateral circulation during coronary artery occlusion in the conscious dog. Am J Pathol 67: 483–498

    PubMed  CAS  Google Scholar 

  18. Boerth RC, Co veil JW, Seagren SC, Pool PE (1969) High–energy phosphate concentrations in dog myocardium during stress. Am J Physiol 216: 1103–1106

    PubMed  CAS  Google Scholar 

  19. Brandi G, Fam WM, McGregor M (1968) Measurement of coronary flow in local areas of myocardium using xenon 133. J Appl Physiol 24: 446–450

    PubMed  CAS  Google Scholar 

  20. Bretschneider HJ (1971) Die hamodynamischen Determinanten des 02–Bedarfes des Herzmuskels. Arzneimittelforsch 21: 1515–1517

    PubMed  CAS  Google Scholar 

  21. Bretschneider HJ, Cott L, Hilgert G, Probst R, Rau G (1966) Gaschromatographische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh dtsch Ges Kreisl–Forschg 32: 267–273

    CAS  Google Scholar 

  22. Broadley KJ (1978) The langendorff heart preparation–reappraisal of its role as a research and teaching model for coronary vasoactive drugs. J Pharmacol Methods 2: 143–156

    Google Scholar 

  23. Brugge–Asperheim B, Leraand S, Kiil F (1969) Local dimensional changes of the myocardium measured by ultrasonic technique. Scand J Clin Lab Invest 24: 361–371

    Google Scholar 

  24. Buckberg GD, Luck JC, Payne DB, Hoffman JIE, Archie JP, Fixler DE (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31: 598–604

    PubMed  CAS  Google Scholar 

  25. Buckberg GD, Fixler DE, Archie JP, Hoffman JIE (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30: 67–81

    PubMed  CAS  Google Scholar 

  26. Bxinger R, Sommer O, Walter G, Stiegler H, Gerlach E (1979) Function and metabolic features of an isolated perfused guinea–pig heart performing pressure–volume work. Pfliigers Arch 380: 259–266

    Google Scholar 

  27. Busch E (1960) Eine Methode zur Erfassung von Coronarvenenblut beim Kaninchen ohne Thoraxoffnung und ihre Anwendung zur Untersuchung coronarerweiternder Stoffe. Naunyn–Schmiedebergs Arch Exp Pathol Pharmakol 237: 565–573

    PubMed  CAS  Google Scholar 

  28. Capurro NL, Goldstein RE, Aamodt R, Smith HJ, Epstein SE (1979) Loss of microspheres from ischemic canine cardiac tissue. Circ Res 44: 223–227

    PubMed  CAS  Google Scholar 

  29. Chagrasulis RW, Downey JM (1977) Selective coronary ebolisation in closed–chest dogs. Am J Physiol 232: H335–337

    PubMed  CAS  Google Scholar 

  30. Chidsey CA, Fritts HW, Hardewig A, Richards DW, Cournand A (1959) Fate of radioactive krypton (Kr85) introduced intravenously in man. J Appl Physiol 14: 63

    PubMed  CAS  Google Scholar 

  31. Clark C, Foreman MI, Kane KA, McDonald FM, Parratt JR (1980) Coronary artery ligation in anesthetized rats as a method for production of experimental dysrhythmias and for the determination of infarct size. J Pharmacol Methods 3: 357–368

    PubMed  CAS  Google Scholar 

  32. Cohen A, Gallagher JP, Luebs ED, Varga Z, Yamanaka J, Zaleski EJ, Bluemchen G, Bing RJ (1965) The quantitative determination of coronary flow with a positron emitter (Rubidium–84). Circulation 32: 636–649

    PubMed  CAS  Google Scholar 

  33. Cohen MV (1982) Coronary steal in awake dogs: a real phenomenon. Cardiovasc Res 16: 339–349

    PubMed  CAS  Google Scholar 

  34. Cohen MV, Eldh P (1973) Experimental myocardial infarction in the closed–chest dog: controlled production of large of small areas of necrosis. Am Heart J 86: 798–804

    PubMed  CAS  Google Scholar 

  35. Cohen MV, Sonnenblick EH, Kirk ES (1976) Coronary steal: its role in detrimental effect of isoproterenol after acute coronary occlusion in dogs. Am J Cardiol 38: 880–888

    PubMed  CAS  Google Scholar 

  36. Cohen MV, Yipintsoi T, Scheuer J (1982) Coronary collateral stimulation by exercise in dogs with stenotic coronary arteries. J Appl Physiol 52: 664–671

    PubMed  CAS  Google Scholar 

  37. Conrad LL, Gonzales IE, Joel W, Furman RH (1956) Histochemical evaluation of canine coronary artery and aortic lesion induced by intravenous allylamine. Circ Res 4: 263–267

    PubMed  CAS  Google Scholar 

  38. Consigny PM, Verrier ED, Payne BD, Edelist G, Jester J, Baer RW, Vlahakes GJ, Hoffman JIE (1982) Acute and chronic microsphere loss from canine left vetricular myocardium. Am J Physiol 242: H392–404

    PubMed  CAS  Google Scholar 

  39. Corday E, Lang TW, Meerbaum S, Gold H, Hirose S, Rubins S, Dalmastro M (1974)

    Google Scholar 

  40. Closed chest model of intracoronary occlusion for study of regional cardiac function. Am J Cardiol 33:49–59

    Google Scholar 

  41. Cox DA, Vatner SF (1982) Myocardial function in areas of heterogeneous perfusion after coronary artery occlusion in conscious dogs. Circulation 66: 1154–1158

    PubMed  CAS  Google Scholar 

  42. Cox RH, Bagshaw RJ (1979) Influence of anesthesia on the response to carotid hypotension in dogs. Am J Physiol 237: H424–432

    PubMed  CAS  Google Scholar 

  43. Csik V, Szekeres L, Udvary E (1976) Drug–induced augmentation of coronary flow in vessels with maximum ischemic dilatation. Arch Int Pharmacodyn Ther 224: 66–76

    PubMed  CAS  Google Scholar 

  44. Dallmer H, Derks M, Bucher P, Meesmann W (1979) Construction and function of a new hydraulic cuff occluder. Pfliigers Arch 380: 99–100

    CAS  Google Scholar 

  45. Daniell HB (1973) Coronary flow alterations on myocardial contractility, oxygen extraction, and oxygen consumption. Am J Physiol 225: 1020–1025

    PubMed  CAS  Google Scholar 

  46. Daniell HB (1979) Studies on the relationship between ST–segment elevations and extent of infarction following coronary artery occlusion in dogs. Res Commun Chem Pathol Pharmacol 23: 333–340

    PubMed  CAS  Google Scholar 

  47. Darsee JR, Kloner RA, Braunwald E (1981) Time course of regional function after coronary occlusions of 1– to 120–min duration. Am J Physiol 240: H399–407

    PubMed  CAS  Google Scholar 

  48. Davis MA, Holman BL (1975) Acute myocardial infarct imaging agents: structure–activity relationship. J Nucl Med 16: 523

    Google Scholar 

  49. De Jong JW, Verdouw PD, Remme WJ (1977) Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. J Mol Cell Cardiol 9: 297–312

    PubMed  Google Scholar 

  50. De V Cotton M, Bay E (1956) Direct measurement of changes in cardiac contractile force: relationship of such measurements to stroke work, isometric pressure gradient and other parameters of cardiac function. Am J Physiol 187: 122–134

    Google Scholar 

  51. Domenech RJ, Hoffmann JIE, Noble MIM, Saunders KB, Henson JR, Subijanto S (1969) Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 25: 581–596

    PubMed  CAS  Google Scholar 

  52. Downey JM (1976) Myocardial contractile force as a function of coronary blood flow. Am J Physiol 230: 1–6

    PubMed  CAS  Google Scholar 

  53. Drury AN, Szent–Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (Lond) 68: 213–237

    CAS  Google Scholar 

  54. Dunn RB, Griggs DM (1975) Transmural gradients in ventricular tissue metabolites produced by stopping coronary blood flow in the dog. Circ Res 37: 438–445

    PubMed  CAS  Google Scholar 

  55. Eckenhoff JE, Hafkenschiel JH, Harmel MH, Goodale WT, Lubin M, Bing RJ, Kety SS (1948) Measurement of coronary blood flow by the nitrous oxide method. Am J Physiol 152: 356–364

    PubMed  CAS  Google Scholar 

  56. Engler R, Pouleur H, Link J, Printz M, Co veil JW (1982) Changes in control of renin release in congestive heart failure in dogs: response to acute and chronic vasodilator therapy. Clin Exp Hypertension A4: 639–659

    CAS  Google Scholar 

  57. Feldman RL, Nichols WW, Pepine CJ, Conti CR (1978) Hemodynamic significance of the length of a coronary arterial narrowing. Am J Cardiol 41: 865 — 871

    PubMed  CAS  Google Scholar 

  58. Fortuin NJ, Kaihara S, Becker LC, Pitt B (1971) Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardiovasc Res 5: 331–336

    PubMed  CAS  Google Scholar 

  59. Fox AC, Reed GE, Meilman H, Silk BB (1979) Release of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol 43: 52–58

    PubMed  CAS  Google Scholar 

  60. Franklin DL, Schlegel W, Rushmer RF (1961) Blood flow measured by Doppler frequency shift of back–scattered ultrasound. Science 134: 564–565

    PubMed  CAS  Google Scholar 

  61. Franklin DL, Watson NW, Van Citters RL (1964) Blood velocity telemetered from untethered animals. Nature 203: 528–530

    PubMed  CAS  Google Scholar 

  62. Franklin DL, Kemper WS, Patrick T, McKnown D (1973) Technique for continuous measurement of regional dimensions in chronic animal preparations. Fed Proc 32: 343

    Google Scholar 

  63. Fronek A, Ganz V (1960) Measurement of flow in single blood vessels including cardiac output by local thermodilution. Circ Res 8: 175–182

    Google Scholar 

  64. Fryer TB, Sandler H, Freund W, McCutcheon EP, Carlson EL (1975) A multichannel implantable telemetry system for flow, pressure, and ECG measurements. J Appl Physiol 39: 318–326

    PubMed  CAS  Google Scholar 

  65. Gallagher KP, Kumada T, Battler A, Kemper WS, Ross J (1982) Isoproterenol–induced myocardial dysfunction in dogs with coronary stenosis. Am J Physiol 242: H260–267

    PubMed  CAS  Google Scholar 

  66. Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC (1971) Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44: 181–195

    PubMed  CAS  Google Scholar 

  67. Geary GG, Smith GT, McNamara JJ (1981) Defining the anatomic perfusion bed of an occluded coronary artery and the region at risk to infarction. Am J Cardiol 47: 1240–1247

    PubMed  CAS  Google Scholar 

  68. Gerlach E, Deuticke B (1963) Bildung und Bedeutung von Adenosin in dem durch Sauerstoffmangel gebildeten Herzmuskel unter dem EinfluB von 2,6–Bis(diaethanolamino)–4,8–dipiperidin–pyrimido(5,4)pyrimidin. Arzneimittelforsch 13: 48–50

    CAS  Google Scholar 

  69. Gewirtz H, Most AS (1981) Production of a critical coronary arterial stenosis in closed chest laboratory animals. Description of a new nonsurgical method based on standard cardiac catheterization techniques. Am J Cardiol 47: 589–596

    Google Scholar 

  70. Gewirtz H, Ohley W, Williams DO, Sun Y, Most AS (1982) Effect of intraaortic ballon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary stenosis: observations in an awake animal model. Am J Cardiol 50: 829–837

    PubMed  CAS  Google Scholar 

  71. Giraud G, MacCannel K (1980) A model for experimental myocardial injury. J Pharmacol Methods 3: 83–88

    PubMed  CAS  Google Scholar 

  72. Gottwik M, Zimmer P, Wiisten B, Hofmann M, Winkler B, Schaper W (1981) Experimental myocardial infarction in a closed–chest canine model. Basic Res Cardiol 76: 670–680

    PubMed  CAS  Google Scholar 

  73. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 33: 87–94

    PubMed  CAS  Google Scholar 

  74. Grayson J (1952) Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol (Lond) 118: 54–72

    CAS  Google Scholar 

  75. Grayson J, Mendel D (1961) Myocardial blood flow in the rabbit. Am J Physiol 200: 968–974

    PubMed  CAS  Google Scholar 

  76. Gregg DE, Shipley RE, Eckstein RW, Rotta A, Wearn JT (1942) Measurement of mean blood flow in arteries and veins by means of a rotameter. Proc Soc Exp Biol Med 49: 267–272

    Google Scholar 

  77. Gregg DE, Pritchard WH, Shipley RE, Wearn JT (1943) Augmentation of blood flow in the coronary arteries with elevation of right ventricular pressure. Am J Physiol 139: 726–731

    Google Scholar 

  78. Griggs DM, Tchokoev W, DeClue JW (1971) Effect of beta–adrenergic receptor stimulation on regional myocardial metabolism: importance of coronary vessel patency. Am Heart J 82: 492–502

    PubMed  CAS  Google Scholar 

  79. Griggs DM, Tchokoev W, Chen CC (1972) Transmural differences in ventricular tissue substrate levels due to coronary constriction. Am J Physiol 222: 705–709

    PubMed  CAS  Google Scholar 

  80. Gross GJ, Buck JD, Waltier DC, Hardman HF (1982) Separation of overlap and collateral perfusion of the ischemic canine myocardium: important considerations in the analysis of vasodilator–induced coronary steal. J Cardiovasc Pharmacol 4: 254–263

    PubMed  CAS  Google Scholar 

  81. Gruentzig A (1968) Transluminal dilatation of coronary–artery stenosis. Lancet 1: 263

    Google Scholar 

  82. Habal SM, Weiss MB, Spotnitz HM, Parodi EN, Wolff M, Cannon PJ, Hoffman BF, Malm JR (1976) Effects of pulsatile and nonpulsatile coronary perfusion on the performance of the canine left ventricle. J Thorac Cardiovasc Surg 72: 742–755

    PubMed  CAS  Google Scholar 

  83. Hagl S, Heimisch W, Meisner H, Erben R, Franklin D, Sebening F (1975) Ultrasound transit–time method for evaluation of regional myocardial function. Thoraxchirurgie 23: 291–297

    CAS  Google Scholar 

  84. Hales JRS (1974) Radioactive microsphere techniques for studies of the circulation. Clin Exp Pharmacol Physiol [Suppl] 1: 31–46

    Google Scholar 

  85. Hales JRS (1974) Radioactive microsphere techniques for studies of the circulation. Clin Exp Pharmacol Physiol [Suppl] 1: 31–46

    Google Scholar 

  86. Harris S (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circ Res 1: 1318–1328

    CAS  Google Scholar 

  87. Hearse DJ, Opie LH, Katzeff IE, Lubbe WF, Van Der Werff TJ, Peisach M, Boulle G (1977) Characterization of the border zone in acute regional ischemia in the dog. Am J Cardiol 40: 716–726

    PubMed  CAS  Google Scholar 

  88. Heiss WH, Hensel I, Kettler D, Tauchert M, Bretschneider HJ (1973) Uber den Anteil des Koronarsinus–Ausflusses an der Myokarddurchblutung des linken Ventrikels. Z Kardiol 62: 593–606

    PubMed  CAS  Google Scholar 

  89. Hensel I, Bretschneider HJ (1970) Pitot–Rohr–Katheter fur die fortlaufende Messung der Koronar– und Nierendurchblutung im Tierexperiment. Arch Kreislaufforseh 62: 249–292

    CAS  Google Scholar 

  90. Herd JA, Hollenberg M, Thornburn GD, Kopald HH, Barger AC (1962) Myocardial blood flow determined with krypton 85 in unanesthetized dogs. Am J Physiol 203: 122–124

    PubMed  CAS  Google Scholar 

  91. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985

    PubMed  CAS  Google Scholar 

  92. Hirzel HO, Nelson GR, Sonnenblick EH, Kirk ES (1976) Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circ Res 39: 214–222

    Google Scholar 

  93. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985

    Google Scholar 

  94. Hirzel HO, Nelson GR, Sonnenblick EH, Kirk ES (1976) Redistribution of collateral blood flow from necrotic to surviving myocardium following coronary occlusion in the dog. Circ Res 39: 214–222

    PubMed  CAS  Google Scholar 

  95. Hollander W, Madoff IM, Chobanian AV (1963) Local myocardial blood flow as indicated by the disappearance of NaJ131 from the heart muscle: studies at rest, during exercise and following nitrite administration. J Pharmacol Exp Ther 139: 53–59

    PubMed  CAS  Google Scholar 

  96. Jacobs ML, Okada RD, Daggett WM, Fowler BN, Strauss HW, Geffin G, Pohost GM (1982) Regional myocardial radiotracer kinetics in dogs using miniature radiation detectors. Am J Physiol 242: H849–854

    PubMed  CAS  Google Scholar 

  97. Jakobey JA, Taylor WJ, Smith GT, Gorlin R, Harken DE (1962) A new therapeutic approval to acute coronary occlusion. Production of standardized coronary occlusion with microspheres. Am J Cardiol 9: 60–73

    Google Scholar 

  98. Kaihara S, Van Heerden PD, Migita T, Wagner HN (1968) Measurement of distribution of cardiac output. J Appl Physiol 25: 696–700

    PubMed  CAS  Google Scholar 

  99. Karlsson J, Templeton GH, Willerson JT (1973) Relationship between epicardial S–T segment changes and myocardial metabolism during acute coronary insufficiency. Circ Res 32: 725–730

    PubMed  CAS  Google Scholar 

  100. Kety SS (1949) Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J 38: 321–328

    PubMed  CAS  Google Scholar 

  101. Khouri EM, Gregg DE (1963) Miniature electromagnetic flow meter applicable to coronary arteries. J Appl Physiol 18: 224–227

    PubMed  CAS  Google Scholar 

  102. Khouri EM, Gregg DE (1967) An inflatable cuff for zero determination in blood flow studies. J Appl Physiol 23: 395–397

    PubMed  CAS  Google Scholar 

  103. Khouri EM, Gregg DE, Rayford CR (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17: 427–437

    PubMed  CAS  Google Scholar 

  104. Khouri EM, Gregg DE, Lowensohn HS (1968) Flow in major branches of the left coronary artery during experimental coronary insufficiency in the unanesthetized dog. Circ Res 23: 99–109

    PubMed  CAS  Google Scholar 

  105. Khouri EM, Gregg DE, McGranahan GM (1971) Regression and reappearance of coronary collaterals. Am J Physiol 220: 655–661

    PubMed  CAS  Google Scholar 

  106. Khouri EM, Olsson RA, Bedynek JL, Bass BG (1977) An implantable semiconductor betaradiation detector. Am J Physiol 232: H95–98

    PubMed  CAS  Google Scholar 

  107. Kloner RA, DeBoer LWV, Darsee JR, Ingwall JS, Hale S, Tumas J, Braunwald E (1981) Prolonged abnormalities of myocardium salvaged by reperfusion. Am J Physiol, 241: H591–599

    PubMed  CAS  Google Scholar 

  108. Kohler P, Schror K (1981) The platelet perfused in–vitro heart: an alternative model for studying the role of endogenous prostacyclin and thromboxane in control of coronary perfusion. Basic Res Cardiol 76: 463–467

    PubMed  CAS  Google Scholar 

  109. Kolin A (1936) An electromagnetic flowmeter: principle of method and its application to j blood flow measurement. Proc Soc Exp Biol Med 35: 53–56

    Google Scholar 

  110. Kordenat K, Kezdi P, Stanley EL (1972) A new catheter technique for producing experimental coronary thrombosis and selective coronary visualization. Am Heart J 83: 360–364

    PubMed  CAS  Google Scholar 

  111. Lang TW, Corday E, Gold H, Meerbaum S, Rubins S, Constantini C, Hirose S, Osher J, Rosen V (1974) Consequences of reperfusion after coronary occlusion. Effects on hemodynamics and regional myocardial function. Am J Cardiol 33: 69–81

    Google Scholar 

  112. Langendorff O (1985) Untersuchungen am iiberlebenden Saugetierherzen. Pfliigers Arch 61: 291–332

    Google Scholar 

  113. Lekven J, Kjekshus JK, Mjds OD (1974) Cardiac effects of isoproterenol during graded myocardial ischemia. Scand J Clin Lab Invest 33: 161–171

    PubMed  CAS  Google Scholar 

  114. Lekven J, Ilebekk A, Fonstelien E, Kiil F (1975) Relationship between ST–segment elevation and local tissue flow during myocardial ischemia in dogs. Cardiovasc Res 9: 627–633

    PubMed  CAS  Google Scholar 

  115. Lenke D (1970) Zum Screening von Substanzen mit coronargefaBerweiternder Wirkung. Drug Res 20: 655–667

    CAS  Google Scholar 

  116. Levy MN, Imperial ES, Zieske H (1961) Collateral blood flow to the myocardium as de–I termined by the clearance of rubidium86 chloride. Circ Res 9: 1035–1043

    PubMed  CAS  Google Scholar 

  117. Litvak J, Siderides LE, Vineberg AM (1957) The experimental production of coronary arl tery insufficiency and occlusion. Am Heart J 53: 505–518

    PubMed  CAS  Google Scholar 

  118. J Lluch S, Moguilevsky HC, Pietra G, Scaffer AB, Hirsch LJ, Fishman AP (1969) A reproducible model of cardiogenic shock in the dog. Circulation 39: 205–218

    PubMed  CAS  Google Scholar 

  119. Lochner W, Oswald S (1964) Eine elektromagnetische Stromuhr zur Messung des Coronarsinusausflusses. Pfliigers Arch 281: 305 — 308

    CAS  Google Scholar 

  120. Love WD, Burch GE (1957) A study in dogs of methods suitable for estimating the rate of myocardial uptake of Rb86 in man, and the effect of 1–norepinephrine and pitressin on Rb86 uptake. J Clin Invest 36: 468–478

    PubMed  CAS  Google Scholar 

  121. Lumb G, Singletary HP (1962) Blood supply to the atrioventricular node and bundle of

    Google Scholar 

  122. His: a comparative study in pig, dog, and man. Am J Pathology 41:65—75

    Google Scholar 

  123. MacLean LD, Hendenstrom PH, Kim YS (1961) Distribution of blood flow to the canine heart. Proc Soc Exp Biol Med 107: 786–789

    PubMed  CAS  Google Scholar 

  124. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Cir. culation 23: 67–82

    Google Scholar 

  125. Maroko PR, Libby P, Covell JW, Sobel BE, Ross J, Braunwald E (1972) Precordial S–T segment elevation mapping: an atraumatic method for assessing alterations in the extent of myocardial ischemic injury. Am J Cardiol 29: 223–230

    PubMed  CAS  Google Scholar 

  126. Marshall WG, Boatman GB, Dickerson G, Perlin A, Todd EP, Utley JR (1976) Shunting, release, and distribution of nine and fifteen micron spheres in myocardium. Surgery 1 79: 631–637

    Google Scholar 

  127. Mason DT, Spann JF, Zelis R (1970) Quantification of the contractile state of the intact human heart. Am J Cardiol 26: 248–257

    PubMed  CAS  Google Scholar 

  128. Meerbaum S, Lang T, Osher JV, Hashimoto K, Lewis GW, Feldstein C, Corday E (1976) Diastolic retroperfusion of acutely ischemic myocardium. Am J Cardiol 37: 588–598

    PubMed  CAS  Google Scholar 

  129. Meindl JD (1980) Biomedical implantable microelectronics. Science 210: 263–267

    PubMed  CAS  Google Scholar 

  130. Millard RW, Higgins CB, Franklin D, Vatner SF (1972) Regulation of renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circ Res 31: 881–888

    PubMed  CAS  Google Scholar 

  131. Millard RW, Baig H, Vatner SF (1977) Cardiovascular effects of radioactive microsphere suspensions and Tween 80 solutions. Am J Physiol 232: H331–334

    PubMed  CAS  Google Scholar 

  132. Miller M, Thorvaldson J, Lekven J, Ilebekk A (1976) Local myocardial dimensions, intramural electrocardiogram and tissue flow during graded coronary constriction in dogs. Acta Physiol Scand [Suppl] 435–440: R125

    Google Scholar 

  133. Mohl W, Wolner E, Glogar D (1984) The coronary sinus. Steinkopff Darmstadt and Springer New York

    Google Scholar 

  134. Moir TW (1966) Measurement of coronary blood flow in dogs with normal and abnormal myocardial oxygenation and function. Circ Res 19: 695–699

    Google Scholar 

  135. Moir TW (1969) Study of luminal coronary collateral circulation in the beating canine heart. Circ Res 24:735–744

    Google Scholar 

  136. Morawitz P, Zahn A (1912) Uber den Koronarkreislauf am Herzen in situ. Zbl Physiol 26: 465–470

    Google Scholar 

  137. Murphy ML, Peng CF, Kane JJ, Straub KD (1982) Ventricular performance and biochemical alteration of regional ischemic myocardium after reperfusion in the pig. Am J Cardiol 50: 821–828

    PubMed  CAS  Google Scholar 

  138. Murray JF, Rapaport E (1972) Coronary blood flow and myocardial metabolism in acute experimental anaemia. Cardiovasc Res 6: 360–367

    PubMed  CAS  Google Scholar 

  139. Myers WW, Honig CR (1966) Amount and distribution of Rb86 transported into myocardium from ventricular lumen. Am J Physiol 211: 739–745

    PubMed  CAS  Google Scholar 

  140. Nagata K, Futamura Y, Nomura H, Mochizuki K, Sotobata I, Yasui S (1982) Influences of the alteration in aortic pressure on regional myocardial function and regional myocardial blood flow in partial coronary artery occlusion. Jpn Heart J 23: 211–225

    PubMed  CAS  Google Scholar 

  141. Neill WA, Oxendine J, Phelps N, Anderson RP (1975) Subendocardial ischemia provoked by tachycardia in conscious dogs with coronary stenosis. Am J Cardiol 35: 30–36

    PubMed  CAS  Google Scholar 

  142. Nejad NS, Klein MD, Mirsky I, Lown B (1971) Assessment of myocardial contractility from ventricular pressure recordings. Cardiovasc Res 5: 15–23

    PubMed  CAS  Google Scholar 

  143. O’Riordan JB, Flaherty JT, Khuri SF, Brawley RK, Pitt B, Gott VL (1977) Effects of atrial pacing on regional myocardial gas tensions with critical coronary stenosis. Am J Physiol 232. H49–53

    PubMed  Google Scholar 

  144. Owen P, Thomas M, Young V, Opie L (1970) Comparison between metabolic changes in local venous and coronary sinus blood after acute experimental coronary arterial occlusion. Am J Cardiol 25: 562–570

    PubMed  CAS  Google Scholar 

  145. Parratt JR (1969) The effect of adrenaline, noradrenaline, and propranolol on myocardial blood flow and metabolic heart production in monkeys and baboons. Cardiovasc Res 3: 306–314

    PubMed  CAS  Google Scholar 

  146. Pasyk S, Bloor CM, Khouri EM, Gregg DE (1971) Systemic and coronary effects of coronary artery occlusion in the unanesthetized dog. Am J Physiol 220: 646–654

    PubMed  CAS  Google Scholar 

  147. Pieper HP (1964) Catheter–tip flowmeter for coronary arterial flow in closed–chest dogs. J Appl Physiol 19: 1199–1201

    PubMed  CAS  Google Scholar 

  148. Poe ND (1972) Comparative myocardial uptake and clearance characteristics of potassium and cesium. J Nucl Med 13: 557–560

    PubMed  CAS  Google Scholar 

  149. Pohost GM, Okada RD, O’Keefe DD, Gewirtz H, Beller G, Strauss HW, Leppo J, Daggett WM (1981) Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res 48: 439–446

    PubMed  CAS  Google Scholar 

  150. Prokop EK, Strauss HW, Shaw J, Pitt B, Wagner HN (1974) Comparison of regional myocardial perfusion determined by ionic potassium–43 to that determined by microspheres. Circulation 50: 978–984

    PubMed  CAS  Google Scholar 

  151. Raberger G, Schiitz W, Zimpfer M (1976) Blood flow in intact and constricted coronary arteries under the influence of Ouabain. Naunyn–Schmiedebergs Arch Pharmacol 295: 51–54

    PubMed  CAS  Google Scholar 

  152. Raberger G, Schiitz W, Binder JP, Stanek B (1978) Regional changes in myocardial metabolism induced by constriction of the circumflex branch of the left coronary artery. Artery 4: 157–166

    Google Scholar 

  153. Ramanathan KB, Raina S, Banka VS, Bodenheimer MM, Helfant RH (1978) Effects of reperfusion on the regional contraction of ischemic and nonischemic myocardium following partial coronary obstruction. Circulation 57: 47–52

    PubMed  CAS  Google Scholar 

  154. Rees JR, Redding VJ (1967) Anastomotic blood flow in experimental myocardial infarction. A new method, using 133xenon clearance, for repeated measurements during recovery. Cardiovasc Res 1: 169–178

    PubMed  CAS  Google Scholar 

  155. Ritchie DM, Kelliher GJ, Macmillan A, Fasolak W, Roberts J, Mansukhani S (1979) The cat as a model for myocardial infarction. Cardiovasc Res 13: 199–206

    PubMed  CAS  Google Scholar 

  156. Rivas F, Cobb FR, Bache RJ, Greenfield JC (1976) Relationship between blood flow to ischemic regions and extent of myocardial infarction. Circ Res 38: 439–447

    PubMed  CAS  Google Scholar 

  157. Romson JL, Haack DW, Lucchesi B (1980) Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti–thrombotic agents. Thromb Res 17: 841–853

    PubMed  CAS  Google Scholar 

  158. Ross RS, Ueda K, Lichtlen PR, Rees R (1964) Measurement of myocardial blood flow in animals and man by selective injection of radioactive inert gas into the coronary artery. Circ Res 25: 28–41

    Google Scholar 

  159. Sabiston DC, Smith GW, Talbert JL, Gutelius J, Vasco JS (1961) Experimental production of canine coronary atherosclerosis. Ann Surg 153: 13–22

    PubMed  Google Scholar 

  160. Saito D (1976) Effect of coronary vasodilators on cardiac dynamics of the normal dog and the dog with experimental coronary sclerosis. Jpn Circ J 40: 363–397

    PubMed  CAS  Google Scholar 

  161. Sakai K (1981) Vasoconstriction produced by intracoronary cholinomimetic drugs in isolated donor perfused hearts of rhesus monkey: comparison with pig, dog and rabbit hearts. J Cardiovasc Pharmacol 3: 500–509

    PubMed  CAS  Google Scholar 

  162. Sakai K, Akima M, Aono J (1981) Evaluation of drug effects in a new experimental model of angina pectoris in the intact anesthetized rat. J Pharmacol Methods 5: 325–336

    PubMed  CAS  Google Scholar 

  163. Salazar AE (1961) Experimental myocardial infarction. Induction of coronary thrombosis in the intact closed–chest dog. Circ Res 9: 1351–1356

    PubMed  CAS  Google Scholar 

  164. Santamore WP, Walinsky P (1980) Altered coronary flow response to vasoactive drugs in the presence of coronary arterial stenosis in the dog. Am J Cardiol 45: 276–285

    PubMed  CAS  Google Scholar 

  165. Sapirstein LA (1958) Regional blood flow by fractional distribution of indicators. Am J Physiol 193: 161–168

    PubMed  CAS  Google Scholar 

  166. Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsby WN, Macruz R (1958) Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Am J Physiol 192: 148–156

    PubMed  CAS  Google Scholar 

  167. Satoh K, Yamashita S, Maruyama M, Taira N (1982) Comparison of the responses of the simian and canine coronary circulations to autonomic drugs. J Cardiovasc Pharmacol 4: 820–828

    PubMed  CAS  Google Scholar 

  168. Savage RM, Guth B, White FC, Hagan AD, Bloor CM (1981) Correlation of regional myocardial blood flow and function with myocardial infarct size during acute myocardial ischemia in the conscious pig. Circulation 64: 699–707

    PubMed  CAS  Google Scholar 

  169. Schamhardt HC, Vendouw PD, Van Der Hoek TM, Saxena PR (1979) Regional myocardial perfusion and wall thickness and ateriovenous shunting after ergotamine administration to pigs with a fixed coronary stenosis. J Cardiovasc Pharmacol 1: 673–686

    PubMed  CAS  Google Scholar 

  170. Schaper W (1971) The collateral circulation of the heart. North Holland, Amsterdam

    Google Scholar 

  171. Schaper W (1979) The pathophysiology of myocardial perfusion. Elsevier/North Holland, Amsterdam

    Google Scholar 

  172. Schaper W, Jageneau A, Xhenneux R (1967) The development of collateral circulation in the pig and the dog heart. Cardiologia 51: 321 — 335

    PubMed  CAS  Google Scholar 

  173. Schaper W, Remijsen P, Xhonneux R (1969) The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforseh 58: 904–909

    CAS  Google Scholar 

  174. Schaper W, Lewi P, Flameng W, Gijpen L (1973) Myocardial steal produced by coronary vasodilation in chronic coronary artery occlusion. Basic Res Cardiol 68: 3–20

    PubMed  CAS  Google Scholar 

  175. Schaper W, Hofmann M, Miiller KD, Genth K, Carl M ( 1979 a) Experimental occlusion of two small coronary arteries in the same heart. A new validation method for infarct size manipulation. Basic Res Cardiol 74: 224–229

    Google Scholar 

  176. Schaper W, Frenzel H, Hort W, Winkler B ( 1979 b) Experimental coronary artery occlusion. II. Spatrial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74: 233–239

    Google Scholar 

  177. Scheuer J, Brachfeld N (1966) Coronary insufficiency: relationship between hemodynamic, electrical, and biochemical parameters. Circ Res 28: 178–189

    Google Scholar 

  178. Schubert RW, Whalen WJ, Nair P (1978) Myocardial p02 distribution: relationship to coronary autoregulation. Am J Physiol 234: H361–370

    PubMed  CAS  Google Scholar 

  179. Sciacca RR, Weiss MB, Blood DK, Brennan DL, Cannon PJ (1979) Comparison of regional myocardial blood flow measurements with 133–Xe and radioactive microspheres in dogs with coronary artery constriction. Cardiovasc Res 13: 330–337

    PubMed  CAS  Google Scholar 

  180. Seitelberger R, Schlappack O, Fasol R, Raberger G (1984) Comparison of the effects of dihydroergotamine and ergonovine on functional changes caused by ß–adrenergic stimulation in normally and underperfused canine myocardium. J Cardiovasc Pharmacol 6: 384–391

    PubMed  CAS  Google Scholar 

  181. Selwyn AP, Jones T, Turner JH, Pratt T, Clark J, Lavender P (1978) Continuous assessment of regional myocardial perfusion in dogs using krypton–81m. Circ Res 42: 771–777

    PubMed  CAS  Google Scholar 

  182. Shaver JC, Shaver VC (1974) Model of human coronary artery disease for acute experimentation. Angiology 25: 386–391

    PubMed  Google Scholar 

  183. Shell WE, Kjekshus JK, Sobel BE (1971) Quantitative assessment of the extent of myocardial infarction in the conscious dog by means of analysis of serial changes in serum creatine phosphokinase activity. J Clin Invest 50: 2614–2625

    PubMed  CAS  Google Scholar 

  184. Shell WE, Lavelle JF, Covell JW, Sobel BE (1973) Early estimation of myocardial damage in conscious dogs and patients with evolving acute myocardial infarction. J Clin Invest 52: 2579–2590

    PubMed  CAS  Google Scholar 

  185. Smith FD, DAlecy LG, Feigl EO (1974) Cannula–tip coronary blood flow transducer for use in closed–chest animals. J Appl Physiol 37: 592–595

    PubMed  CAS  Google Scholar 

  186. Smith HJ, Singh BN, Norris RM, John MB, Hurley PJ (1975) Changes in myocardial blood flow and S–T segment elevation following coronary artery occlusion in dogs. Circ Res 36: 679–705

    Google Scholar 

  187. Sonnenblick EH (1962) Implications of muscle mechanics in the heart. Fed Proc 21: 975 — 990

    PubMed  CAS  Google Scholar 

  188. Sonnenblick EH (1962) Implications of muscle mechanics in the heart. Fed Proc 21: 975 — 990

    Google Scholar 

  189. Staab RJ, Lynch VdP, Lau–Cam C, Barletta M (1971) Small animal model for myocardial infarction. J Pharm Sci 66: 1483–1485

    Google Scholar 

  190. Stone HL (1980) Coronary flow, myocardial oxygen consumption and exercise training in dogs. J Appl Physiol 49: 759–768

    PubMed  CAS  Google Scholar 

  191. Stowe DF, Mathey DG, Moores WY, Glantz SA, Townsend RM, Kabra P, Chatterjee K, Parmley WW, Tyberg JY (1978) Segment stroke work and metabolism dependent on coronary blood flow in the pig. Am J Physiol 234: H597–607

    PubMed  CAS  Google Scholar 

  192. Stowe DF, Mathey DG, Moores WY, Glantz SA, Townsend RM, Kabra P, Chatterjee K, Parmley WW, Tyberg JY (1978) Segment stroke work and metabolism dependent on coronary blood flow in the pig. Am J Physiol 234: H597–607

    Google Scholar 

  193. Stone HL (1980) Coronary flow, myocardial oxygen consumption and exercise training in dogs. J Appl Physiol 49: 759–768

    Google Scholar 

  194. Tyberg JV, Forrester JS, Wyatt HL, Goldner SJ, Parmley WW, Swan HJC (1974) An analysis of segmental ischemic dysfunction utilizing the pressure–length loop. Circulation 49: 748–754

    Google Scholar 

  195. Tomoike H, Franklin D, Kemper WS, McKown D, Ross J (1981) Functional evaluation of coronary collateral development in conscious dogs. Am J Physiol 241: H519–524

    Google Scholar 

  196. Tomoike H, Franklin D, Kemper WS, McKown D, Ross J (1981) Functional evaluation of coronary collateral development in conscious dogs. Am J Physiol 241: H519–524

    PubMed  CAS  Google Scholar 

  197. Tyberg JV, Forrester JS, Wyatt HL, Goldner SJ, Parmley WW, Swan HJC (1974) An analysis of segmental ischemic dysfunction utilizing the pressure–length loop. Circulation 49: 748–754

    PubMed  CAS  Google Scholar 

  198. Utley J, Carlson EL, Hoffman JIE, Martinez HM, Buckberg GD (1974) Total and regional myocardial blood flow measurements with 25 p., 15 x, 9 x and filtered 1–10 p diameter microspheres and antipyrine in dogs and sheep. Circ Res 34: 391–405

    PubMed  CAS  Google Scholar 

  199. Van Citters RL, Franklin DL (1969) Cardiovascular performance of Alaska sled dogs during exercise. Circ Res 24: 33–42

    PubMed  Google Scholar 

  200. Van Slyke DD, Neill JM (1924) The determination of gases in blood and other colutions by vacuum extraction and manometric measurement. J Biol Chem 61: 523 — 573

    Google Scholar 

  201. Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47: 201–207

    PubMed  CAS  Google Scholar 

  202. Vatner SF, Braunwald E (1975) Cardiovascular control mechanisms in the conscious state. N Engl J Med 293: 970–976

    PubMed  CAS  Google Scholar 

  203. Vatner SF, Franklin D, Van Citters RL (1970) Simultaneous comparison and calibration of the Doppler and electromagnetic flowmeters. J Appl Physiol 29: 907–910

    PubMed  CAS  Google Scholar 

  204. Vatner SF, Franklin D, Van Citters RL (1970) Simultaneous comparison and calibration of the Doppler and electromagnetic flowmeters. J Appl Physiol 29: 907–910

    Google Scholar 

  205. Vennebusch H, Hellige G, Prennschutz–Schiitzenau H, Sigmund–Duchanova H, Bretschneider HJ (1978) Untersuchungen zur Zuverlassigkeit der Sauerstoffsattigungs– und Sauerstoffgehaltsbestimmungen mit verschiedenen modernen Geraten. Z Kardiol 67: 139–146

    CAS  Google Scholar 

  206. Vick JA, Herman EH (1971) An isolated dog or monkey heart preparation for studying cardiotonic compounds. Pharmacology 6: 290–299

    PubMed  CAS  Google Scholar 

  207. Vineberg A, Mahanti B, Litvak J (1960) Experimental gradual coronary artery constriction by ameroid constrictors. Surgery 47: 765–771

    PubMed  CAS  Google Scholar 

  208. Vogel WM, Lucchesi BR (1980) An isolated, blood–perfused, feline heart preparation for evaluating pharmacological interventions during myocardial ischemia. J Pharmacol Methods 4: 291–303

    PubMed  CAS  Google Scholar 

  209. Von Restorff W, Holtz J, Bassenge E (1971) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pfliigers Arch 372: 181–185

    Google Scholar 

  210. Vrobel TR, Jorgensen CR, Bache RJ (1982) Myocardial lactate and adenosine metabolite production as indicators of exercise–induced myocardial ischemia in the dog. Circulation 66: 555–561

    CAS  Google Scholar 

  211. Walterbusch G, Haverich A, Reuter Th, Borst HG (1982) The effect of coronary flow restriction on the viability of porcine myocardium. Basic Res Cardiol 77: 333–347

    PubMed  CAS  Google Scholar 

  212. Waltier DC, Hardman HF, Laddu AR, Somani P, Gross GJ (1975) Myocardial distribution of coronary blood flow in the isolated supported heart preparation. Cardiovasc Res 9: 634–639

    Google Scholar 

  213. Waters DD, DaLuz P, Wyatt HL, Swan HJC, Forrester JS (1977) Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am J Cardiol 39: 537–543

    PubMed  CAS  Google Scholar 

  214. Waters LL (1948) Changes in coronary arteries of dog following injections of allylamine. Am Heart J 35: 212–220

    PubMed  CAS  Google Scholar 

  215. Weber KT, Malini TI, Dennison BH, Fuqua JM, Speaker DM, Hastings FW (1972) Experimental myocardial ischemia and infarction. Production of diffuse myocardial lesions in unanesthetized calves. Am J Cardiol 29: 793–802

    Google Scholar 

  216. Weiss HR, Neubauer JA, Lipp JA, Sinha AK (1978) Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42: 394–401

    PubMed  CAS  Google Scholar 

  217. Wetterer E (1937) Eine neue Methode zur Registrierung der Blutstromungsgeschwindigkeit am uneroffnetem GefaB. Z Biol 98: 26–36

    Google Scholar 

  218. Wilkerson RD (1981) Cardiac pharmacology. Academic, New York

    Google Scholar 

  219. Wiisten B, Flameng W, Schaper W (1974) The distribution of myocardial flow: effects of experimental coronary occlusion. Basic Res Cardiol 69: 422–434

    Google Scholar 

  220. Wyatt HL, Forrester JS, Tyberg JV, Goldner S, Logan SE, Parmley WW, Swan HJC (1975) Effect of graded reductions in regional coronary perfusion on regional and total cardiac function. Am J Cardiol 36: 185–192

    PubMed  CAS  Google Scholar 

  221. Wyatt HL, Forrester JS, Tyberg JV, Goldner S, Logan SE, Parmley WW, Swan HJC (1975) Effect of graded reductions in regional coronary perfusion on regional and total cardiac function. Am J Cardiol 36: 185–192

    Google Scholar 

  222. Yipintsoi T, Bassingthwaighte JB (1970) Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ Res 27: 461–477

    PubMed  CAS  Google Scholar 

  223. Yipintsoi T, Dobbs WA, Scanlon PD, Knopp TJ, Bassingthwaighte JB (1973) Regional distribution of diffusible tracer and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33: 573–587

    PubMed  CAS  Google Scholar 

  224. Yokoyama M, Maekawa K, Katada Y, Ishikawa Y, Azumi T, Mizutani T, Fukuzaki H, Tomomatsu T (1978) Effects of graded coronary constriction on regional oxygen and carbon dioxide tensions in outer and inner layers of the canine myocardium. Jpn Circ J 42: 701–709

    PubMed  CAS  Google Scholar 

  225. Ziegler WH, Goresky CA (1971) Kinetics of Rubidium uptake in the working dog heart. Circ Res 29: 208–220

    PubMed  CAS  Google Scholar 

  226. Zimpfer M, Sit SP, Vatner SF (1981) Effects of anesthesia on the canine carotid chemoreceptor reflex. Circ Res 48: 400–406

    PubMed  CAS  Google Scholar 

  227. Zimpfer M, Manders WT, Barger AC, Vatner SF (1982) Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am J Physiol 243: H713–721

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raberger, G. (1985). Experimental Testing of Antianginal Drugs in Animals. In: Abshagen, U. (eds) Clinical Pharmacology of Antianginal Drugs. Handbook of Experimental Pharmacology, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69524-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69524-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69526-1

  • Online ISBN: 978-3-642-69524-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics