Skip to main content

General Enzymology of the Lung

  • Chapter
Toxicology of Inhaled Materials

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 75))

Abstract

It is now well documented that biochemical and enzymatic changes occur in lung tissue in response to injury. The reaction of inhaled toxic agents with lung tissue is often regional. Depending upon the solubility, reactivity, and other physical and chemical properties, the toxic agents may react variably with the airway epithelium, terminal bronchioles, and/or alveolar parenchyma as they travel through the conducting airways to the gas exchange area. The regional or focal nature of injury tends to lower the sensitivity of quantitative biochemical and enzymatic changes. Lung tissue preparations generally include both injured and uninjured portions of lung tissue, thus diluting the effects. Quantitative determinations are convenient with high level exposures, which cause massive lung injury, producing large changes in enzymatic and other biochemical parameters. When focal or subtle changes occur with low level exposures, quantitative expressions become difficult, but are still possible if a set of sensitive parameters can be examined, or a battery of tests can be carried out. Measurements of a variety of parameters will have the virtue that all biochemical and enzymatic parameters do not change to the same extent, and some may not change at all. It is from a plot of all the parameters examined that a definitive answer can be derived whether or not a given toxic agent has produced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Akino T (1972) Comparison of metabolic heterogeneity of glycerolipids in rat lungand liver. Tokoho J Exp Med 106:343–355

    CAS  Google Scholar 

  • Abe M, Tierney DF (1976) Lipid metabolism of rat lung during recovery from lung injury. Fed Proc 35:479

    Google Scholar 

  • Abe M, Tierney DF (1977 a) Lung lipid metabolism after 7 days of hydrocortisone administration to adult rats. J Appl Physiol 42:202–205

    PubMed  CAS  Google Scholar 

  • Abe M, Tierney DF (1977 b) Lysophosphatidylcholine (LPC) incorporation into phosphatidylcholine (PC) of rat lung tissue slices (TS) and isolated perfused lungs (IPL). Fed Proc 36:480

    Google Scholar 

  • Abe M, Akino T, Ohno K (1972) The formation of lecithin from lysolecithin in rat lungsupernatant. Biochim Biophys Acta 280:275–280

    PubMed  CAS  Google Scholar 

  • Abell CW, Rosini LA, DiPao O (1967) Effects of uracil mustard on DNA, RNA, and protein biosynthesis in tissues of A-J mice. Cancer Res 27:1101–1108

    PubMed  CAS  Google Scholar 

  • Adamson IYR, Bowden DH (1973) The intracellular site of surfactant synthesis. Autoradiographic studies on murine and avian lung explants. Exp Mol Pathol 18:112–124

    PubMed  CAS  Google Scholar 

  • Adamson IYR, Bowden DH (1974) The type 2 cell as progenitor of alveolar epithelial regeneration. Lab Invest 30:35–42

    PubMed  CAS  Google Scholar 

  • Adamson IYR, Bowden DH, Cote MF, Witschi HP (1977) Lung injury induced by buty-. lated hydroxytoluene. Cytodynamic and biochemical studies in mice. Lab Invest 36:26–32

    Google Scholar 

  • Akino T, Abe M, Arai T (1971) Studies on the biosynthetic pathways of molecular species of lecithin by rat lung slices. Biochim Biophys Acta 248:274–281

    PubMed  CAS  Google Scholar 

  • Allen DW, Jandl JH (1961) Oxidative hemolysis and precipitation of hemoglobin. II. Role of thiols in oxidant drug action. J Clin Invest 40:454–475

    PubMed  CAS  Google Scholar 

  • Allison AC (1971) Lysosomes and the toxicity of particulate pollutants. Arch Intern Med 128:131–138

    PubMed  CAS  Google Scholar 

  • Aronson JF, Johns LW, Pietra GG (1976) Initiation of lung cell proliferation by trypsin. Lab Invest 34:529–536

    PubMed  CAS  Google Scholar 

  • Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140

    CAS  Google Scholar 

  • Asghar K, Reddy BG, Krishna G (1975) Histochemical localization of glutathione in tissues. J Histochem Cytochem 23:774–779

    PubMed  CAS  Google Scholar 

  • Askosas BA, Humphrey JH (1958) Formation of antibody by isolated perfused lungs of immunized rabbits. Biochem J 70:212–222

    Google Scholar 

  • Autor AP, Frank L, Roberts RJ (1976) Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory distress syndrome. Pediatr Res 10:154–158

    PubMed  CAS  Google Scholar 

  • Aviado DM (1959) Therapy of experimental pulmonary edema in the dog with special reference to burns of the respiratory tract. Circ Res 7:1018–1030

    PubMed  CAS  Google Scholar 

  • Ayuso MS, Fisher AB, Perilla R, Willamson JR (1973) Glucose metabolism by isolated rat lung cells. Am J Pathol 225:1153–1160

    CAS  Google Scholar 

  • Azzopardi A, Thurlbeck WM (1967) The oxidative enzyme pattern in developing and adult mice and adult rabbits. Lab Invest 16:706–716

    PubMed  CAS  Google Scholar 

  • Azzopardi A, Thurlbeck WM (1968) Oxidative enzyme pattern of the bronchial mucous glands. Am Rev Respir Dis 97:1038–1045

    PubMed  CAS  Google Scholar 

  • Azzopardi A, Thurlbeck WM (1969) The histochemistry of the nonciliated bronchiolar epithelial cell. Am Rev Respir Dis 99:516–525

    PubMed  CAS  Google Scholar 

  • Bakhle YS (1968) Conversion of angiotensin I to angiotensin II by cell-free extracts of dog lung. Nature 220:919–921

    PubMed  CAS  Google Scholar 

  • Barber AA, Bernheim F (1967) Lipid peroxidation: its measurement, occurrence and significance in animal tissues. Adv Gerontol Res 2:355–403

    PubMed  CAS  Google Scholar 

  • Bardell D, Fowler AK (1971) Inhibition of dehydrogenase activity in lung tissue due to breathing oxygen at atmospheric pressure. Aerosp Med 42:432–435

    PubMed  CAS  Google Scholar 

  • Barron ESG, Miller ZB, Bartlett GR (1947) Studies of biological oxidations. XXL The metabolism of lung as determined by study of slices and ground tissue. J Biol Chem 171:791–800

    PubMed  CAS  Google Scholar 

  • Bassett DJ, Fisher AB, Rabinowitz JL (1973) Effect of anoxia on lipid synthesis by the lung. FedProc 32:364

    Google Scholar 

  • Bassett DJP, Fisher AB (1976) Metabolic response to carbon monoxide by isolated rat lungs. Am J Physiol 230:658–663

    PubMed  CAS  Google Scholar 

  • Bassett DJP, Fisher AB (1979) Glucose metabolism in rat lung during exposure to hyperbaric O2. J Appl Physiol 45:943–949

    Google Scholar 

  • Baudach H, Widow W, Peck U, Behrendt G (1971) Uber die Beeinflussung der Sauerstoffaufnahme von Lungengewebeschnitten durch THAM und Antibiotika. Z Exp Chir 4:236–240

    PubMed  CAS  Google Scholar 

  • Baudhuin P (1974) Isolation of rat liver peroxisomes. In: Fleischer S, Packer L (eds) Biomembrane, part A. Academic, New York, pp 356–368 (Methods in enzymology, vol 31)

    Google Scholar 

  • Bend JR, Hook GER, Easterling RE, Gram TE, Fouts JE (1972) A comparative study of the hepatic and pulmonary microsomal mixed-function oxidase systems in the rabbit. J Pharmacol Exp Ther 182:206–217

    Google Scholar 

  • Bhatnagar RS, Hussain MZ, Streifel J, Tolentino M, Enriquez B (1978) Alterations of collagen synthesis in lung organ culture by hypertoxic environment. Biochem Biophys Res Commun 83:392–397

    PubMed  CAS  Google Scholar 

  • Bhatnagar RS, Hussain MZ, Belton JC (1979) Applications of lung organ culture in environmental investigations. In: Lee SD, Mudd JB (eds) Assessing Toxic effects of environmental pollutants. Ann Arbor Science Publishers, Ann Arbor, pp 121–149

    Google Scholar 

  • Bieber MM, Cogan MG, Durbridge TC, Rosan RC (1971) Oxygen toxicity in the newborn guinea-pig lung. The incorporation of tritiated uridine into monoribosomes. Biol Neonatorum 17:3 5–43

    Google Scholar 

  • Blank ML, Dalbey W, Nettesheim P, Price J, Creasia D, Snyder F (1978) Sequential changes in phospholipid composition and synthesis in lungs exposed to nitrogen dioxide. Am Rev Respir Dis 117:273–280

    PubMed  CAS  Google Scholar 

  • Bonanni F, Levinson SS, Wolf G, De Luca L (1973) Glycoproteins from the hamster respiratory tract and their response to vitamin A. Biochim Biophys Acta 297:441–451

    PubMed  CAS  Google Scholar 

  • Bouley G, Dubreuil A, Despaux N, Boudene C (1977) Toxic effects of cadmium microparticles on the respiratory system: an experimental study on rats and mice. Scand J Work Environ Health 3:116–121

    PubMed  CAS  Google Scholar 

  • Bowden DH (1973) The alveolar macrophage and its role in toxicology. CRC Crit Rev Toxicol 2:95–124

    PubMed  CAS  Google Scholar 

  • Boyd MR (1977) Evidence for the Clara cell as a site of cytochrome P-450 dependent mixed function oxidase activity in lung. Nature 269:713–715

    PubMed  CAS  Google Scholar 

  • Boyland E, Chasseaud LG (1969) The role of glutathione and glutathione-S-transferases in mereapturic acid biosynthesis. Adv Enzymol 32:173–219

    PubMed  CAS  Google Scholar 

  • Bradley K, McConnell-Breul S, Crystal RG (1974 a) Lung collagen heterogeneity. Proc Natl Acad Sci USA 71:2828–2832

    PubMed  CAS  Google Scholar 

  • Bradley KH, McConnell-Breul SD, Crystal RG (1974 b) Lung collagen composition and synthesis: Characterization and changes with age. J Biol Chem 249:2674–2683

    Google Scholar 

  • Brebner J, Kalow W (1970) Soluble esterases of human lung. Can J Biochem 48:970–978

    PubMed  CAS  Google Scholar 

  • Breyer MG, Kilroe-Smith TA, Prinsloo H (1964) Changes in activities of respiratory enzymes in lungs of guinea-pigs exposed to silica dust. II. Comparison of the effects of quartz dust and lampblack on the succinate oxidase system. Br J Ind Med 21:32–34

    PubMed  CAS  Google Scholar 

  • Breyer U (1971) Metabolism of the phenothiazine drug perazine by liver and lung microsomes from various species. Biochem Pharmacol 20:3341–3351

    PubMed  CAS  Google Scholar 

  • Buckingham S, Heinemann HO, Sommers SC, McNary WF (1966) Phospholipid synthesis in the large pulmonary alveolar cell. Am J Pathol 48:1027–1041

    PubMed  CAS  Google Scholar 

  • Buckley RD, Balchum OJ (1967 a) Enzyme alterations following nitrogen dioxide exposure. Arch Environ Health 14:687–692

    PubMed  CAS  Google Scholar 

  • Buckley RD, Balchum OJ (1967 b) Effects of nitrogen dioxide on lactic dehydrogenase isozymes. Arch Environ Health 14:424–428

    PubMed  CAS  Google Scholar 

  • Bus JS, Aust SD, Gibson JE (1976) Paraquat toxicity: proposed mechanism of action involving lipid peroxidation. Environ Health Perspect 16:139–146

    PubMed  CAS  Google Scholar 

  • Caldwell PRB, Wittenberg BA (1974) The oxygen dependency of mammalian tissue. Am J Med 57:447–452

    PubMed  CAS  Google Scholar 

  • Chaudhari A, Sivarajah K, Warnock R, Eling TE, Anderson MW (1979) Inhibition of pulmonary prostaglandin metabolism by exposure of animals to oxygen or nitrogen dioxide. Biochem J 184:51–57

    PubMed  CAS  Google Scholar 

  • Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181

    PubMed  CAS  Google Scholar 

  • Chevalier G, Collet AJ (1972) In vivo incorporation of choline-3H, Leucine-3H and galactose-3H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radioautographic study in mouse by electron microscopy. Anat Rec 174:289–310

    PubMed  CAS  Google Scholar 

  • Chida N, Adams FH (1967) Incorporation of acetate into fatty acids and lecithin by lung slices from fetal and newborn lambs. J Lipid Res 8:335–341

    PubMed  CAS  Google Scholar 

  • Chida N, Hirono H, Nishimura Y, Arakawa T (1973) Choline phosphokinase; phosphorylcholine cytidyltransferase and CDP-choline; 1,2-diglyceride cholinephosphotransferase activity in developing rat lung. Tokoho J Exp Med 110:273–282

    CAS  Google Scholar 

  • Chio KS, Tappel AL (1969) Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids. Biochemistry 8:2821–2827

    PubMed  CAS  Google Scholar 

  • Chow CK, Tappel AL (1972) an enzymatic protective mechanism against lipid peroxidation damage to lungs of ozone-exposed rats. Lipids 7:518–524

    PubMed  CAS  Google Scholar 

  • Chow CK, Tappel AL (1973) Activities of pentose shunt and glycolytic enzymes in lungs of ozone-exposed rats. Arch Environ Health 26:205–208

    PubMed  CAS  Google Scholar 

  • Chow CK, Hussain MZ, Cross CE, Dungworth DL, Mustafa MG (1976) Effects of low levels of ozone on rat lungs. I. Biochemical responses during recovery and reexposure. Exp Mol Pathol 25:182–188

    PubMed  CAS  Google Scholar 

  • Chow CK, Cross CE, Kaneko J J (1977) Lactate dehydrogenase activity and isoenzyme pattern in lungs, erythrocytes, and plasma of ozone-exposed rats and monkeys. J Toxicol Environ Health 3:877–884

    PubMed  CAS  Google Scholar 

  • Chvapil M, Peng YM (1975) Oxygen and lung fibrosis. Arch Environ Health 30:528–532

    PubMed  CAS  Google Scholar 

  • Chvapil M, Hurych J, Mirejovska E (1970) Effect of long-term hypoxia on protein synthesis in granuloma and in some organs of rats. Proc Soc Exp Biol Med 135:613–617

    PubMed  CAS  Google Scholar 

  • Coffin DL, Stokinger HE (1977) Biological effects of air pollutants. In: Stern AC (ed) Air-pollution, vol 2. Academic, New York, pp 231–361

    Google Scholar 

  • Collins JF, Crystal RG (1975) Characterization of cell-free synthesis of collagen by lung polysomes in a heterologous system. J Biol Chem 250:7332–7342

    PubMed  CAS  Google Scholar 

  • Collins JF, Crystal RG (1976) Protein synthesis. In: Crystal RG (ed) The biochemical basis of pulmonary function, vol 2. Marcel Dekker, New York, pp 171–212

    Google Scholar 

  • Crapo JD, McCord JM (1976) Oxygen induced changes in pulmonary superoxide dismutase assayed by antibody titrations. Am J Physiol 231:1196–1203

    PubMed  CAS  Google Scholar 

  • Crapo JD, Tierney DF (1974) Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol 226:1404–1407

    Google Scholar 

  • Crapo JD, Sjostrom K, Drew RT (1978 a) Tolerance and cross-tolerance using NO2 and O2.1. Toxicology and biochemistry. J Appl Physiol 44:364–369

    PubMed  CAS  Google Scholar 

  • Crapo JD, McCord JM, Fridovich I (1978 b) Preparation and assay of superoxide dismutases. In: Fleischer S, Packer L (eds) Biomembranes, part D: biological oxidations — mitochondrial and microbial systems. Academic, New York, pp 382–393 (Methods in enzymology, vol 53)

    Google Scholar 

  • Cross CE, Last JA (1977) Lack of correlation between glutathione peroxidase activities and susceptibility to O2 toxicity in rat lungs. Res Commun Chem Pathol Pharmacol 17:433–446

    PubMed  CAS  Google Scholar 

  • Cross CE, De Lucia AJ, Reddy AK, Hussain MZ, Chow CK, Mustafa MG (1976) Ozone interaction with lung tissue: biochemical approaches. Am J Med 60:929–935

    PubMed  CAS  Google Scholar 

  • Cross CE, Hasegawa G, Reddy KA, Omaye ST (1977) Enhanced lung toxicity of O2 in selenium-deficient rats. Res Commun Chem Pathol Pharmacol 16:695–706

    PubMed  CAS  Google Scholar 

  • Crystal RG (1976) Biochemical processes in the normal lung. In: Bouhuys A (ed) lung cells in disease. North-Holland, Amsterdam, pp 17–38

    Google Scholar 

  • Currie WD, Pratt PC, Sanders AP (1974) Hyperoxia and lung metabolism. Chest (Suppl) 66:19S-21S

    Google Scholar 

  • Dallner G, Siekevitz P, Palade GE (1966) Biogenesis of endoplasmic reticulum membrane. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol 30:97–117

    PubMed  CAS  Google Scholar 

  • Darrah HK, Hedley-Whyte J (1969) Abnormalities in lung chemistry. Anesth Analg (Cleve) 48:148–165

    CAS  Google Scholar 

  • Darrah HK, Hedley-Whyte J (1973) Rapid incorporation of palmitate into lung: site and metabolic fate. J Appl Physiol 34:205–213

    PubMed  CAS  Google Scholar 

  • Davis HV, Reeves AL (1971) Collagen biosynthesis in rat lungs during exposure to asbestos. Am Ind Hyg Assoc J 32:599–602

    PubMed  CAS  Google Scholar 

  • De Duve C (1971 a) Tissue fractionation: past and present. J Cell Biol 50:20D-55D

    PubMed  Google Scholar 

  • De Duve C (1971 b) General principles. In: Roodyn DB (ed) Enzyme cytology. Academic, New York, pp 1–26

    Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • De Luca L, Anderson H, Wolf G (1971) The in vivo and in vitro biosynthesis of lung tissue glycopeptides. Arch Intern Med 127:853–857

    PubMed  Google Scholar 

  • De Lucia AJ, Hoque PM, Mustafa MG, Cross CE (1972) Ozone interaction with rodent lung. Effect on sulfhydryls and sulfhydryl-containing enzyme activities. J Lab Clin Med 80:559–566

    Google Scholar 

  • De Lucia AJ, Mustafa MG, Hussain MZ, Cross CE (1975) Ozone interaction with rodent. III. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls. J Clin Invest 55:794–802

    Google Scholar 

  • De Lumen BO, Taylor S, Urribarri N, Tappel AL (1972) Subcellular localization of acid hydrolases in rat lungs. Biochim Biophys Acta 268:597–600

    PubMed  Google Scholar 

  • DiAugustine RP (1974) Lung concentric lamellar organelle. Hydrolase activity and compositional analysis. J Biol Chem 249:584–593

    PubMed  CAS  Google Scholar 

  • Dickie K, Massaro D (1974) Protein transport by lung. Proc Soc Exp Biol Med 145:154–156

    PubMed  CAS  Google Scholar 

  • Dickie KJ, Massaro GD, Marshall V, Massaro D (1973) Amino acid incorporation into protein of surface-active lung fraction. J Appl Physiol 34:606–614

    PubMed  CAS  Google Scholar 

  • Dillard CJ, Tappel AL (1973) Fluorescent products from reactions of peroxidizing polyunsaturated fatty acids with phosphatidyl ethanolamine and phenylalanine. Lipids 8:183–189

    PubMed  CAS  Google Scholar 

  • Dillard CJ, Urribarri N, Reddy K, Fletcher B, Taylor S, De Lumen B, Langberg S, Tappel AL (1972) Increased lysosomal enzyme activities in lungs of ozone-exposed rats. Arch Environ Health 25:426–431

    PubMed  CAS  Google Scholar 

  • Dillard CJ, Dumelin EE, Tappel AL (1977) Effect of dietary vitamin E on expiration of pentane and ethane by the rats. Lipids 12:109–114

    CAS  Google Scholar 

  • Douglas JS, Curry G, Geffkin SA (1977) Superoxide dismutase and pulmonary ozone toxicity. Life Sci 20:1187–1192

    PubMed  CAS  Google Scholar 

  • Downey JE, Irving DH, Tappel AL (1978) Effects of dietary antioxidants on in vivo lipid peroxidation in the rat as measured by pentane production. Lipids 13:403–407

    PubMed  CAS  Google Scholar 

  • D’Souza RA, Bhide SB (1975) Profiles of protein biosynthesis in isoniazid (INH) and hydrazine sulfate (HS) treated mice. Indian J Cancer 21:439–445

    Google Scholar 

  • Dungworth DL, Castleman WL, Chow CK, Mellick PW, Mustafa MG, Tarkington BK, Tyler WS (1975) Effect of ambient levels of ozone on monkeys. Fed Proc 34:1670–1674

    PubMed  CAS  Google Scholar 

  • Edson NL, Leloir LF (1936) Ketogenesis-antiketogenesis. V. Metabolism of ketone bodies. Biochem J 30:2319–2332

    PubMed  CAS  Google Scholar 

  • Ellis DB, Munro JR, Stahl GH (1972) Biosynthesis of respiratory tract mucins. III. Metabolism of aminosugars by tracheal mucosal extracts. Biochim Biophys Acta 289:108–116

    PubMed  CAS  Google Scholar 

  • Elsayed NM, Mustafa MG (1982) Dietary antioxidant and the biochemical response to oxidant inhalation. I. Influence of dietary vitamin E on the biochemical effects of nitrogen dioxide exposure in rat lung. Toxicol Appl Pharmacol 66:319–328

    PubMed  CAS  Google Scholar 

  • Elsayed NM, Mustafa MG, Postlethwait EM (1982 a) Age-dependent pulmonary response of rats to ozone exposure. J Toxicol Environ Health 9:835–848

    PubMed  CAS  Google Scholar 

  • Elsayed NM, Hacker AD, Mustafa MG, Kuehn K, Schrauzer G (1982 b) Effects of decreased glutathione peroxidase activity on the pentose phosphate cycle in mouse lung. Biochem Biophys Res Commun 104:564–569

    Google Scholar 

  • Engelbrecht FM, Bester JCP (1968) The in vivo effects of quartz and carbon dusts on the activity of cytochrome c oxidase and the DNA and RNA content of lung tissue. S Afr Med J 42:1142–1145

    PubMed  CAS  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. In: Estabrook RW, Pullman ME (eds) Methods in enzymology, vol 10. Academic, New York, pp 41–47

    Google Scholar 

  • Evans MJ, Mayr W, Bils RF, Loosli CG (1971) Effects of ozone on cell renewal in pulmonary alveoli of aging mice. Arch Environ Health 22:450–453

    PubMed  CAS  Google Scholar 

  • Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1973) Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 70:171–194

    Google Scholar 

  • Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to nitrogen dioxide. Exp Mol Pathol 22:142–150

    PubMed  CAS  Google Scholar 

  • Evans MJ, Johnson LV, Stephens RJ, Freeman G (1976) Renewal of the terminal bron-chiolar epithelium in the rat following exposure to NO2 or O3. Lab Invest 35:246–257

    PubMed  CAS  Google Scholar 

  • Evans MJ, Cabral-Anderson LJ, Freeman G (1977) Effects of NO2 on the lungs of aging rats. II. Cell proliferation. Exp Mol Pathol 27:366–376

    PubMed  CAS  Google Scholar 

  • Evans MJ, Cabral-Anderson LJ, Freeman G (1978) Role of the Clara cell in renewal of the bronchiolar epithelium. Lab Invest 38:648–655

    PubMed  CAS  Google Scholar 

  • Fairchild EJ, Murphy SD, Stokinger HE (1959) Protection by sulfur compounds against the air pollutants ozone and nitrogen dioxide. Science 130:861–862

    PubMed  CAS  Google Scholar 

  • Fanson RC, Waite M (1973) Lysosomal phospholipases Ax and A2 of normal and bacillus Calmette Guerin-induced alveolar macrophages. J Cell Biol 56:621–627

    Google Scholar 

  • Fariday EE, Naimark A (1971) Effect of distension on lung metabolism of excised dog lung. J Appl Physiol 31:31–37

    Google Scholar 

  • Farrell PM, Lundgren DW, Adams AJ (1974) Choline kinase and choline phosphotransferase in developing fetal rat lung. Biochem Biophys Res Commun 57:696–701

    PubMed  CAS  Google Scholar 

  • Felts JM (1964) Biochemistry of the lung. Health Phys 10:973–979

    PubMed  CAS  Google Scholar 

  • Fisher AB (1976) Oxygen utilization and energy production. In: Crystal RG (ed) The biochemical basis of pulmonary function. Marcel Dekker, New York, pp 75–104

    Google Scholar 

  • Fisher AB, Scarpa A, LaNoue KF, Bassett D, Williamson JR (1973) Respiration of rat lung mitochondria and the influence of Ca++ on substrate utilization. Biochemistry 12:1438–1445

    PubMed  CAS  Google Scholar 

  • Fisher AB, Diamond S, Mellen S (1974) Effect of oxygen exposure on metabolism of the rabbit alveolar macrophage. J Appl Physiol 37:341–345

    PubMed  Google Scholar 

  • Fisher HK, Clements J A, Wright RR (1973) Enhancement of oxygen toxicity by the herbicide paraquat. Am Rev Respir Dis 107:246–252

    PubMed  CAS  Google Scholar 

  • Fitschen W (1967 a) Studies on monkey lung ribosomes. Chemical and physical properties. S Afr J Med Sci 32:112–118

    PubMed  CAS  Google Scholar 

  • Fitschen W (1967 b) Studies on monkey lung ribosomes. Cell-free protein synthesis: comparison of free and membrane-bound ribosomes. S Afr J Med Sci 32:119–131

    PubMed  CAS  Google Scholar 

  • Fletcher BL, Tappel AL (1973) Protective effects of dietary alpha-tocopherol in rats exposed to toxic levels of ozone and nitrogen dioxide. Environ Res 6:165–175

    PubMed  CAS  Google Scholar 

  • Fletcher K, Wyatt I (1970) The composition of lung lipids after poisoning with paraquat. Br J Exp Pathol 51:604–610

    PubMed  CAS  Google Scholar 

  • Fletcher K, Wyatt I (1972) The action of paraquat on the incorporation of palmitic acid into dipalmitoyl lecithin in mouse lungs. Br J Exp Pathol 53:225–230

    PubMed  CAS  Google Scholar 

  • Flohe L, Benohr HC, Siess H, Waller HD, Wendel A (eds) (1974) Symposium on glutathione. Thieme, Stuttgart

    Google Scholar 

  • Fouts JR, Devereux TR (1972) Developmental aspects of hepatic and extrahepatic drug-metabolizing enzyme systems: microsomal enzymes and components in rabbit liver and lung during the first month of life. J Pharmacol Exp Ther 183:458–468

    PubMed  CAS  Google Scholar 

  • Frank L, Autor AP, Roberts RJ (1977) Oxygen toxicity and hyaline membrane disease: the effect of hyperoxia on pulmonary superoxide dismutase activity and the mediating role of plasma or serum. J Pediatr 90:105–110

    PubMed  CAS  Google Scholar 

  • Frank L, Wood D, Roberts RJ (1978 a) The effect of diethyldithiocarbamate (DDC) on oxygen toxicity and lung enzyme activity in immature and adult rats. Biochem Pharmacol 27:251–254

    PubMed  CAS  Google Scholar 

  • Frank L, Yam J, Roberts RJ (1978 b) The role of endotoxin in protection of adult rats from oxygen-induced lung toxicity. J Clin Invest 61:269–275

    PubMed  CAS  Google Scholar 

  • Fredricsson B (1956) The distribution of alkaline phosphatase in the rat lung. Acta Anat 26:246–256

    PubMed  CAS  Google Scholar 

  • Fridovich I (1974) Superoxide dismutase. Adv Enzymol 41:35–97

    PubMed  CAS  Google Scholar 

  • Fritts HW Jr, Strauss B, Wichern W Jr, Courand A (1963) Utilization of oxygen in lung of patients with diffuse, nonobstructive pulmonary disease. Trans Assoc Am Phys 76:302–311

    Google Scholar 

  • Frosolono MF, Slivka S, Charms BL (1971) Acyl transferase activities in dog lung microsomes. J Lipid Res 12:96–103

    PubMed  CAS  Google Scholar 

  • Fukase O, Isomura K, Watanabe H (1975) Effect of ozone on vitamin C in vivo. Taiki-osen Kenkyu 10:13–16

    Google Scholar 

  • Fukase O, Isomura K, Watanabe H (1978) Effects of exercise on mice exposed to ozone. Arch Environ Health 32:198–201

    Google Scholar 

  • Gacad G, Massaro D (1973) Hyperoxia: influence on lung mechanics and protein synthesis. J Clin Invest 52:559–565

    PubMed  CAS  Google Scholar 

  • Gacad G, Dickie K, Massaro D (1972) Protein synthesis in lung: influence of starvation on amino acid incorporation into protein. J Appl Physiol 33:381–384

    PubMed  CAS  Google Scholar 

  • Garfinkel D (1963) A comparative study of electron transport in microsomes. Comp Bio-chem Physiol 8:367–379

    CAS  Google Scholar 

  • Gassenheimer L, Rhoades RA, Scholz RW (1972) In vivo incorporation of 14C-l-palmitate and 3H-U-glucose into lung lecithin. Respir Physiol 15:268–275

    PubMed  CAS  Google Scholar 

  • Gelmont D, Stein RA, Mead JF (1981) The bacterial origin of rat breath pentane. Biochem Biophys Res Commun 102:932–936

    PubMed  CAS  Google Scholar 

  • Gershon ZLB, Gatt S (1976) Lysolecithinase activity in subcellular fractions of rat organs. Biochem Biophys Res Commun 69:592–598

    Google Scholar 

  • Gil J, Reiss OK (1973) Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J Cell Biol 58:152–171

    PubMed  CAS  Google Scholar 

  • Gilder H, McSherry CK (1972) An improved method for measuring the incorporation of palmitic acid into lung lecithin. Am Rev Respir Dis 106:556–562

    PubMed  CAS  Google Scholar 

  • Giri SN, Benson J, Siegel DM, Rice SA, Schiedt M (1975) Effects of pretreatment with antiinflammatory drugs on ozone-induced lung damage in rats. Proc Soc Exp Biol Med 150:810–814

    PubMed  CAS  Google Scholar 

  • Glaviano W, Yo S, Masters T (1967) Levels of lactate in lung tissue during sympathetic stimulation. Am J Physiol 213:437–440

    PubMed  CAS  Google Scholar 

  • Goldfischer S, Kikkawa Y, Hoffman L (1968) The demonstration of acid hydrolase activities in the inclusion bodies of type II alveolar cells and other lysosomes in the rabbit lung. J Histochem Cytochem 16:102–109

    CAS  Google Scholar 

  • Goldner RD, Brumley GW (1974) Comparative incorporation of P32 into lung phosphatidyl choline in mammals with different metabolic and pulmonary morphologic characteristics. Proc Soc Exp Biol Med 145:1343–1347

    PubMed  CAS  Google Scholar 

  • Goldstein BD, Buckley RD, Cardenas R, Balchum OJ (1970) Ozone and vitamin E. Science 169:605–606

    CAS  Google Scholar 

  • Gould KG (1976) Dispersal of lung into individual viable cells. In: Crystal RG (ed) The biochemical basis of pulmonary function. Marcel Dekker, New York, pp 49–71

    Google Scholar 

  • Gould KG, Clements J A, Jones AL, Felts JM (1972) Dispersal of rabbit lung into individual viable cells: a new method for the study of lung metabolism. Science 178:1209–1210

    PubMed  CAS  Google Scholar 

  • Granstrom E (1971) Metabolism of prostaglandin R2 in guinea-pig lung. Eur J Biochem 20:451–458

    PubMed  CAS  Google Scholar 

  • Gross I, Warshaw JB (1974) Enzyme activities related to fatty acid synthesis in developing mammalian lung. Pediatr Res 8:193–199

    PubMed  CAS  Google Scholar 

  • Haase G, Dunkley WL (1969) Ascorbic acid and copper in linoleate oxidation. I. Measurement of oxidation by ultraviolet spectrophotometry and the thiobarbituric acid test. J Lipid Res 10:555–560

    PubMed  CAS  Google Scholar 

  • Hackett RL, Sunderman FW Jr (1968) Pulmonary alveolar reaction to nickel carbonyl. Arch Environ Health 16:349–362

    PubMed  CAS  Google Scholar 

  • Hafeman DG, Hoekstra WG (1977) Lipid peroxidation in vivo during vitamin E and selenium deficiency in the rat as monitored by ethane evolution. J Nutr 107:666–672

    PubMed  CAS  Google Scholar 

  • Hallman M, Gluck L (1974) Phosphatidyl glycerol in lung surfactant. I. Synthesis in rat lung microsomes. Biochem Biophys Res Commun 60:1–7

    PubMed  CAS  Google Scholar 

  • Hamosh M, Shechter Y, Hamosh P (1978) Metabolic activity of developing rabbit lung. Pediatr Res 12:95–100

    PubMed  CAS  Google Scholar 

  • Harding J J (1969) Glutathione-protein mixed disulfides in human lens. Biochem J 114 88P-89P

    Google Scholar 

  • Harlan WR Jr, Said SI (1969) Selected aspects of lung metabolism. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol 6. Academic, New York, pp 357–384

    Google Scholar 

  • Harrap KR, Jackson RC, Smith CA, Hill BT (1973) The occurrence of protein-bound mixed disulfides in rat tissues. Biochim Biophys Acta 310:104–110

    PubMed  CAS  Google Scholar 

  • Heinemann HO (1961) Free fatty acid production by rabbit lung tissue in vitro. Am J Physiol 201:607–610

    PubMed  CAS  Google Scholar 

  • Heinemann HO, Fishman AP (1969) Nonrespiratory functions of mammalian lung. Physiol Rev 49:1–47

    Google Scholar 

  • Heran J, Mandell P, Weill G, Florange W (1961) Metabolic studies of surgical specimens of the human lung. I. Tissue consumption of oxygen. Rev Agressol 2:411–415

    CAS  Google Scholar 

  • Hill EE, Husbands DR, Lands WEM (1968) The selective incorporation of 14C-glycerol into different species of phosphatic acid, phosphatidylethanolamine, and phosphatidylcholine. J Biol Chem 243:4440–4451

    PubMed  CAS  Google Scholar 

  • Hoffman L (1972) Isolation of inclusion bodies from rabbit lung parenchyma. J Cell Physiol 79:65–72

    PubMed  CAS  Google Scholar 

  • Hollinger MA, Giri SN, Hwang F, Budd E (1974) Effect of thiourea on rat lung protein synthesis. Res Commun Chem Pathol Pharmacol 8:319–326

    PubMed  CAS  Google Scholar 

  • Holt PG, Keast D (1973) The effect of tobacco smoke on protein synthesis in macrophages. Proc Soc Exp Biol Med 142:1243–1247

    PubMed  CAS  Google Scholar 

  • Hook GER, Bend JR (1976) Minireview: pulmonary metabolism of xenobiotics. Life Sci 18:279–290

    PubMed  CAS  Google Scholar 

  • Hook GER, Bend JR, Hoel D, Fouts JE, Gram TE (1972) Preparation of lung microsomes and a comparison of the distribution of enzymes between subcellular fractions of rabbit lung and liver. J Pharmacol Exp Ther 182:474–490

    PubMed  CAS  Google Scholar 

  • Horn HD (1965) Glutathione reductase. In: Bergmeyer HU (ed) Methods of enzymatic analysis (revised). Academic, New York, pp 875–879

    Google Scholar 

  • Horton AA, Packer L (1970) Mitochondrial metabolism of aldehydes. Biochem J 116:19P–20P

    PubMed  CAS  Google Scholar 

  • Hussain MZ, Bhatnagar RS (1979 a) Enhanced collagen synthesis in lung organ culture in the presence of mercury. Environ Intl 2:33–35

    Google Scholar 

  • Hussain MZ, Bhatnagar RS (1979 b) Involvement of superoxide in the paraquat-induced enhancement of lung collagen synthesis in organ culture. Biochem Biophys Res Commun 89:71–76

    PubMed  CAS  Google Scholar 

  • Hussain MZ, Mustafa MG, Cross CE, Tyler WS (1974) Increased protein synthesis in lung after sub-acute exposure of rats and monkeys to ozone. Fed Proc 33:1468

    Google Scholar 

  • Hussain MZ, Cross CE, Mustafa MG, Bhatnagar RS (1976) Hydroxyproline contents and prolyl hydroxylase activities in lungs of rats exposed to low levels of ozone. Life Sci 18:897–904

    PubMed  CAS  Google Scholar 

  • Hussain MZ, Belton JC, Bhatnagar RS (1978) Macromolecular synthesis in organ cultures of neonatal rat lungs. In Vitro 14:740–745

    Google Scholar 

  • Ichinose T, Sagai M (1982) Studies on biochemical effects of nitrogen dioxide. III. Changes of the antioxidative protective systems in rat lungs and of lipid peroxidation by chronic exposure. Toxicol Appl Pharmacol 66:1–8

    PubMed  CAS  Google Scholar 

  • Jamieson D, Van Den Brenk HAS (1962) Pulmonary damage due to high pressure oxygen breathing in rats. 2. Changes in dehydrogenase activity of rat lung. Aust J Exp Biol Med Sci 40:51–56

    PubMed  CAS  Google Scholar 

  • Jamieson D, Van Den Brenk HAS (1964) The effect of antioxidants on high pressure oxygen toxicity. Biochem Pharmacol 13:159–164

    PubMed  CAS  Google Scholar 

  • Jocelyn PC (ed) (1972) Biochemistry of the SH groups. Academic, New York

    Google Scholar 

  • Johnston JM, Schultz FM, Jiminez JM, MacDonald PC (1975) Phospholipid biosynthesis: the activity of phosphatidic acid phosphohydrolase in the developing lung and amnionic fluid. Chest (Suppl) 67:19S-21S

    Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis: protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    PubMed  CAS  Google Scholar 

  • Kadis B (1978) Steroid epoxides in biologic system: a review. J Steroid Biochem 9:75–81

    PubMed  CAS  Google Scholar 

  • Kann HE, Mengel CE, Smith W, Horton B (1964) Oxygen toxicity and vitamin E. Aerosp Med 35:840–844

    CAS  Google Scholar 

  • Kauffman SL (1972) Alterations in cell proliferation in mouse lung following urethane exposure. III. Effects of chronic exposure on type 2 alveolar epithelial cell. Am J Pathol 68:317–323

    PubMed  CAS  Google Scholar 

  • Kaufman DG (1976) Biochemical studies of isolated hamster tracheal epithelium. Environ Health Perspect 16:99–110

    PubMed  CAS  Google Scholar 

  • Kaufman DG, Baker MS, Harris CC, Smith JM, Boren H, Sporn MB, Saffiotti U (1972 a) Coordinated biochemical and morphological examination of hamster tracheal epithelium. J Natl Cancer Inst 49:783–792

    PubMed  CAS  Google Scholar 

  • Kaufman DG, Baker MS, Smith JM, Henderson WR, Harris CC, Sporn MB, Saffiotti U (1972 b) RNA metabolism in tracheal epithelium: alteration in hamsters deficient in vitamin A. Science 177:1105–1108

    PubMed  CAS  Google Scholar 

  • Kikkawa Y, Spitzer R (1969) Inclusion bodies of type II alveolar cells: species differences and morphogenesis. Anat Rec 163:525–541

    PubMed  CAS  Google Scholar 

  • Kikkawa Y, Yoneda K (1974) The type II epithelial cell of the lung. I. Method of isolation. Lab Invest 30:76–84

    PubMed  CAS  Google Scholar 

  • Kikkawa Y, Yoneda K, Smith F, Packard B, Suzuki K (1975) The type II epithelial cells of the lung. II. Chemical composition and phospholipid synthesis. Lab Invest 32:296–302

    Google Scholar 

  • Kilroe-Smith TA, Breyer MG (1963) Changes in activities of respiratory enzymes in lungs of guinea-pigs exposed to silica dust. Br J Ind Med 20:243–247

    PubMed  CAS  Google Scholar 

  • Kimball RE, Reddy K, Peirce TH, Schwartz LW, Mustafa MG, Cross CE (1976) Oxygen toxicity: augmentation of antioxidant defense mechanisms in rat lung. Am J Physiol 230:1425–1431

    PubMed  CAS  Google Scholar 

  • Kleinerman J (1970) Effects of nitrogen dioxide in hamsters: autoradiographic and electron microscopic aspects. AEC Symp Ser 18:271–279

    Google Scholar 

  • Kosower NS, Kosower EM (1976) The glutathione-glutathione disulfide system. In: Pry or WA (ed) Free radicals in biology, vol II. Academic, New York, p 55

    Google Scholar 

  • Krebs HA (1950) Body size and tissue respiration. Biochim Biophys Acta 4:249–269

    PubMed  CAS  Google Scholar 

  • Kyle JL, Riesen WH (1970) Stress and cigarette smoke effects on lung mitochondrial phosphorylation. Arch Environ Health 21:492–497

    PubMed  CAS  Google Scholar 

  • Lands WEM (1958) Metabolism of glycerolipids. A comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888

    PubMed  CAS  Google Scholar 

  • Lehninger AL (1965) The mitochondrion. Benjamin, New York

    Google Scholar 

  • Levart C, Louisot P (1973) Biosynthese des glycoproteines dans le parechyme pulmonaire. I. Activite mannosyltransferase dans les fractions subcellulars des pneumocytes. Can J Biochem 51:931–938

    Google Scholar 

  • Levy SE (1971) The role of glucose in lung metabolism. The role of glucose as an energy substitute for the lung. CHn Res 19:515

    Google Scholar 

  • Levy SE, Harvey E (1974) Effect of tissue slicing on rat lung metabolism. J Appl Physiol 37:239–240

    PubMed  CAS  Google Scholar 

  • Lewis J A, Tata JR (1973) Protein-synthesis activity of rat liver microsomal fraction that sediments at 600 g. Biochem Soc Trans 1:585–586

    CAS  Google Scholar 

  • Little C, O’Brien PJ (1968 a) An intracellular GSH peroxidase with a lipid peroxide substrate. Biochem Biophys Res Commun 31:145–150

    PubMed  CAS  Google Scholar 

  • Little C, O’Brien PJ (1968 b) The effectiveness of a lipid peroxide in oxidizing protein and nonprotein thiols. Biochem J 106:419–423

    PubMed  CAS  Google Scholar 

  • Liu J, Simon LM, Phillips JR, Robin ED (1977) Superoxide dismutase (SOD) activity in hypoxic mammalian systems. J Appl Physiol 42:107–110

    PubMed  CAS  Google Scholar 

  • Logani MK, Davies RE (1980) Lipid oxidation: biological effects and antioxidants — a review. Lipids 15:485–495

    PubMed  CAS  Google Scholar 

  • Longmore WJ, Mourning JT (1976) Lactate production in isolated perfused rat lung. Am J Physiol 231:351–354

    PubMed  CAS  Google Scholar 

  • Low RB (1974) Protein biosynthesis by the pulmonary alveolar macrophage: conditions of assay and the effects of cigarett smoke extract. Am Rev Respir Dis 110:446–477

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:263–275

    Google Scholar 

  • Lunan KD, Short P, Negi D, Stephens RJ (1977) Glucose-6-phosphate dehydrogenase response of postnatal lungs to NO2 and O3. In: Sanders CL, Schneider RP, Dagle GE, Raga HA (eds) Pulmonary macrophage and epithelial cells. US Atomic Energy Commission, Oak Ridge, pp 236–247

    Google Scholar 

  • Manning JP, Babson AL, Buttler MC, Priester SF (1966) Determination of acid phosphatase activity in tissue homogenates. Can J Biochem 44:755–761

    PubMed  CAS  Google Scholar 

  • Mason RJ (1976) Lipid metabolism. In: Crystal RG (ed) The biochemical basis of pulmonary function. Marcel Dekker, New York, pp 127–169

    Google Scholar 

  • Mason RJ, Williams MC (1977) Type II alveolar cell. Defender of the alveolus. Am Rev Respir Dis 115 (Suppl):81–91

    Google Scholar 

  • Mason RJ, Huber G, Vaughan M (1972) Synthesis of dipalmitoyl lecithin by alveolar macrophages. J Clin Invest 51:68–73

    PubMed  CAS  Google Scholar 

  • Mason RJ, Williams MC, Greenleaf ED (1976) Isolation of lung cells. In: Bouhuys A (ed) Lung cells in disease. North-Holland, Amsterdam, pp 39–52

    Google Scholar 

  • Masoro EJ (1973) Development of the enzymes of lipid biosynthesis in the human fetus. In: Villee Ca, Villee DB, Zuckerman J (eds) Respiratory distress syndrome. Academic, New York, pp 7–27

    Google Scholar 

  • Massaro D (1973 a) Hyperoxia: influence of food deprivation on protein synthesis by lung. Proc Soc Exp Biol Med 143:602–603

    PubMed  CAS  Google Scholar 

  • Massaro D (1973 b) Protein synthesis in rat lung: recovery from exposure to hyperoxia. J Appl Physiol 35:32–34

    PubMed  CAS  Google Scholar 

  • Massaro D, Handler A, Bottoms L (1967) Alveolar cells: protein biosynthesis. Am Rev Respir Dis 96:957–961

    PubMed  CAS  Google Scholar 

  • Massaro D, Weiss H, Simon MR (1970 a) Protein synthesis and secretion by lung. Am Rev Respir Dis 101:198–206

    PubMed  CAS  Google Scholar 

  • Massaro D, Kelleher K, Massaro G, Yeager H Jr (1970 b) Alveolar macrophages: depression of protein synthesis during phagocytosis. Am J Physiol 218:1533–1539

    PubMed  CAS  Google Scholar 

  • Massaro D, Weiss H, White G (1971 a) Pulmonary artery ligation. Effect on in vitro protein synthesis: Arch Intern Med 126:861–862

    Google Scholar 

  • Massaro D, Weiss H, White G (1971 b) Protein synthesis by lung following pulmonary artery ligation. J Appl Physiol 31:8–14

    PubMed  CAS  Google Scholar 

  • Massaro D, Simon MR, Steinkamp H (1971 c) Metabolic factors affecting protein synthesis by lung in vitro. J Appl Physiol 30:1–6

    PubMed  CAS  Google Scholar 

  • Massaro GD, Massaro D (1972) Granular pneumocytes: electron microscopic radioautographic evidence of intracellular protein transport. Am Rev Respir Dis 105:927–931

    PubMed  CAS  Google Scholar 

  • Massaro GD, Massaro D (1974) Adaptation to hyperoxia. Influence on protein synthesis by lung, and on granular pneumocyte ultrastructure. J Clin Invest 53:705–709

    PubMed  CAS  Google Scholar 

  • Matsubara T, Tochino Y (1971) Electron transport systems of lung microsomes and their physiological functions. J Biochem (Tokyo) 70:981–991

    CAS  Google Scholar 

  • Matsuya Y, Yamane I (1970) Changes in cellular properties during the long-term serial culture of lung cells of newborn hamster and the transformation in A cells. Tokoho J Exp Med 1–2:37–49

    Google Scholar 

  • May HE, McCay PB (1968) Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. J Biol Chem 243:2288–2295

    PubMed  CAS  Google Scholar 

  • McCord JM, Crapo JD, Fridovich I (1977) Superoxide dismutase assays: a review of methodology. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and the superoxide dismutases. Academic, New York, pp 11–17

    Google Scholar 

  • Mead JF (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes. In: Pryor WA (ed) Free radicals in biology, vol 1. Academic, New York, p 51

    Google Scholar 

  • Meban C (1972) Localization of phosphatidic acid phosphatase activity in granular pneumonocytes. J Cell Biol 53:249–252

    PubMed  CAS  Google Scholar 

  • Menzel DB (1970) Toxicity of zone, oxygen and radiation. Annu Rev Pharmacol Toxicol 10:379–394

    CAS  Google Scholar 

  • Menzel DB (1971) Oxidation of biologically active reducing substances by ozone. Arch Environ Health 23:149–153

    PubMed  CAS  Google Scholar 

  • Menzel DB (1976) The role of free radicals in the toxicity of air pollutanls (nitrogen oxides and ozone). In: Pryor WA (ed) Free radicals in biology, vol 2. Academic, New York, pp 181–201

    Google Scholar 

  • Modig H (1968) Cellular mixed disulfides between thiols and proteins, and their possible implication for radiation protection. Biochem Pharmacol 17:177–186

    PubMed  CAS  Google Scholar 

  • Montgomery MR (1977) Paraquat toxicity and pulmonary superoxide dismutase. An enzyrnic deficiency of lung microsomes. Res Commun Chem Pathol Pharmacol 16:155–158

    PubMed  CAS  Google Scholar 

  • Morgan TE (1969) Isolation and characterization of lipid iV-methyl transferase from dog lung. Biochim Biophys Acta 178:21–34

    PubMed  CAS  Google Scholar 

  • Morgan TE, Morgan BK (1973) Surfactant synthesis, storage, and release by alveolar cells. In: Villee CA, Villee DB, Zuckerman J (eds) Respiratory distress syndrome. Academic, New York, pp 117–125

    Google Scholar 

  • Moriya T, Kanoh H (1974) In vivo studies on the de novo synthesis of molecular species of rat lung lecithins. Tokoho J Exp Med 112:241–256

    CAS  Google Scholar 

  • Mountain JT (1963) Detecting hypersensitivity to toxic substances. Arch Environ Health 6:357–365

    PubMed  CAS  Google Scholar 

  • Mudd JB, Freeman BA (1977) Reaction of ozone with biological membranes. In: Lee SD (ed) Biochemical effects of environmental pollutants. Ann Arbor Science, Ann Arbor, pp 97–133

    Google Scholar 

  • Mudd JB, Leavitt R, Ongun A, McManus TT (1969) Reaction of ozone with amino acids and proteins. Atmos Environ 3:669–681

    PubMed  CAS  Google Scholar 

  • Mudd JB, McManus TT, Ongun A, McCullough TT (1971) Inhibition of glycolipid biosynthesis in chloroplasts by ozone and sulfhydryl reagents. Plant Physiol 48:335–339

    PubMed  CAS  Google Scholar 

  • Mustafa MG (1974) Augmentation of mitochondrial oxidative metabolism in lung tissue during recovery of animals from acute ozone exposure. Arch Biochem Biophys 165:531–538

    PubMed  CAS  Google Scholar 

  • Mustafa MG (1975) Influence of dietary vitamin E on lung cellular sensitivity to ozone in rats. Nutr Rep Int 11:473–476

    CAS  Google Scholar 

  • Mustafa MG, Cross CE (1971) Pulmonary alveolar macrophage. Oxidative metabolism of isolated cells and mitochondria and effect of cadmium ion on electron and energy transfer reactions. Biochem 10:4176–4185

    CAS  Google Scholar 

  • Mustafa MG, Cross CE (1974 a) Effects of short-term ozone exposure on lung mitochondrial oxidative and energy metabolism. Arch Biochem Biophys 162:585–594

    PubMed  CAS  Google Scholar 

  • Mustafa MG, Cross CE (1974 b) Lung cell mitochondria: rapid oxidation of glycerol-1-phosphate but slow oxidation of 3-hydroxybutyrate. Am Rev Respir Dis 109:301–303

    CAS  Google Scholar 

  • Mustafa MG, Lee SD (1976) Pulmonary biochemical alterations resulting from ozone exposure. Ann Occup Hyg 19:17–26

    PubMed  CAS  Google Scholar 

  • Mustafa MG, Tierney DF (1978) State of the art — biochemical and metabolic changes in the lung with oxygen, ozone, and nitrogen dioxide toxicity. Am Rev Respir Dis 118:1061–1090

    PubMed  CAS  Google Scholar 

  • Mustafa MG, Peterson PA, Munn RJ, Cross CE (1971) Effects of cadmium on metabolism of lung cells. In: Englund HM, Berry WT (eds) Proceedings of the 2nd international clean air congress. Academic, New York, pp 143–151

    Google Scholar 

  • Mustafa MG, DeLucia A J, York GE, Arth C, Cross CE (1973) Ozone interaction with rodent lung. II. Effects on oxygen consumption of mitochondria. J Lab Clin Med 82:357–365

    PubMed  CAS  Google Scholar 

  • Mustafa MG, Macres SM, Tarkington BK, Chow CK, Hussain MZ (1975) Lung superoxide dismutase (SOD). Clin Res 23:138A

    Google Scholar 

  • Mustafa MG, Hacker AD, Ospital JJ, Hussain MZ, Lee SD (1977) Biochemical effects of environmental oxidant pollutants in animal lungs. In: Lee SD (ed) Biochemical effects of environmental pollutants. Ann Arbor Science, Ann Arbor, pp 59–96

    Google Scholar 

  • Mustafa MG, Elsayed N, Lim JST, Postlethwait E (1979) Effects of nitrogen dioxide on lung metabolism. In: Grosjean D (ed) Nitrogenous air pollutants: chemical and biological implications. Ann Arbor Science, Ann Arbor, pp 165–178

    Google Scholar 

  • Mustafa MG, Faeder EJ, Lee SD (1980) Biochemical effects of nitrogen dioxide on animal lungs. In: Lee SD (ed) Nitrogen oxides and their effects on health. Ann Arbor Science, Ann Arbor, pp 161–179

    Google Scholar 

  • Mustafa MG, Elsayed NM, Quinn CL, Postlethwait EM, Gardner DE, Graham JA (1982) Comparison of pulmonary biochemical effects of low-level ozone exposure on mice and rats. J Toxicol Environ Health 9:857–865

    PubMed  CAS  Google Scholar 

  • Naimark A (1966) Pulmonary blood flow and the incorporation of palmitate-l-14C by dog lung in vivo. J Appl Physiol 21:1292–1298

    PubMed  CAS  Google Scholar 

  • Naimark A (1973) Cellular dynamics and lipid metabolism in the lung. Fed Proc 32:1967–1971

    PubMed  CAS  Google Scholar 

  • Naimark A, Klass D (1967) The incorporation of palmitate-l-14C by rat lung in vitro. Can J Physiol Pharmacol 45:597–607

    PubMed  CAS  Google Scholar 

  • Nasr ANM (1967) Biochemical aspects of ozone intoxication. J Occup Med 9:589–597

    PubMed  CAS  Google Scholar 

  • Nasr ANM, Dinman BD, Bernstein IA (1971) An experimental approach to study the toxicity of nonparticulate air pollutants. Arch Environ Health 22:538–544

    PubMed  CAS  Google Scholar 

  • Newman D, Naimark A (1968) Palmitate-14C uptake by rat lung: effect of altered gas tensions. Am J Physiol 214:305–312

    PubMed  CAS  Google Scholar 

  • Niden AH (1967) Bronchiolar and large alveolar cell in pulmonary phospholipid metabolism. Science 158:1323–1324

    PubMed  CAS  Google Scholar 

  • Nirurkar LS, Zeligs BJ, Bellanti J A (1978) Changes in superoxide dismutase, catalase and glucose-6-phosphate dehydrogenase activities of rabbit alveolar macrophages: induced by postnatal maturation and/or in vitro hyperoxia. Photochem Photobiol 28:781–786

    Google Scholar 

  • Northway WH, Petriceks R, Shahinian L (1972) Quantitative aspects of oxygen toxicity in the newborn: inhibition of lung DNA synthesis in the mouse. Pediatrics 50:67–72

    PubMed  CAS  Google Scholar 

  • O’Brien PJ, Little C (1969) Intracellular mechanisms for the decomposition of a lipid peroxide. II. Decomposition of a lipid peroxide by subcellular fractions. Can J Biochem 47:493–499

    PubMed  Google Scholar 

  • Ogawa K (1972) A study on non-respiratory function of the lung with special reference to protein synthesis system of pulmonary tissue. I Jpn Soc Intern Med 61:251–261

    CAS  Google Scholar 

  • O’Hare KH, Newman JK, Vatter AE, Reiss OK (1971) Esterases in developing and adult rat lung. II. An electrophoretic analysis. J Histochem Cytochem 19:116–123

    PubMed  Google Scholar 

  • Ohta M, Hasegawa H (1972) Phospholipase A activity in rat lung. Tokoho J Exp Med 108:85–94

    CAS  Google Scholar 

  • Ohta M, Hasegawa H, Ohno K (1972) Calcium dependent phospholipase A2 activity in rat lung supernatant. Biochim Biophys Acta 280:552–558

    CAS  Google Scholar 

  • Okuda E (1973) A study on non-respiratory function of the lung with reference to the nucleic acid and protein synthesis of pulmonary tissue. Jpn J Thoracic Dis 11:261–269

    CAS  Google Scholar 

  • Omaye ST, Reddy AK, Cross CE (1977) Effect of butylated hydroxytoluene and other antioxidants on mouse lung metabolism. J Toxicol Environ Health 3:829–836

    PubMed  CAS  Google Scholar 

  • O’Neill JJ, Tierney DF (1974) Rat lung metabolism: glucose utilization by isolated perfused lungs and tissue slices. Am J Physiol 226:867–873

    Google Scholar 

  • O’Neil JJ, Sanford RL, Wasserman S, Tierney DF (1977) Metabolism in rat lung tissue slices: technical factors. J Appl Physiol 43:902–906

    PubMed  Google Scholar 

  • Oppelt WW, Zange M, Ross WE, Remmer H (1970) Comparison of microsomal drug hydroxylation in lung and liver of various species. Res Commun Chem Pathol Pharmacol 1:43–56

    PubMed  CAS  Google Scholar 

  • Ospital J J, Elsayed N, Hacker AD, Mustafa MG, Tierney DF (1976) Altered glucose metabolism in lungs of rats exposed to nitrogen dioxide. Am Rev Respir Dis 113:108

    Google Scholar 

  • Ospital J J, Hacker AD, Mustafa MG (1981) Biochemical changes in rat lungs after exposure to nitrogen dioxide. J Toxicol Environ Health 8:47–58

    PubMed  CAS  Google Scholar 

  • Packer L (1967) Experiments in cell physiology. Academic, New York

    Google Scholar 

  • Page-Roberts BA (1972) Preparation and partial characterization of lamellar body fraction from rat lung. Biochim Biophys Acta 260:334–338

    PubMed  CAS  Google Scholar 

  • Perez-Diaz J, Carballo B, Ayuso-Parrilla MS, Parrilla R (1977 a) Preparation and metabolic characterization of isolated rat lung cells. Biochimie 59:411–416

    PubMed  CAS  Google Scholar 

  • Perez-Diaz J, Martin A, Ayuso-Parrilla MS, Parrilla R (1977 b) Metabolic features of isolated rat lung cells. I. Factors controlling glucose utilization. Am J Physiol 232:E394–E401

    PubMed  CAS  Google Scholar 

  • Petrik P (1971) Fine structural identification of peroxisomes in mouse and rat bronchiolar and alveolar epithelium. J Histochem Cytochem 19:339–348

    PubMed  CAS  Google Scholar 

  • Petrik P, Collet AJ (1974) Quantitative electron microscopic autoradiograph of in vivo incorporation of 3H-eholine, 3H-leucine, 3H-acetate and 3H-galactose in non-eiliated bronchiolar (Clara) cells of mice. Am J Anat 139:519–534

    PubMed  CAS  Google Scholar 

  • Piper PJ, Vane JR, Wyllie JH (1970) Inactivation of prostaglandins by the lungs. Nature 225:600–604

    PubMed  CAS  Google Scholar 

  • Plaa GL, Witschi HP (1976) Chemicals, drugs, and lipid peroxidation. Annu Rev Pharmacol Toxicol 16:125–141

    PubMed  CAS  Google Scholar 

  • Popjak G, Beeckmans M (1950) Extrahepatic lipid synthesis. Biochem J 47:233–238

    PubMed  CAS  Google Scholar 

  • Postlethwait EM, Mustafa MG (1981) Fate of inhaled nitrogen dioxide in isolated perfused rat lung. J Toxicol Environ Health 7:861–872

    PubMed  CAS  Google Scholar 

  • Rady P, Arany I, Bojan F, Kertal P (1980) Effect of carcinogenic and non-carcinogenic chemicals on the activities of four glycolytic enzymes in mouse lung. Chem Biol Interact 31:209–213

    PubMed  CAS  Google Scholar 

  • Ramazotto LJ, Rappaport LJ (1971) The effect of nitrogen dioxide on aldolase enzyme. Arch Environ Health 22:379–380

    Google Scholar 

  • Ramazzotto L, Jones CR, Cornell F (1971) Effect of nitrogen dioxide on the activities of cytochrome oxidase and succinic dehydrogenase on homogenates of some organs of the rat. Life Sci 10(2):601–604

    CAS  Google Scholar 

  • Recknagel RO, Ghoshal AK (1966) Lipoperoxidation as a vector in carbon tetrachloride hepatetoxicity. Lab Invest 15:132–148

    PubMed  CAS  Google Scholar 

  • Reeves AL (1967) Isozymes of lactate dehydrogenase during beryllium carcinogenesis in the rat. Cancer Res 27:1895–1899

    PubMed  CAS  Google Scholar 

  • Reid E (1967) Membrane systems. In: Roodyn DB (ed) Enzyme cytology. Academic, New York, pp 321–406

    Google Scholar 

  • Reiss OK (1965) Properties of mitochondrial preparations from rabbit lung. Med Thoracal 22:100–103

    CAS  Google Scholar 

  • Reiss OK (1966) Studies of lung metabolism. I. Isolation and properties of subcellular fractions from rabbit lung. J Cell Biol 30:45–57

    PubMed  CAS  Google Scholar 

  • Reiss U, Tappel AL, Chio KS (1972) DNA-malonaldehyde reactions: formation of fluorescent products. Biochem Biophys Res Commun 48:921–926

    PubMed  CAS  Google Scholar 

  • Rhoades RA (1974) Net uptake of glucose, glycerol, and fatty acids by the isolated perfused rat lung. Am J Physiol 226:144–149

    PubMed  CAS  Google Scholar 

  • Riley CA, Cohen G, Lieberman M (1974) Ethane evolution: a new index of lipid peroxidation. Science 183:208–210

    Google Scholar 

  • Rister M, Baehner RL (1976) The alteration of superoxide dismustase, catalase, glutathione peroxidase, and NAD(P)H cytochrom c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. J Clin Invest 58:1174–1184

    PubMed  CAS  Google Scholar 

  • Rister M, Baehner RL (1977) Effect of hyperoxia on superoxide anion and hydrogen peroxide production of polymorphonuclear leucocytes and alveolar macrophages. Br J Haematol 36:241–248

    PubMed  CAS  Google Scholar 

  • Robinson LA, Wolfe WG, Salin ML (1978) Alterations in cellular enzymes and tissue metabolism in the oxygen toxic primate lung. J Surg Res 24:359–365

    PubMed  CAS  Google Scholar 

  • Roehm JN, Hadley JC, Menzel DB (1971) Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide. Arch Environ Health 23:142–148

    PubMed  CAS  Google Scholar 

  • Romanova LK, Leikina EM, Antipova KK (1967) Nucleic acid synthesis and mitotic activity during development of compensatory hypertrophy of the lung in rats. Bull Exp Biol Med (USSR) 63:303–306

    Google Scholar 

  • Roodyn DB (1969) Some methods for the isolation of nuclei from mammalian cells. In: Birnie GD, Fox SM (eds) Subcellular components: preparation and fractionation. Plenum, New York, pp 15–42

    Google Scholar 

  • Rose MS, Smith LL, Wyatt I (1976) The relevance of pentose phosphate pathway stimulation in rat lung to the mechanism of paraquat toxicity. Biochem Pharmacol 25:1763–1767

    PubMed  CAS  Google Scholar 

  • Rosenthal O, Drabkin DL (1944) The oxidative response of normal and neoplastic tissues to succinate and to phenylenediamine. Cancer Res 4:487–494

    CAS  Google Scholar 

  • Ryan JW, Smith U (1971) A rapid, simple method for isolating pinocytic vesicles and plasma membrane of lung. Biochim Biophys Acta 249:177–180

    PubMed  CAS  Google Scholar 

  • Ryan JW, Smith U, Niemeyer RS (1972) Angiotensin I: metabolism by plasma membrane of lung. Science 176:64–66

    PubMed  CAS  Google Scholar 

  • Saheb W, Witschi HP (1975) Lung growth in mice after a single dose of butylated hydroxytoluene. Toxicol Appl Pharmacol 33:309–319

    PubMed  CAS  Google Scholar 

  • Sahebjami H, Gacad G, Massaro D (1974) Influence of corticosteroid on recovery from oxygen toxicity. Am Rev Respir Dis 110:566–571

    PubMed  CAS  Google Scholar 

  • Salisbury-Murphy S, Rubinstein D, Beck JC (1966) Lipid metabolism in lung slices. Am J Physiol 211:988–992

    PubMed  CAS  Google Scholar 

  • Sander GE, Higgins CG (1971) Subcellular localization of angiotensin I converting enzyme in rabbit lung. Nature (New Biol) 230:27–29

    CAS  Google Scholar 

  • Sanders AP, Pratt PC, Currie WD (1974) Pulmonary oxygen toxicity and gas mixtures: B. Biochemistry. In: Trapp WG, Banister EW, Davison AJ, Trapp PA (eds) Proceedings of the fifth international congress of hyperbaric medicine. Simon Fraser University, Burnaby, British Columbia, pp 93–101

    Google Scholar 

  • Sato S, Kawakami M, Maeda S, Takishima T (1976) Scanning electron microscopy of the lungs of vitamin E-defieient rats exposed to a low concentration of ozone. Am Rev Respir Dis 113:809–821

    PubMed  CAS  Google Scholar 

  • Sawant PL, Shibko S, Kumta US, Tappel AL (1964) Isolation of rat-liver lysosomes and their general properties. Biochim Biophys Acta 85:82–92

    PubMed  CAS  Google Scholar 

  • Sayeed MM, Baue AE (1971) Mitochondrial metabolism of succinate, B-hydroxybutyrate, and -ketoglutarate in hemorrhagic shock. Am J Physiol 220:1275–1281

    PubMed  CAS  Google Scholar 

  • Schiller H, Bensch K (1971) De novo fatty acid synthesis and elongation of fatty acids by subcellular fractions of lung. J Lipid Res 12:248–255

    PubMed  CAS  Google Scholar 

  • Schiller H, Donabedian RK (1973) Elongation and esterification of fatty acids in lung by a microsomal fraction. Am J Physiol 224:1006–1010

    CAS  Google Scholar 

  • Scholz RW (1972) Lipid metabolism by rat lung in vitro. Utilization of citrate by normal and starved rats. Biochem J 126:1219–1224

    PubMed  CAS  Google Scholar 

  • Scholz RW, Rhoades RA (1971) Lipid metabolism by rat lung in vitro: effect of starvation and re-feeding on utilization of (U-14C)-glucose by lung slices. Biochem J 124:257–264

    PubMed  CAS  Google Scholar 

  • Scholz RW, Woodard BM, Rhoads RA (1972) Utilization in vitro and in vivo of glucose and glycerol by rat lung. Am J Physiol 223:991–996

    PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay BH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    PubMed  CAS  Google Scholar 

  • Segal W (1966) Enhancement of succinate oxidation in lung and liver mitochondria of tuberculous mice. Arch Biochem Biophys 113:750–757

    PubMed  CAS  Google Scholar 

  • Sell DA, Reynolds ES (1969) Liver parenchymal cell injury. VIII. Lesions of membranous cellular components following iodoform. J Cell Biol 41:736–752

    PubMed  CAS  Google Scholar 

  • Sevanian A, Mead JF, Stein RA (1979) Epoxides as products of lipid autoxidation in rat lungs. Lipids 14:634–643

    PubMed  CAS  Google Scholar 

  • Sevanian A, Mead JF, Stein RA (1980 a) Lipid epoxidation in the lung: major isolable products of lipid autoxidation in vivo. In: Bhatnagar RS (ed) Molecular basis of environmental toxicity. Ann Arbor Science, Ann Arbor, pp 213–228

    Google Scholar 

  • Sevanian A, Stein RA, Mead JF (1980 b) Epoxide hydrolase in rat lung preparations. Biochim Biophys Acta 614:489–500

    PubMed  CAS  Google Scholar 

  • Sherwin RP, Winniek S, Buckley RD (1967) Response of lactic acid dehydrogenase-positive alveolar cells in the lungs of guinea-pigs exposed to nitric oxide. Am Rev Respir Dis 96:319–323

    PubMed  CAS  Google Scholar 

  • Sherwin RP, Dibble J, Weiner J (1972) Alveolar wall cells of the guinea-pigs: increase in response to 2 ppm nitrogen dioxide. Arch Environ Health 24:43–17

    PubMed  CAS  Google Scholar 

  • Shibko S, Tappel AL (1965) Rat-kidney lysosomes: isolation and properties. Biochem J 95:731–741

    PubMed  CAS  Google Scholar 

  • Shin BC, Huggins JW, Carraway KL (1972) Effects of pH, concentration and aging on the malonaldehyde reaction with proteins. Lipids 7:229–233

    PubMed  CAS  Google Scholar 

  • Simon FP, Potts AM, Gerrard RW (1947) Metabolism of isolated lung tissue: normal and in phosgene poisoning. J Biol Chem 167:303–311

    PubMed  CAS  Google Scholar 

  • Sims P, Grover PL (1974) Epoxides in poly cyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv Cancer Res 20:165–274

    PubMed  CAS  Google Scholar 

  • Singh J, Viswanathan PN, Pandey SD, Zaidi SH (1976) Changes in mitochondrial enzyme activity of rat lung during the development of silicosis. Life Sci 20:367–374

    Google Scholar 

  • Slater EC (1967) Manometric methods and phosphate determination. In: Estabrook RW, Pullman ME (eds) Methods of enzymology, vol 10. Academic, New York, pp 19–29

    Google Scholar 

  • Slater TF (1972) Free radical mechanisms in tissue injury. Pion, London, pp 1–283

    Google Scholar 

  • Smith BT, Torday JS, Giroud CJP (1974) Evidence for different gestational-dependent effects of Cortisol on cultured fetal lung cells. J Clin Invest 53:1518–1526

    PubMed  CAS  Google Scholar 

  • Smith SM, Sporn MB, Berkowitz DM, Kakefuda T, Callan E, Saffiotti U (1971) Isolation of enzymatically active nuclei from epithelial cells of the trachea. Cancer Res 31:199–202

    PubMed  CAS  Google Scholar 

  • Sorokin SP (1970) The cells of the lungs. AEC Symp Ser 21:3–41

    Google Scholar 

  • Spencer B (1958) A cytological basis for the biochemical study of bronchial epithelium. J Histochem Cytochem 6:105–111

    PubMed  CAS  Google Scholar 

  • Spencer B (1959) The biochemistry of epithelia. Hydrolytic enzymes of human bronchial epithelim. Biochem J 71:500–507

    PubMed  CAS  Google Scholar 

  • Spitzer HL, Norman JR (1971) The biosynthesis and turnover of surfactant lecithin and protein. Arch Intern Med 127:425–435

    Google Scholar 

  • Spitzer HL, Norman JR, Morrison K (1969) In vivo studies of (Me-3H)choline and (1,2-14C2)choline incorporation into lung and liver lecithins. Biochim Biophys Acta 176:584–590

    PubMed  CAS  Google Scholar 

  • Srivastava SK, Beutler E (1968) Accurate measurement of glutathione content of human, rabbit, and rat blood cells and tissues. Anal Biochem 25:70–76

    PubMed  CAS  Google Scholar 

  • Stadie WC, Riggs BC, Haugaard N (1945) Oxygen poisoning. IV. The effect of high oxygen pressure upon the metabolism of liver, kidney, lung and muscle tissue. J Biol Chem 160:209–216

    CAS  Google Scholar 

  • Stephens RJ, Solan MF, Evans MJ, Freeman G (1974) Early response of lung to low levels of ozone. Am J Pathol 74:31–42

    PubMed  CAS  Google Scholar 

  • Stevens JB, Autor AP (1980) Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia. Fed Proc 39:3138–3143

    PubMed  CAS  Google Scholar 

  • Stoner GD (1974) Hormone-mediated differentiation of mouse lung adenoma cells. In Vitro 9:381

    Google Scholar 

  • Strauss B (1964) In vitro respiration of normal and pathologic human lung. J Appl Physiol 19:503–509

    PubMed  CAS  Google Scholar 

  • Stubbs WA, Kelly DM, Walters FJ, Alberti KGMM (1977) The metabolic characteristics of the ventilated and non-ventilated perfused rat lung. Biochem Soc Trans 5:1312–1314

    PubMed  CAS  Google Scholar 

  • Sydow G, Wildner GP (1971) Glykolytische Enzyme und Glykolyse in Lunge und primaren Lungenkarzinomen des Menschen. Acta Biol Med Ger 27:651–654

    PubMed  CAS  Google Scholar 

  • Tappel AL (1968) Lysosomes. In: Florkin M, Stotz EH (eds) Cytochemistry. Elsevier, Amsterdam, pp 77–98 (Comprehensive biochemistry, vol 23)

    Google Scholar 

  • Tappel AL (1975) Vitamin E. Nutr Today 6:4

    Google Scholar 

  • Tappel AL (1980) Measurement of an protection from in vivo lipid peroxidation. In: Pryor WA (ed) Free radicals in biology, vol III. Academic, New York, pp 1–47

    Google Scholar 

  • Tata JR (1969) Preparation and properties of microsomal and submicrosomal fractions from animal cells. In: Birnie GD, Fox SM (eds) Subcellular components: preparation and fractionation. Plenum, New York, pp 83–107

    Google Scholar 

  • Terao J, Matsushita S (1981) Thiobarbituric acid reaction of methyl arachidonate monohydroperoxide isomers. Lipids 16:98–101

    CAS  Google Scholar 

  • Thomas HV, Meuller PK, Lyman RL (1968) Lipoperoxidation of lung lipids in rats exposed to nitrogen dioxide. Science 159:532–534

    PubMed  CAS  Google Scholar 

  • Tierney DF (1971) Lactate metabolism in rat lung tissue. Arch Intern Med 127:858–860

    PubMed  CAS  Google Scholar 

  • Tierney DF (1974 a) Intermediary metabolism of the lung. Fed Proc 33:2232–2237

    PubMed  CAS  Google Scholar 

  • Tierney DF (1974 b) Lung metabolism and biochemistry. Annu Rev Physiol 36:209–231

    PubMed  CAS  Google Scholar 

  • Tierney DF, Levy SE (1976) Glucose metabolism. In: Crystal RG (ed) The bioqhemical basis of pulmonary function. Marcel Dekker, New York, pp 105–125

    Google Scholar 

  • Tierney DF, Ayers L, Herzog S, Yang J (1973) Pentose pathway and production of reduced nicotinamide adenine dinucleotide phosphate. Am Rev Respir Dis 108:1348–1351

    PubMed  CAS  Google Scholar 

  • Tierney DF, Ayers L, Kasuyama RS (1977) Altered sensitivity to oxygen toxicity. Am Rev Respir Dis 115 (Suppl):59–65

    Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    PubMed  CAS  Google Scholar 

  • Tietze F (1970) Disulfide reduction in rat liver. Arch Biochem Biophys 138:177–188

    PubMed  CAS  Google Scholar 

  • Tombropoulos EG (1971) Lipid synthesis by lung subcellular particles. Arch Intern Med 127:408–412

    PubMed  CAS  Google Scholar 

  • Tombropoulos EG (1973) Palmitate incorporation into lipids by lung subcellular fractions. Arch Biochem Biophys 158:911–918

    PubMed  CAS  Google Scholar 

  • Trentalance A, Mangiatini MT (1968 a) Ricerche sulla sintesi proteica in organi isolati e perfusi. I. Sintesi de proteine plasmatiche e tissutali de parte del fegato e del polmone di ratto. Boll Soc Ital Biol Sper 44:1219–1222

    PubMed  CAS  Google Scholar 

  • Trentalance A, Mangiatini MT (1968 b) Ricerche sulla sintest proteica in organi isolati e perfusi. II. Sintesi de proteine plasmatiche e tissutali da parte del polmone di coniglio. Boll Soc Ital Biol Sper 44:1222–1226

    PubMed  CAS  Google Scholar 

  • Trombly R, Tappel AL (1975) Fractionation and analysis of fluorescent products of lipid peroxidation. Lipids 10:441–447

    PubMed  CAS  Google Scholar 

  • Tyler WS, Pearse AGE (1965) Oxidative enzymes of the interalveolar septum of the rat. Thorax 20:149–152

    PubMed  CAS  Google Scholar 

  • Umbreit WM, Burris RH, Stauffer JF (1972) Manometric and biochemical techniques, 5th edn. Burgess, Minneapolis, pp 64–99, pp 144–147

    Google Scholar 

  • Valdivia E (1973) Isolation and identification of pulmonary lamellar bodies from guineapigs. Prep Biochem 3:19–30

    PubMed  CAS  Google Scholar 

  • Vatter AE, Reiss OK, Newman JK, Lindquist K, Groeneboer E (1968) Enzymes of the lung. I. Detection of esterase with a new cytochemical method. J Cell Biol 38:80–98

    PubMed  CAS  Google Scholar 

  • Wainio WW (1970) The mammalian mitochondrial respiratory chain. Academic, New York, pp 77–151

    Google Scholar 

  • Wang MC, Meng HC (1972) Lipid synthesis by rat lung in vitro. Lipids 7:207–211

    PubMed  CAS  Google Scholar 

  • Wang MC, Meng HC (1974) Synthesis of phospholipids and phospholipid fatty acids by isolated perfused rat lung. Lipids 9:63–67

    PubMed  CAS  Google Scholar 

  • Warshaw JB, Terry ML, Ranis MB (1980) Metabolic adaptation in developing lung. Pediatr Res 14:296–299

    PubMed  CAS  Google Scholar 

  • Weber KC, Visscher MB (1969) Metabolism of the isolated canine lung. Am J Physiol 217:1044–1052

    PubMed  CAS  Google Scholar 

  • Werthamer S, Penha PD, Amral L (1974) Pulmonary lesions induced by chronic exposure to ozone. I. Biochemical alterations. Arch Environ Health 29:164–166

    PubMed  CAS  Google Scholar 

  • Williams CH (1974) The isolation of lung lamellar bodies. In: Fleischer S, Packer L (eds) Biomembrane, part A. Academic, New York, pp 419–425 (Methods in enzymology, vol 31)

    Google Scholar 

  • Williams CH, Vail WJ, Harris RA, Green DE, Valdivia E (1971) The isolation and characterization of the lamellar body of bovine lung. Prep Biochem 1:37–45

    PubMed  CAS  Google Scholar 

  • Willis RJ, Kratzing CC (1974) Ascorbic acid in rat lung. Biochem Biophys Res Commun 59:1250–1253

    PubMed  CAS  Google Scholar 

  • Wilson PD (1972) Enzyme patterns in young and old mouse livers and lungs. Gerontologia 18:36–54

    PubMed  CAS  Google Scholar 

  • Witschi H-P (1972) A comparative study of in vivo RNA and protein synthesis in rat liver and lung. Cancer Res 32:1686–1694

    PubMed  CAS  Google Scholar 

  • Witschi H-P (1973 a) Qualitative and quantitative aspects of the biosynthesis of ribonucleic acid and of protein in the liver and the lung of the Syrian golden hamster. Biochem J 136:781–788

    PubMed  CAS  Google Scholar 

  • Witschi H-P (1973 b) The effects of diethylnitrosamine on ribonucleic acid and protein synthesis in the liver and lung of the Syrian golden hamster. Biochem J 136:789–794

    PubMed  CAS  Google Scholar 

  • Witschi H-P (1973 c) The biochemical pathology of rat lung after acute paraquat poisoning. Toxicol Appl Pharmacol 25:485–486

    Google Scholar 

  • Witschi H-P (1974) A comparative study of in vivo RNA and protein synthesis in rat liver and lung. Cancer Res 32:1686–1694

    Google Scholar 

  • Witschi H-P (1975) Exploitable biochemical approaches for the evaluation of toxic lung damage. In: Hayes WJ (ed) Essays in toxicology, vol 6. Academic, New York, pp 125–191

    Google Scholar 

  • Witschi H-P (1976) Proliferation of type II alveolar cells: a review of common response in toxic lung injury. Toxicology 5:267–277

    CAS  Google Scholar 

  • Witschi H-P, Cote MG (1976) Biochemical pathology of lung damage produced by chemicals. Fed Proc 35:89–94

    PubMed  CAS  Google Scholar 

  • Witschi H-P, Cote MG (1977) Primary pulmonary responses to toxic agents. CRC Crit Rev Toxicol 5:23–66

    PubMed  CAS  Google Scholar 

  • Witschi H-P, Saheb W (1974) Stimulation of DNA synthesis in mouse lung following intraperitoneal injection of butylated hydroxy toluene. Proc Soc Exp Biol Med 147:690–693

    PubMed  CAS  Google Scholar 

  • Witschi H-P, Kacew S, Tsang BK, Williamson D (1976) Biochemical parameters of BHT-induced cell growth in mouse lung. Chem Biol Interact 12:29–40

    PubMed  CAS  Google Scholar 

  • Witschi H-P, Kacew S, Hirai KI, Cote MG (1977) In vivo oxidation of reduced nicotinamide-adenine dinucleotide phosphate by paraquat and diquat in rat lung. Chem Biol Interaction 19:143–160

    CAS  Google Scholar 

  • Wolfe BMJ, Rubinstein D, Beck JC (1968) The metabolism isolated pneumocytes from rabbit lung. Can J Biochem 46:151–154

    PubMed  CAS  Google Scholar 

  • Woods HF, Meredith A, Tucker GT, Shortland JR (1980) Ciba Found Symp 78 (new series):61–83

    PubMed  CAS  Google Scholar 

  • Yazdi E, Gyorkey F (1971) Biochemical study of nuclei isolated from normal lung and lung tumors. II. Nuclear RNAs of low molecular weight. J Natl Cancer Inst 47:765–770

    PubMed  CAS  Google Scholar 

  • Yazdi E, Gyorkey F (1973) RNA synthesis in isolated nuclei of human lungs. Am J Pathol 70:30a

    Google Scholar 

  • Yazdi E, Gyorkey F, Busch H, Gyorkey P (1971) Biochemical study of nuclei isolated from normal lung and lung tumors. I. Isolation of nuclei and characterization of nuclear RNA. J Natl Cancer Inst 47:212–219

    Google Scholar 

  • Yeager H Jr (1969) Alveolar cells: depression effect of cigarette smoke on protein synthesis. Proc Soc Exp Biol Med 131:247–250

    PubMed  Google Scholar 

  • Yeager H Jr, Hicks PS (1972) Glucose metabolism in lung slices of late fetal, newborn, and adult rats. Proc Exp Biol Med 141:1–3

    CAS  Google Scholar 

  • Yeager H Jr, Massaro D (1972) Glucose metabolism and glycoprotein synthesis by lung slices. J Appl Physiol 32:477–482

    PubMed  Google Scholar 

  • Young SL, Tierney DF (1972) Dipalmitoyl lecithin secretion and metabolism by the rat lung. Am J Physiol 222:1539–1544

    PubMed  CAS  Google Scholar 

  • Young SL, Tierney DF (1977) Metabolic activity of the lung. Int Anesthesiol Clin 15:1–17

    PubMed  CAS  Google Scholar 

  • Young SL, O’Neill J J, Kasuyama RS, Tierney DF (1980) Glucose utilization by edematous rat lungs. Lung 157:165–177

    PubMed  CAS  Google Scholar 

  • Yuen TGH, Sherwin RP (1971) Hyperplasia of type 2 pneumocytes and nitrogen dioxide (10 ppm) exposure. Arch Environ Health 22:178–188

    PubMed  CAS  Google Scholar 

  • Zachman RD (1973 a) The enzymes of lecithin biosynthesis in human newborn lungs. III. Phosphorylcholine glyceride transferase. Pediatr Res 7:632–637

    PubMed  CAS  Google Scholar 

  • Zachman RD (1973 b) Enzymes of lecithin biosynthesis in human neonatal lung. In: Villee CA, Villee DB, Zuckerman J (eds) Respiratory distress syndrome. Academic, New York, pp 295–309

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mustafa, M.G. (1985). General Enzymology of the Lung. In: Witschi, H., Brain, J.D. (eds) Toxicology of Inhaled Materials. Handbook of Experimental Pharmacology, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69521-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69521-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69523-0

  • Online ISBN: 978-3-642-69521-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics