Skip to main content

Pharmacodynamic Principles of Action of Antianginal Drugs

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 76))

Abstract

Actions of substances on biological systems are termed pharmacodynamic when they are considered to counteract a particular disease of the underlying pathological disorder. It follows that throughout the ages the pharmacodynamic principles of action have been directly dependent on the prevailing concepts of pathology and developed in close conjunction with advances in this field. The clinical pharmacological testing of preparations on patients on the basis of these considerations frequently failed to result in any clinical efficacy, not least because the pathological concept of the disease in question proved to be incorrect. The mutual interdependence of pharmacodynamic principles of action and fundamental pathophysiological concepts of the causes and nature of specific disturbances has been manifest in coronary disease with greater clarity than in any other disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken JW, Shebuski RJ, Miller OV, Gorman RR (1981) Endogenous prostacyclin contributes to the efficacy of a thromboxane A2 synthetase inhibitor for preventing coronary artery thrombosis. J Pharmacol Exp Ther 219: 299–308

    PubMed  CAS  Google Scholar 

  • Allan G, Eakins KE, Kulkarni PS, Levi R (1980) Inhibition of thromboxane A2 biosynthesis in human platelets by burimamide. Br J Pharmacol 71: 157–164

    PubMed  CAS  Google Scholar 

  • Angus JA, Richmond DR, Dhumma–Upakorn P, Cobbin LB, Goodman AH (1976) Cardiovascular action of verapamil in the dog with particular reference to myocardial contractility and atrioventricular conduction. Cardiovasc Res 10: 623–632

    Article  PubMed  CAS  Google Scholar 

  • Armstrong PW, Chiong MA, Parker JO (1977) Effects of propranolol on the hemodynamics, coronary sinus blood flow and myocardial metabolic response to atrial pacing. Am J Cardiol 40: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Baenzinger NL, Dillender MJ, Majerus PW (1977) Cultured human skin fibroblasts and arterial cells produce a labile platelet–inhibitory prostaglandin. Biochem Biophys Res Commun 78: 294–301

    Article  Google Scholar 

  • Barcia F, Borer JS, Capurro N, Kent KM (1976) Propranolol–mediated increase in collateral flow during acute myocardial infarction. Circulation 54 [Suppl 2]: 159

    Google Scholar 

  • Basista M, Dobranowski J, Gryglewsky RJ (1978) Prostacyclin and thromboxane generating systems in rabbits pretreated with aspirin. Pharmacol Res Commun 10: 759–763

    Article  PubMed  CAS  Google Scholar 

  • Bassenge E, Schmutzler H (1982) Molsidomin–Neue Aspekte zur Therapie der ischamischen Herzerkrankung. 3. Internationales Symposium in Rottach–Egern 1982. Urban and Schwarzenberg, Miinchen

    Google Scholar 

  • Battler A, Ross J Jr, Slutsky R, Pflsterer M, Ashburn W, Froellicher V (1979) Improvement of exercise–induced left ventricular dysfunction with oral propranolol in patients with coronary heart disease. Am J Cardiol 44: 318–324

    Article  PubMed  CAS  Google Scholar 

  • Becker LC (1978) Conditions for vasculator–induced coronary steal in experimental myocardial ischemia. Circulation 57: 1103–1110

    PubMed  CAS  Google Scholar 

  • Becker LC, Fortuin NJ, Pitt B (1971) Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res 28: 263–269

    PubMed  CAS  Google Scholar 

  • Berdeaux A, Coutte R, Guidicelli JF, Boissier JR (1976) Effects of verapamil on regional myocardial blood flow and ST–segment. Role of the induced bradycardia. Eur J Pharmacol 39: 287–294

    Google Scholar 

  • Berdeaux A, DaCosta CP, Gamier M, Boissier JR, Giudicelli JF (1978) Beta–adrenergic blockade, regional left ventricular blood flow and ST–segment elevation in canine experimental myocardial ischemia. J Pharmacol Exp Ther 205: 646–656

    PubMed  CAS  Google Scholar 

  • Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44: 1–29

    PubMed  CAS  Google Scholar 

  • Bernstein L, Friesinger GC, Lichtlen PR, Ross RS (1966) The effect of nitroglycerin on the systemic and coronary circulation in man and dogs. Myocardial blood flow measured withXenon 133. Circulation 33: 107–116

    PubMed  CAS  Google Scholar 

  • Best LC, McGuire MB, Jones PBB (1979) Mode of action of dipyridamole on human platelets. Thromb Res 16: 367–379

    Article  PubMed  CAS  Google Scholar 

  • Born GVR (1979) Possible role for chlorpromazine in protection against myocardial infarction. Lancet 1: 822

    Article  PubMed  CAS  Google Scholar 

  • Born GVR (1979) Possible role for chlorpromazine in protection against myocardial infarction. Lancet 1: 822

    Google Scholar 

  • Born GVR, Kratzer MAA (1981) Endogenous agents in platelet thrombosis. Acta Med Scand [Suppl] 651: 85–90

    CAS  Google Scholar 

  • Born GVR, Wehmeier A (1979) Inhibition of platelet thrombus formation by chlorpromazine acting to diminish haemodynamically induced haemolysis. Nature 282: 212–213

    Article  PubMed  CAS  Google Scholar 

  • Born GVR, Bergqvist D, Arfors KE (1976) Evidence for inhibition of platelet activation in blood by a drug effect of erythrocytes. Nature 259 (6650): 233–235

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27: 416–432

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E (1978) Coronary spasm and acute myocardial infarction–new possibility for treatment and prevention. N Engl J Med 299: 1301–1303

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E (1981) Coronary artery spasm as a cause of myocarial ischemia. J Lab Clin Med 97: 299–312

    PubMed  CAS  Google Scholar 

  • Braunwald E, Maroko PR (1979) Protection of the ischemic myocardium. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North Holland, Amsterdam, pp 379–414

    Google Scholar 

  • Braunwald E, Sarnhoff SJ, Case RB, Stainsby WN, Welch GH Jr (1958) Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol 192: 157–163

    PubMed  CAS  Google Scholar 

  • Braunwald E, Miiller JE, Kloner RA, Maroko PR (1983) Role of beta–adrenergic blockade in the therapy of patients with myocardial infarction. Am J Med 74: 113–123

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E, Miiller JE, Kloner RA, Maroko PR (1983) Role of beta–adrenergic blockade in the therapy of patients with myocardial infarction. Am J Med 74: 113–123

    Google Scholar 

  • Bretschneider HJ, Frank A, Bernard U, Kochsiek K, Scheler E (1959) The effect of pyrimido–pyrimidine derivate on the oxygen supply to the myocardium. Arzneimittelforsch 9: 49–59

    PubMed  CAS  Google Scholar 

  • Brunton TL (1897) Lectures on the action of medicines. Macmillan, New York

    Google Scholar 

  • Burch JW, Baenzinger NL, Stanford N, Majerus PW (1978) Sensitivity of fatty acid cyclooxygenase from human aorta to acetylation by aspirin. Proc Natl Acad Sci USA 75: 5181–5184

    Article  PubMed  CAS  Google Scholar 

  • Chalmers TC, Matta RJ, Smith H Jr, Kunzler AM (1977) Evidence favoring the use of anticoagulants in the hospital phase of acute myocardial infarction. N Engl J Med 297: 1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Cheng TO, Bashour T, Kelsler GA, Weiss L, Bacos J (1973) Variant angina of Prinzmetal with normal coronary arteriograms. A variant of the variant. Circulation 47: 476–485

    Google Scholar 

  • Chierchia S, DeCaterina R, Brunelli C, Crea F, Patrono C, Maseri A (1980) Low dose aspirin prevents thromboxane A2 synthesis by platelets but not attacks of Prinzmetal’s angina. Circulation 62 [Suppl 3]: 214

    Google Scholar 

  • Cohen MV (1982) Coronary steal in awake dogs: a real phenomenon. Cardiovasc Res 16: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Cohen MV, Kirk ES (1973) Differential response of large and small coronary arteries to nitroglycerin and angiotensin. Circ Res 33: 445–453

    PubMed  CAS  Google Scholar 

  • Cohen MV, Downey JM, Sonnenblick EH, Kirk ES (1973) The effects of nitroglycerin on coronary collaterals and myocardial contractility. J Clin Invest 52: 2836–2847

    Article  PubMed  CAS  Google Scholar 

  • Cohen MV, Sonnenblick EH, Kirk ES (1976) Coronary steal: its role in tetrimental effect of isoproterenol after acute coronary occlusion in dogs. Am J Cardiol 38: 880–888

    Article  PubMed  CAS  Google Scholar 

  • Colman RV (1978) Platelet function in thrombosis and atherosclerosis. In: Chandler AB, Eurenius K, McMillan GC, Nelson CB, Schwartz CJ, Wessler S (eds) The thrombotic process in atherosclerosis. Plenum, New York, pp 421–435

    Google Scholar 

  • Covell JW, Braunwald JR Jr, Sonnenblick EH (1966) Studies on digitalis. XVI. Effects on myocardial oxygen consumption. J Clin Invest 45: 1535–1542

    Google Scholar 

  • DeGraff AC, Lyon AF (1963) Evaluation of dipyridamole (persantin). Am Heart J 65: 423–424

    Article  Google Scholar 

  • Dembinska–Kiec A, Gryglewsky T, Zunde A, Gryglewsky RJ (1977) The generation of prostacyclin by arteries and by the coronary vascular bed is reduced in experimental atherosclerosis in rabbit. Prostaglandins 14: 1025–1034

    Article  Google Scholar 

  • Distante A, Maseri A, Severi S, Biagini A, Chierchia S (1979) Management of vasospastic angina at rest with continuous infusion of isosorbide dinitrate. Am J Cardiol 44: 533–539

    Article  PubMed  CAS  Google Scholar 

  • Dock W (1946) The predilection of atherosclerosis for the coronary arteries. JAMA 131: 875–878

    CAS  Google Scholar 

  • Dusting GJ (1983) The basis for developing an anti–anginal agent which has actions on prostanoid mechanisms. Trends Pharmacol Sci 4: 80–84

    Article  CAS  Google Scholar 

  • Ekelund L (1978) Ca–blockers and peripheral circulation–physiological viewpoints. Acta Pharmacol Toxicol 43 [Suppl l]: 33–43

    Article  CAS  Google Scholar 

  • Ellis EF, Oelz O, Roberts IJ, Payne NA, Sweetman BJ, Nico AS, Oates JA (1977) Coronary arterial smooth muscle contraction by a substance released from platelets: evidence that it is thromboxane A2. Science 193: 1135–1137

    Article  Google Scholar 

  • Ellis EF, Jones PS, Wright KF, Richardson DW, Ellis CK (1980) Effect of oral aspirin dose on platelet aggregation and arterial prostacyclin synthesis: studies in humans and rabbits. Adv Prostaglandin Thrombaxane Res 6: 313–315

    CAS  Google Scholar 

  • Elwood PC, Williams WO (1979) A randomized controlled trial of aspirin in the prevention of early mortality in myocardial infarction. JR Coll Gen Pract 29: 413

    CAS  Google Scholar 

  • Elwood PC, Cochrane AL, Burr ML, Sweetman PM, Williams G, Welsby E, Hughes SJ, Renton R (1974) A randomized controlled trial of acetylsalicylic acid in the secondary prevention of mortality from myocardial infarction. Br Med J 1: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Essek HE, Wegria RGE, Herrick JF, Mann FC (1940) The effect of certain drugs on the coronary blood flow of the trained dog. Am Heart J 19: 554–565

    Article  Google Scholar 

  • Fam W, McGregor M (1964) Effect of coronary vasodilator drugs on retrograde flow areas of chronic myocardial ischemia. Circ Res 15: 355–365

    PubMed  CAS  Google Scholar 

  • Fam WM, McGregor M (1968) Effect of nitroglycerin and dipyridamol on regional coronary resistance. Circ. Res. 22: 649–659

    Google Scholar 

  • Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205

    PubMed  CAS  Google Scholar 

  • Feldman RL, Pepine CJ, Conti R (1981) Magnitude of dilatation of large and small coronary arteries by nitroglycerin. Circulation 64: 324 — 333

    Article  PubMed  CAS  Google Scholar 

  • Ferrer MI, Bradley SE, Wheeler HO, Enson Y, Preiseg R, Brickner PW, Conroy RJ, Harvey M (1966) Some effects of nitroglycerin upon the splanchnic, pulmonary and systemic circulation. Circulation 33: 357–373

    PubMed  CAS  Google Scholar 

  • Fleckenstein A (1983) Calcium antagonisms in heart and smooth muscle. Wiley, New York

    Google Scholar 

  • Fleckenstein A, Roskamm H (1980) Calcium–Antagonismus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Folts JD, Growell EB Jr, Rowe GG (1976) Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54: 365–370

    PubMed  CAS  Google Scholar 

  • Forman R, Kirk ES (1980) Comparative effects of vasodilator drugs on large and small coronary resistance vessels in the dog. Cardiovasc Res 14: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Foulds T, MacKinnon J (1960) Controlled double–blind trial of persantin in treatment of angina pectoris. Br Med J 2: 835

    Article  PubMed  CAS  Google Scholar 

  • Freedman B, Richmond DR, Kelly DT (1982) Pathophysiology of coronary artery spasm. Circulation 66: 705–709

    Article  PubMed  CAS  Google Scholar 

  • Frick MH, Balcon R, Cross D, Sowton E (1968) Hemodynamic effects of nitroglycer in in

    Google Scholar 

  • patients with angina pectoris studied by an atrial pacing method. Circulation 37:160—168

    Google Scholar 

  • Gaarder A, Jonson J, Laland S, Hellem A, Owren PA (1961) Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature 192: 531

    Article  PubMed  CAS  Google Scholar 

  • Ganz W, Fronek A (1961) The action of nitroglycerin on coronary and systemic haemodynamics and on the oxygen metabolism of the myocardium. Cor Vasa 3: 107 — 119

    PubMed  CAS  Google Scholar 

  • Ganz W, Buchbinder N, Marcus H, Mondkar A, O’Connor L, Maddahi J, Charuzi Y, Peter T, Berman D, Shaw PK, Swan HJC, Kass R (1980) Intracoronary thrombolysis in evolving myocardial infarction in man. Circulation 62 [Suppl 3]: 162

    Google Scholar 

  • Ganz W, Buchbinder N, Marcus H, Mondkar A, Maddahi J, Charuzi Y, O’Connor L, Shell W, Fishbein MC, Kass R, Miyamoto A, Swan HJC (1981) Intracoronary thrombolysis in evolving myocardial infarction. Am Heart J 101: 4 — 13

    Article  PubMed  CAS  Google Scholar 

  • Gold HK, Leinbach RC (1980) Coronary flow restoration in myocardial infarction by intracoronary streptokinase. Circulation 62 [Suppl 3]: 161

    Google Scholar 

  • Goldstein RE, Stinson EB, Epstein SE (1973) Effects of nitroglycerin on coronary collateral function in patients with coronary occlusive disease. Am J Cardiol 31: 135

    Article  Google Scholar 

  • Goldstein RE, Stinson EB, Scherer JL, Semigen RP, Grehl TM, Epstein SE (1974) Intraoperative coronary collateral function in patients with coronary occlusive disease: nitroglycerin responsiveness and angiographic correlations. Circulation 49: 298–308

    PubMed  CAS  Google Scholar 

  • Goodlett M, Dowling K, Eddy LJ, Downey JM (1980) Direct metabolic effects of isoproterenol and propranolol in ischemic myocardium of the dog. Am J Physiol 239. H469–H476

    PubMed  CAS  Google Scholar 

  • Gorman RR (1980) Biochemical and pharmacological evaluation of thromboxane synthetase inhibitors. Adv. Prostaglandin Thrombaxane Res 6: 417–425

    CAS  Google Scholar 

  • Gorman RR, Bundy GL, Peterson DC, Sun FF, Miller OV, Fitzpatrick FA (1977) Inhibition of human platelet thromboxane synthetase by 9,ll–azoprosta–5,13–dienoic acid. Proc Natl Acad Sci USA 74: 4007–010

    Article  PubMed  CAS  Google Scholar 

  • Graham TP Jr, Covell JW, Sonnenblick EH, Ross J Jr, Braunwald E (1968) Control of myocardial oxygen consumption. Relative influence of contractile state and tension development. J Clin Invest 47: 375–385

    Google Scholar 

  • Gross GJ, Winbury MM (1973) Beta–adrenergic blockade on intramyocardial distribution of coronary blood flow. J Pharmacol Exp Ther 187: 451–464

    PubMed  CAS  Google Scholar 

  • Gross GJ, Warltier DC, Buck JD, Hardman HF (1978) Differential effects of nitroglycerin and dipyridamole on ischemic myocardial blood flow and contractile force. Fed Proc 37: 416 (Abstract)

    Google Scholar 

  • Gross R, Kirchheim H, Olshausen K (1979) Effects of nifedipine on coronary and systemic hemodynamics in the conscious dog. Arzneimittelforsch 29: 1361–1368

    PubMed  CAS  Google Scholar 

  • Grim G, Fleckenstein A (1972) Die elektromechanische Entkoppelung der glatten GefaBmuskulatur als Grundprinzip der Coronardilatation durch 4(2’–nitrophenyl)–2,6–dimethyl–l,4–dihydropyridin–3,5–dicargonsaure–dimethylester (Bay a 1040, nifedipine). Arzneimittelforsch 22: 334–344

    Google Scholar 

  • Gryglewsky RS, Bunting S, Moncada S, Flower RJ, Vane JR (1976) Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) with prevents platelet aggregation. Prostaglandins 12: 685–713

    Article  Google Scholar 

  • Gryglewsky RJ, Zmuda A, Dembinska–Kiec A, Krecioch E (1977) A potent inhibitor of thromboxane A2 biosynthesis in aggregating human blood platelets. Pharmacol Res Commun 9: 106–116

    Google Scholar 

  • Haft JI, Gershengorn K, Kranz PD, Oestreicher R (1972) Protection against epinephrineinduced myocardial necrosis by drugs that inhibit platelet aggregation. Am J Cardiol 30: 838–843

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72: 2994–2998

    Article  PubMed  CAS  Google Scholar 

  • Hamman L (1935) Heart pain of organic origin. Int Clin 2: 157–181

    Google Scholar 

  • Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM (1979) Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res 44: 176–182

    PubMed  CAS  Google Scholar 

  • Harker LA, Ritchie JL (1980) The role of platelets in acute vascular events. Circulation 62 [Suppl 5]: 13–18

    Google Scholar 

  • Hashimoto K, Taira N, Ono H, Chiba S, Hashimoto K Jr, Endoh M, Kokubun M, Kokubun

    Google Scholar 

  • H, Iijima T, Kimura T, Kubota K, Oguro K (1975) Nifedipine, basis of its pharmacological effect. In: Hashimoto K, Kihura E, Kobayashi T (eds) 1. International nifedipine (adalat) symposium, Tokyo 1973. University of Tokyo Press, Tokyo, pp 11–22

    Google Scholar 

  • Henry PD, Yokoyama M (1980) Supersensitivity of atherosclerotic rabbit aorta to ergonovine: mediation by a serotonergic mechanism. J Clin Invest 66: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Henry PD, Schuchleib R, Borda LJ, Roberts R, Williamson JR, Sobel BE (1978) Effects of nifedipine on myocardial perfusion and ischemic injury in dogs. Circ Res 43: 372–380

    PubMed  CAS  Google Scholar 

  • Hillis LD, Braunwald E (1978) Coronary artery spasm. N Engl J Med 299: 695–702

    Article  PubMed  CAS  Google Scholar 

  • Hillis LD, Khuri SF, Braunwald E, Maroko PR (1979) The role of propranolol’s negative chronotropic effect in protection of ischemic myocardium. Pharmacology 19: 202–208

    Article  PubMed  CAS  Google Scholar 

  • Honig CR, Tenney SM, Gabel PV (1960) The mechanism of cardiovascular action of nitroglycerin. Am J Med 29: 910–923

    Google Scholar 

  • Holtz J, Bassenge E, Kolin A (1978) Haemodynamic and myocardial effects of long–lasting venodilation in the conscious dog: analysis of molsidomin in comparison with nitrates. Basic Res Cardiol 73: 469–481

    Google Scholar 

  • Hillis LD, Khuri SF, Braunwald E, Maroko PR (1979) The role of propranolol’s negative chronotropic effect in protection of ischemic myocardium. Pharmacology 19: 202–208

    Google Scholar 

  • Hillis LD, Khuri SF, Braunwald E, Maroko PR (1979) The role of propranolol’s negative chronotropic effect in protection of ischemic myocardium. Pharmacology 19: 202–208

    Google Scholar 

  • Hoeschen RJ, Bousvaros GA, Klassen GA, Fam WM, McGregor M (1966) Haemodynamic effects of angina pectoris, and of nitroglycerin in normal and anginal subjects. Br Heart J 28: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Holtz J, Bassenge E, Kolin A (1978) Haemodynamic and myocardial effects of long–lasting venodilation in the conscious dog: analysis of molsidomin in comparison with nitrates. Basic Res Cardiol 73: 469–481

    Article  PubMed  CAS  Google Scholar 

  • Honig CR, Tenney SM, Gabel PV (1960) The mechanism of cardiovascular action of nitroglycerin. Am J Med 29: 910–923

    Article  PubMed  CAS  Google Scholar 

  • Horowitz LD, Gorlin R, Taylor WJ, Kemp HG (1971) Effects of nitroglycerin on regional myocardial blood flow in coronary artery disease. J Clin Invest 50: 1578–1584

    Article  Google Scholar 

  • Hunscha H, Kaltenbach M, Schellhorn W (1966) Zur Therapie der Angina pectoris. Objektive Priifung von Medikamentenwirkungen mit Hilfe von Arbeitsversuchen. Therapiewoche 16: 1153–1159

    Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S–nitrosothiols as active intermediates. J Pharmacol Exp Ther 218: 739–749

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S–nitrosothiols as active intermediates. J Pharmacol Exp Ther 218: 739–749

    Google Scholar 

  • Jorgensen L, Rowsell HC, Hovig T, Glynn MF, Mustard JF (1967) Adenosine diphosphate induced platelet aggregation and myocardial infarction in swine. Lab Invest 17: 616–619

    PubMed  CAS  Google Scholar 

  • Jorgensen CR, Wang K, Wang Y, Gobel FL, Nelson RR, Taylor HL (1973) Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48: 1173–1182

    PubMed  CAS  Google Scholar 

  • Kaltenbach M, Becker HJ, Loos A, Kober G (1972) Veranderungen der Hamodynamik des linken Herzens unter der Wirkung von Nifedipine (BAY a 1040) im Vergleich mit Nitroglycerin. Arzneimittelforsch 22: 362–365

    PubMed  CAS  Google Scholar 

  • Kaltenbach M, Schulz W, Kober G (1979) Effects of nifedipine after intravenous and intracoronary administration. Am J Cardiol 44: 832–838

    Article  PubMed  CAS  Google Scholar 

  • Katz LN, Linder E, Weinstein W, Abramson DI, Jochim K (1938) Effect of various drugs on the coronary circulation of the denerved isolated heart of the dog and cat. Arch Int Pharmacodyn Ther 59:399—415 in persantin. Am Heart J 63: 146–151

    Google Scholar 

  • Kirk ES, Honig CR (1964) Experimental and theoretical analysis of myocardial tissue pressure. Am J Physiol 207: 361–367

    PubMed  CAS  Google Scholar 

  • Kloner RA, Reimer KA, Jennings RB (1971) Distribution of coronary collateral flow in acute myocardial ischaemic injury: effect of propranolol. Cardiovasc Res 10: 263

    Google Scholar 

  • Kraupp O, Heistracher P, Wolner E, Tuisl E (1964) Die Wirkung von N,N’–Dimethyl–N,N/–bis[3–(3’,4’,5’–trimethoxybenzoxy)–propyl]athylendiamin auf Herz– und Kreislaufdynamik sowie 02–Versorgung des Herzmuskels und des Gehirns. Arzneimittelforsch 14: 1086–1098

    PubMed  CAS  Google Scholar 

  • Kurita A (1975) Effect of nifedipine on the left ventricular haemodynamics in angina pectoris. In: Hashimoto K, Kimura E, Kobayashi T (eds) 1. International nifedipine (adalat) symposium, Tokyo 1973. University Tokyo Press, Tokyo, pp 121–125

    Google Scholar 

  • Ledsome JR, Kellett RP, Burkhart SM (1974) The ability of propranolol to antagonize induced changes in heart rate. J Pharmacol Exp Ther 188: 198–206

    PubMed  CAS  Google Scholar 

  • Lewis T (1931) Angina pectoris associated with high blood pressure and its relief by amyl nitrite; with note on Nothnagel’s syndrome. Heart 15: 305–327

    Google Scholar 

  • Lewy RI, Smith JB, Silver MJ, Saika J, Walinsky P, Wiener L (1979) Detection of thromboxane B2 in peripheral blood of patients with Prinzmetal’s angina. Clin Res 27: 462A (Abstract)

    Google Scholar 

  • Lichtlen PR, Engel HJ, Schrey A, Swan HJC (1981) Nitrates III, cardiovascular effects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Linder E, Seeman T (1967) Effects of persantin and nitroglycerin on myocardial blood flow during temporary coronary occlusion in dogs. Angiologica 4: 225–255

    PubMed  CAS  Google Scholar 

  • Lochner W, Bender F (1979) Molsidomin–neue Aspekte in der Therapie der ischamischen Herzerkrankung. 1. Molsidomin–Symposium Munchen 1978. Urban und Schwarzenberg, Munchen

    Google Scholar 

  • MacAlpin RN, Kattus AA, Alvaro AB (1973) Angina pectoris at rest with preservation of exercise capacity: Prinzmetal’s variant angina. Circulation 47: 946–958

    Google Scholar 

  • Mantero O, Conti F (1969) A paradoxical clinical response to dipyridamole. In: Bertelli A (ed) Pharmacological and clinical approach to the detection and evaluation of new circulatory drugs. North–Holland, Amsterdam, pp 118–123

    Google Scholar 

  • Marchetti GV, Merlo L, Antognetti RM (1964) The effects of nitroglycerin on the coronary blood flow and oxygen consumption of the myocardium in anaesthetized dogs. Am J Cardiol 13: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Marchetti G, Merlo L, Neseda V (1968) Myocardial uptake of free fatty acids and carbohydrates after beta adrenergic blockade. Am J Cardiol 22: 370–374

    Article  PubMed  CAS  Google Scholar 

  • Maroko PR, Libby P, Braunwald E (1973) Effect of pharmacologic agents on the function of the ischemic heart. Am J Cardiol 32: 930–936

    Article  PubMed  CAS  Google Scholar 

  • Maseri A, Chierchia S, L’Abbate A (1980) Pathogenetic mechanisms underlying the clinical events associated with atherosclerotic heart disease. Circulation 62 [Suppl 5]: 3–13

    Google Scholar 

  • Maseri A, Mimmo R, Chierchia S, Marchesi C, Pesola A, LAbbate A (1975) Coronary artery spasm as a cause of acute myocardial ischemia in man. Chest 68: 625–633

    Article  Google Scholar 

  • Maseri A, Parodi O, Severi S, Pesola A (1976) Transient transmural reduction of myocardial blood flow, demonstrated by thallium–201 scintigraphy, as a cause of variant angina. Circulation 56: 280–288

    Google Scholar 

  • Maseri A, Severi S, DeNes M, LAbbate A, Chierchia S, Marzilli M, Ballestra AM, Parodi O, Biagini A, Distante A (1978) Variant angina: one aspect of a continuous spectrum of vasospastic myocardial ischaemia. Am J Cardiol 42: 1019–1035

    Article  PubMed  CAS  Google Scholar 

  • Mason DT, Braunwald E (1965) The effects of nitroglycerin and amylnitrite on arteriolar and venous tone in the human forearm. Circulation 32: 755–766

    PubMed  CAS  Google Scholar 

  • Masotti G, Galanti G, Poggesi L, Abbate R, Neri Serneri GG (1980) Differential inhibition of prostacyclin production and platelet aggregation by aspirin in humans. Adv Prostaglandin Thrombaxane Res 6: 317–320

    CAS  Google Scholar 

  • Mathes P, Rival J (1971) Effect of nitroglycerin on total and regional coronary blood flow in normal and ischemic canine myocardium. Cardiovasc Res 5: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Mathey DG, Kuck KH, Tilsner V, Krebber HJ, Bleifeld W (1981) Nonsurgical coronary artery recanalization in acute transmural myocardial infarction. Circulation 63: 399

    Article  Google Scholar 

  • Meesmann W (1973) Zur Pathophysiologic der Koronarinsuffizienz. In: Gottstein U (ed) Koronarinsuffizienz. Periphere Durchblutungsstorungen. Huber, Bern, pp 20–32 (Aktuelle Probleme in Angiologie, vol 20 )

    Google Scholar 

  • Meyer U, Schiffer W, Schulz FW, Raff WK (1974) The problem of coronary steal phenomenon under the influence of coronary dilators. Naunyn–Schmiedebergs Arch Pharmacol 285 [Suppl]: R55 (Abstract)

    Google Scholar 

  • Millard RW (1980) Changes in cardiac mechanics and coronary blood flow of regionally ischemic porcine myocardium induced by diltiazem. Chest 78 [Suppl]: 193–199

    PubMed  CAS  Google Scholar 

  • Mills DCB, Smith JB (1971) The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3’,5’–cyclic monophosphate in platelets. Biochem J 121: 185–196

    PubMed  CAS  Google Scholar 

  • Minnemann KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specifity of beta–1 and beta–2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 15: 21–33

    Google Scholar 

  • Miwa K, Kambara H, Kawai C (1981) Exercise–induced angina provoked by aspirin administration in patients with variant angina. Am J Cardiol 47: 1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Moir TW (1972) Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res 30: 621–627

    PubMed  CAS  Google Scholar 

  • Moir TW, DeBra DW (1967) Effect of left ventricular hypertension, ischemia and vasoactive drugs on the myocardial distribution of coronary flow. Circ Res 21: 65–74

    PubMed  CAS  Google Scholar 

  • Moncada S, Korbutt R (1978) Dipyridamole and other phosphodiesterase inhibitors act as antithrombotic agents by potentiating endogenous prostacyclin. Lancet 1: 1286–1289

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Vane JR (1970) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  • Moncada S, Vane JR (1970) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  • Moncada S, Herman AH, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX of PG12) by layers of the arterial wall. An explanation for the anti–thrombotic properties of vascular endothelium. Thromb Res 11: 323–344

    Google Scholar 

  • Moncada S, Herman AH, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX of PG12) by layers of the arterial wall. An explanation for the anti–thrombotic properties of vascular endothelium. Thromb Res 11: 323–344

    Google Scholar 

  • Mueller HS, Ayres SM (1977) The role of propranolol in the treatment of acute myocardial infarction. Prog Cardiovasc Dis 19: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Mueller HS, Ayres SM, Religa A, Evans RG (1974) Propranolol in the treatment of acute myocardial infarction: effect on myocardial oxygenation and haemodynamics. Circulation 49: 1078–1087

    PubMed  CAS  Google Scholar 

  • Miiller O, Rorvik K (1958) Hemodynamic consequences of coronary heart disease. Br Heart 120: 302–310

    Article  Google Scholar 

  • Muller–Schweinitzer E (1980) The mechanism of ergometrine–induced coronary arterial spasm: in vitro studies in canine arteries. J Cardiovasc Pharmacol 2: 645–655

    Article  PubMed  Google Scholar 

  • Mustard JF (1976) Function of blood platelets and their role in thrombosis. Trans Am Clin Climatol Assoc 87: 104–107

    PubMed  CAS  Google Scholar 

  • Myers A, Rabbani F, Penhos JC, Ramey E, Ramwell PW (1981) Protective effects of lidocaine, cyproteroneacetate and a thromboxane synthetase inhibitor against arachidonate induced mortality. Fed Proc 40: 662 (Abstract)

    Google Scholar 

  • Nagao T, Ikeo T, Sato M (1972) Influence of calcium ions on responses to diltiazem in coronary arteries. Jpn J Pharmacol 27: 330–332

    Article  Google Scholar 

  • Nagao T, Murata S, Sato M (1975) Effects of diltiazem (CRD–401) on developed coronary collateral in the dog. Jpn J Pharmacol 25: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Szeto J (1972) Effect of verapamil on contractility oxygen utilization and calcium exchangeability in mammalian heart muscle. Cardiovasc Res 6: 120–128

    Article  PubMed  CAS  Google Scholar 

  • Nayler WG, Mclnnes I, Swann JB, Price JM, Carson V, Race D, Lowe TE (1968) Some effects of iproveratril (isoptin) on the cardiovascular system. J Pharmacol Exp Ther 161: 247–261

    PubMed  CAS  Google Scholar 

  • Needleman P (ed) (1975) Organic nitrates. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol 40 )

    Google Scholar 

  • Needleman P, Kulkarni PS, Raz A (1977) Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Science 195: 409–12

    Article  PubMed  CAS  Google Scholar 

  • Needleman P, Kulkarni PS, Raz A (1977) Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Science 195: 409–12

    Google Scholar 

  • Nomura H, Nagata K, Futamura Y, Mochizuki K, Hama Y, Sotobata I, Yasui S (1980) Effects of niludipine on regional myocardial blood flow and regional myocardial function in the dog with partial occlusion of the coronary artery. Arzneimittelforsch 30: 1258–1263

    PubMed  CAS  Google Scholar 

  • Oliva PB, Breckinridge JC (1977) Arteriographic evidence of coronary arterial spasm in acute myocardial infarction. Circulation 56: 366–374

    PubMed  CAS  Google Scholar 

  • Oliva PB, Pozts DE, Pluss RG (1973) Coronary arterial spasm in Prinzmetal angina: documentation by coronary arteriography. N Engl J Med 288: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Opie LH, Thomas M (1976) Propranolol and experimental myocardial infarction: substrate effect. Postgrad Med J 52 [Suppl 4]: 124–132

    PubMed  Google Scholar 

  • O’Rourke RA, Bishop YS, Kot PA, Fernandez JP (1971) Hemodynamic effects of nitroglycerin and amyl nitrate in the conscious dog. J Pharmacol Exp Ther 177: 426–32

    PubMed  Google Scholar 

  • Parker JO, DiGiorgi S, West RO (1966) A hemodynamic study of acute coronary insufficiency precipitated by exercise with observations on the effects of nitroglycerin. Am J Cardiol 17: 470–483

    Article  PubMed  CAS  Google Scholar 

  • Parker JO, West RO, DiGiorgi S (1967) The hemodynamic response to exercise in patients with healed myocardial infarction without angina (with observations on the effect of nitroglycerin). Circulation 36: 734–751

    PubMed  CAS  Google Scholar 

  • Parker JO, West RO, DiGiorgi S (1971) The effect of nitroglycerin on coronary blood flow and the hemodynamic response to exercise in coronary artery disease. Am J Cardiol 27: 59–65

    Article  PubMed  CAS  Google Scholar 

  • Parratt JR (1980) Effects of adrenergic activators and inhibitors on the coronary circulation. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, pp 735–822 (Handbook of experimental pharmacology, vol 54/1)

    Google Scholar 

  • Parratt JR, Grayson J (1966) Myocardial vascular reactivity after beta–adrenergic blockade. Lancet 1: 338–340

    Article  PubMed  CAS  Google Scholar 

  • Pick R, Chediak J, Glick G (1979) Aspirin inhibits development of coronary atherosclerosis in cynomolgus monkeys ( Macaca Fascicularis) fed an atherogenic diet. J Clin Invest 63: 158–162

    Google Scholar 

  • Pieper GM, Todd GL, Wu ST, Salhany JM, Clayton FC, Eliot RS (1980) Attenuation of myocardial acidosis by propranolol during ischemic arrest and reperfusion. Evidence with 31P nuclear magnetic resonance. Cardiovasc Res 14: 646–653

    Article  PubMed  CAS  Google Scholar 

  • Pitt B, Graven P (1970) Effect of propranolol on regional myocardial blood flow in acute ischaemia. Cardiovasc Res 4: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Pitt B, Elliot EC, Gregg DE (1967) Adrenergic receptor activity in the coronary arteries of the unanaesthetized dog. Circ Res 21: 75 — 84

    PubMed  CAS  Google Scholar 

  • Prichard BNC (1981) –adrenergic antagonists in angina and myocardial infarction. In: Wilkerson RD (ed) Cardiac pharmacology. Academic, London, pp 387–414

    Google Scholar 

  • Prinzmetal M, Kennamar R, Merliss R, Wada T, Bor N (1959) Angina pectoris. I. A variant form of angina pectoris. Am J Med 27: 375–388

    Google Scholar 

  • Raff WK, Kosche F, Lochner W (1972) Coronary extravascular resistance at increasing left ventricular pressure. Pfliigers Arch 333: 352–361

    Article  CAS  Google Scholar 

  • Rentrop P, Blanke H, Karsch KR, Kaiser H, Kostering H, Leitz K (1981) Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation 63: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Robertson RM, Robertson D, Roberts LJ, Maas RL, Fitzgerald GA, Friesinger GC, Oates JA (1981) Thromboxane A2 in vasotonic angina pectoris. N Engl J Med 304: 998–1003

    Article  PubMed  CAS  Google Scholar 

  • Roskamm H (1972) Hamodynamik und Kontraktilitat in Ruhe und wahrend korperlicher Belastung bei /?–Sympathikolyse. In: Dengler HJ (ed) Die therapeutische Anwendung sympathikolytischer Stoffe. 4. Rothenburger Gesprach 1971. Schattauer, Stuttgart, pp 159–175

    Google Scholar 

  • Roskamm H, Frohlich GJ, Reindell H (1966) Die Wirkung verschiedener Koronardilatatoren auf den Sauerstoffverbrauch, die Herzfrequenz und den Blutdruck bei standardisierter Belastung auf dem Ergometer. Arzneimittelforsch 16: 835–841

    PubMed  CAS  Google Scholar 

  • Ross G, Jorgensen CR (1967) Cardiovascular action of iproveratril. J Pharmacol Exp Ther 158: 504 — 509

    PubMed  CAS  Google Scholar 

  • Rudolph W, Kriener J, Meister W (1971) Die Wirkung von Verapamil auf Coronardurchblutung, Sauerstoffutilisation und Kohlendioxydproduktion des menschlichen Herzens. Klin Wochenschr 49: 982–988

    Google Scholar 

  • Rutsch W, Weber H, Paeprer H, Dorow P, Schartl M, Schmutzler H (1980) Recanalization of coronary arteries in impending myocardial infarction by means of intracoronary streptokinase infusion. Circulation 62 [Suppl 3]: 80

    Google Scholar 

  • Saito D (1976) Effect of coronary vasodilators on cardiac dynamics of the normal dog and the dog with experimental coronary sclerosis. Jpn Circ J 40: 363–397

    Article  PubMed  CAS  Google Scholar 

  • Saito D (1976) Effect of coronary vasodilators on cardiac dynamics of the normal dog and the dog with experimental coronary sclerosis. Jpn Circ J 40: 363–397

    Google Scholar 

  • Sato M, Nagao T, Yamaguchi I, Nakajima H, Kiyomoto A (1971) Pharmacological studies on a new 1,5–benzothiazepine derivative (CRD–401). Arzneimittelforsch 21: 1338–1343

    PubMed  CAS  Google Scholar 

  • Sauer G, Tebbe U, Krause H, Kreuzer H, Neuhaus KL (1981) Die Wirkung von Molsidomin auf den arteriellen Windkessel. Z Kardiol 70: 713–718

    PubMed  CAS  Google Scholar 

  • Sbar S, Schlant RC (1967) Dipyridamole in the treatment of angina pectoris. JAMA 201: 865–867

    Article  PubMed  CAS  Google Scholar 

  • Schaper W ( 1979 a) Regulation of coronary blood flow. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North Holland, Amsterdam, pp 171–198

    Google Scholar 

  • Schaper W ( 1979 b) Effect of drugs on collateral circulation. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North Holland, Amsterdam, pp 471–89

    Google Scholar 

  • Schaper WKA, Xhonneux R, Jagenau AHM, Janssen PJ (1966) The cardiovascular pharmacology of lidoflazine (R 7904), a long–acting coronary vasodilator. J Pharmacol Exp Ther 152: 265–274

    PubMed  CAS  Google Scholar 

  • Schaper W, Lewi P, Flameng W, Gijpen L (1973) Myocardial steal produced by coronary vasodilation in chronic coronary artery occlusion. Basic Res Cardiol 68: 3–20

    Article  PubMed  CAS  Google Scholar 

  • Schnaar RL, Sparks HV (1972) Response of large and small coronary arteries to nitroglycerin, NaN02 and adenosine. Am J Physiol 223: 223–228

    PubMed  CAS  Google Scholar 

  • Schror K, Smith EF, Bickerton M (1980) Preservation of ischemic myocardium by pinnae thromboxane A2. Am J Physiol 238: H87–H92

    PubMed  CAS  Google Scholar 

  • Selwyn AP, Welman E, Fox K, Horlock P, Pratt T, Klein M (1979) The effects of nifedipine on acute experimental myocardial ischemia and infarction in dogs. Circ Res 44: 16–23

    PubMed  CAS  Google Scholar 

  • Selzer A (1978) Use of anticoagulant agents in acute myocardial infarction: statistics or clinical judgement? Am J Cardiol 41: 1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Smith EF, Lefer AM, Smith JB (1980) Influence of thromboxane inhibition on the severity of myocardial ischemia in cats. Can J Physiol Pharmacol 58: 294–300

    Article  PubMed  CAS  Google Scholar 

  • Sonnenblick EH, Braunwald E, Williams JF Jr, Glick G (1965) Effects of exercise on myocardial force–velocity relations in intact unanaesthetized man: relative roles of changes in heart rate, sympathetic activity and ventricular dimension. J Clin Invest 44: 2051–2062

    Article  PubMed  CAS  Google Scholar 

  • Sonnenblick EH, Ross J Jr, Braunwald E (1968) Oxygen consumption of the heart. Am J Cardiol 22: 328–336

    Article  PubMed  CAS  Google Scholar 

  • Spann JF (1983) Changing concepts of pathophysiology, prognosis, and therapy in acute myocardial infarction. Am J Med 74: 877–886

    Article  PubMed  CAS  Google Scholar 

  • Steele P, Rainwater J, Vogel R, Genton E (1978) Platelet–suppressant therapy in patients with coronary artery disease. JAMA 240: 228–231

    Article  PubMed  CAS  Google Scholar 

  • Stein PD, Brooks HL, Matson JL, Hyland JW (1967) Effect of beta–adrenergic blockade on coronary blood flow. Cardiovasc. Res 2: 63–67

    Google Scholar 

  • Svensson J, Hamberg M, Samuelsson B (1976) On the formation and effects of thromboxane A2 in human platelets. Acta Physiol Scand 98: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Szentivanyi M, Juhasz–Nagy A (1963) The physiological role of the coronary constrictor fibres. I. The effect of the coronary vasomotors on the systemic blood pressure. Q J Exp Physiol 48: 93–104

    Google Scholar 

  • Thuillez C, Maury M, Giudicelli JF (1983) Differential effects of verapamil and diltiazem on regional blood flow and function in the canine normal and ischemic myocardium. J Cardiovasc Pharmacol 5: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Tomoike H, Ross J Jr, Franklin D, Crozatier B, McKown D, Kemper WS (1978) Improvement of propranolol of regional myocardial dysfunction and abnormal coronary flow pattern in conscious dogs with coronary narrowing. Am J Cardiol 41: 689 — 696

    Article  PubMed  CAS  Google Scholar 

  • Tyler HM, Saxton CAPD, Parry MJ (1981) Administration to man of UK–37, 248–01, a selective inhibitor of thromboxane synthetase. Lancet 1: 629–632

    CAS  Google Scholar 

  • Vatner SF, Heyndrickx GR (1975) Mechanism of action of nitroglycerin: coronary, cardiac and systemic effects. In: Needleman P (ed) Organic nitrates. Springer, Berlin Heidelberg New York, pp 131–161 (Handbook of experimental pharmacology, vol 40 )

    Google Scholar 

  • Vatner SF, Higgins CB, Millard RW, Franklin D (1972) Direct and reflex effects of nitroglycerin on coronary and left ventricular dynamics in conscious dogs. J Clin Invest 51: 2872–2882

    Article  PubMed  CAS  Google Scholar 

  • Vatner SF, Higgins CB, Braunwald E (1974) Effects of norepinephrine on coronary circulation and left ventricular dynamics in the conscious dog. Circ Res 34: 812–823

    PubMed  CAS  Google Scholar 

  • Vatner SF, Baig H, Manders WT, Ochs H, Pagani M (1977) Effects of propranolol on regional myocardial function, electrograms and blood flow in conscious dogs with myocardial ischemia. J Clin Invest 60: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Verdouw PD, TenCate FJ, Hugenholtz PG (1980) Effect of nifedipine on segmental myocardial functions in the anaesthetized pig. Eur J Pharmacol 63: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Vineberg AM, Chari RS, Pifarre R, Mercier C (1962) The effect of persantin on intracoronary collateral circulation and survival during gradual experimental coronary occlusion: a preliminary report. Can Med Assoc J 87: 336–345

    PubMed  CAS  Google Scholar 

  • Warltier DC, Meils CM, Gross GJ, Brooks HL (1981) Blood flow in normal and acutely ischemic myocardium after verapamil, diltiazem and nisoldipine (Bay k 5552), a new dihydropyridine calcium antagonist. J Pharmacol Exp Ther 218: 296–302

    PubMed  CAS  Google Scholar 

  • Warltier DC, Lamping KA, Zyvoloski MG, Gross GJ, Brooks HL (1983) The slow–channel calcium blocking agent, nitrendipine and coronary collateral blood flow. J Cardiovasc Pharmacol 5: 272–277

    Article  PubMed  CAS  Google Scholar 

  • Weber KT, Janicki JS (1979) The metabolic demand and oxygen supply of the heart: physiologic and clinical considerations. Am J Cardiol 44: 722–729

    Article  PubMed  CAS  Google Scholar 

  • Weintraub WS, Hattoro S, Agarwal J, Bodenheimer MM, Banka VS, Helfant RH (1981) Variable effect of nifedipine on myocardial blood flow at three grades of coronary occlusion in the dog. Circ Res 48: 937–942

    PubMed  CAS  Google Scholar 

  • Wessler S, Gilel SN (1979) Review. Heparin: new concepts relevant to clinical use. Blood 53: 525–544

    PubMed  CAS  Google Scholar 

  • essler S, Gilel SN (1979) Review. Heparin: new concepts relevant to clinical use. Blood 53: 525–544

    Google Scholar 

  • Wilcken DEL, Paolini HJ, Eikens E (1971) Evidence for intravenous dipyridamole (persantin) producing a coronary steal effect in the ischemic myocardium. Aust NZ J Med 1: 8–14

    Google Scholar 

  • Wilcken DEL, Paolini HJ, Eikens E (1971) Evidence for intravenous dipyridamole (persantin) producing a coronary steal effect in the ischemic myocardium. Aust NZ J Med 1: 8–14

    Article  CAS  Google Scholar 

  • Wilkins RW, Haynes FW, Weiss S (1937) The role of the venous system in circulatory collapse induced by sodium nitrite. J Clin Invest 16: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Wille HH, Sauer G, Tebbe U, Neuhaus KL, Kreuzer H (1980) Nitroglycerin and afterload: effects of aortic complicance and capacity of the windkessel. Eur Heart J 1: 445–449

    PubMed  CAS  Google Scholar 

  • Williams JF, Glick G, Braunwald E (1965) Studies on cardiac dimensions in intact unanaesthetized man. V. Effects of nitroglycerin. Circulation 32: 767–771

    Google Scholar 

  • Winbury MM (1971) Redistribution of left ventricular blood flow produced by nitroglycerin. Circ Res 28 and 29 [Suppl 1]: 1–140

    Google Scholar 

  • Winbury MM, Howe BB, Hefner MA (1969) Effect of nitrates and other coronary dilators on large and small coronary vessels: hypothesis for the mechanism of action of nitrates. J Pharmacol Ther 168: 70–95

    CAS  Google Scholar 

  • Wolfson S, Gorlin R (1969) Cardiovascular pharmacology of propranolol in man. Circulation 40: 501–511

    PubMed  CAS  Google Scholar 

  • Zyvoloski MG, Brooks HL, Gross GJ, Warltier DC (1982) Myocardial perfusion distal to an acute or chronic coronary artery occlusion: effects of diltiazem and nifedipine. J Pharmacol Exp Ther 222: 494–500

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kraupp, O. (1985). Pharmacodynamic Principles of Action of Antianginal Drugs. In: Abshagen, U. (eds) Clinical Pharmacology of Antianginal Drugs. Handbook of Experimental Pharmacology, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69524-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69524-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69526-1

  • Online ISBN: 978-3-642-69524-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics