Skip to main content

Monoamines and the Pathophysiology of Seizure Disorders

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

One of the ways of understanding the pathophysiology of seizure disorders is by learning about the effects of the various factors that modulate susceptibility to seizures in experimental conditions. Obviously, neurochemical factors come into prominence here, and among them neuromediators attract especial interest. In this chapter, some of these will be reviewed, namely the monoamines, i.e., the catecholamines (noradrenaline and dopamine) serotonin (5-hydroxytrytamine), and histamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbozzo G, Genazzani E, Donatelli L (1951) L’action du neoantergan sur les convulsions au cardiazol et sur la narcose a l’avertine. Arch Int Pharmacodyn Ther 88: 209–222

    CAS  Google Scholar 

  • Alexander GJ, Kopeloff LM (1970) Metrazol seizures in rats: effect of/7-chlorophenylalanine. Brain Res 22: 231–235

    PubMed  CAS  Google Scholar 

  • Alexander GJ, Kopeloff LM (1976) Audiogenic seizures in mice: influence of agents affecting brain serotonin. Res Commun Chem Pathol Pharmacol 14: 437–448

    PubMed  CAS  Google Scholar 

  • Alexander GJ, Kopeloff LM (1978) Effect of 6-hydroxydopamine. Delayed motor manifestations associated with high mortality in sound-induced seizures in mice. Neurochem Res 3: 821–825

    Google Scholar 

  • Alexander GJ, Kopeloff LM, Alexander RB (1971) Anticonvulsive effect of /?-chlorophen- ylalanine in audiosensitive mice. Life Sci 10: 877–882

    CAS  Google Scholar 

  • Almatura AC, Bonati M, Brunello N, Giordano PL, Algeri S (1978) The activity of some neurotransmitter-synthesizing enzymes in experimental cobalt epilepsy. Neurosci Lett 7: 83–87

    Google Scholar 

  • Altshuler HL, Killam EK, Killam KF (1976) Biogenic amines and the photomyoclonic syndrome in the baboon, Papio papio. J Pharmacol Exp Ther 196: 156–166

    Google Scholar 

  • Anlezark GM, Meldrum BS (1975) Effects of apomorphine, ergocornine and piribedil on audiogenic seizures in DBA/2 mice. Br J Pharmacol 53: 419–421

    PubMed  CAS  Google Scholar 

  • Anlezark GM, Horton RW, Meldrum BS (1978) Dopamine agonists and audiogenic seizures: the relationship between protection against seizures and changes in monoamine metabolism. Biochem Pharmacol 27: 2821–2828

    PubMed  CAS  Google Scholar 

  • Anlezark G, Horton R, Meldrum B (1979) The anticonvulsant action of the (−)- and (+)-enantiomers of propranolol. J Pharm Pharmacol 31: 482–483

    PubMed  CAS  Google Scholar 

  • Anlezark G, Meldrum B (1978) Blockade of photically induced epilepsy by “dopamine agonist” ergot alkaloids. Psychopharmacology (Berlin) 57: 57–62

    CAS  Google Scholar 

  • Anlezark G, Pycock C, Meldrum B (1976) Ergot alkaloids as dopamine agonists: comparison in two rodent models. Eur J Pharmacol 37: 295–302

    PubMed  CAS  Google Scholar 

  • Arnold PS, Racine RJ, Wise RA (1973) Effects of atropine, reserpine, 6-hydroxydopamine and handling on seizure development in the rat. Exp Neurol 40: 457–470

    PubMed  CAS  Google Scholar 

  • Ashton C, Anlezark G, Meldrum B (1976) Inhibition of reflex epilepsy by (±)-N-«-propyl-norapomorphine. Eur J Pharmacol 39: 399–401

    PubMed  CAS  Google Scholar 

  • Ashton D, Leysen JE, Wauquier A (1980) Neurotransmitters and receptor binding in amygdaloid kindled rats: serotonergic and noradrenergic modulatory effects. Life Sci 27: 1547–1556

    PubMed  CAS  Google Scholar 

  • Ayhan IH (1976) Potentiation of morphine-induced seizure by 6-hydroxydopamine. Arch Int Pharmacodyn Ther 223: 282–286

    PubMed  CAS  Google Scholar 

  • Azzaro AJ, Wenger GR, Craig CR, Stitzel RE (1972) Reserpine-induced alterations in brain amines and their relationship to changes in the incidence of minimal electroshock seizures in mice. J Pharmacol Exp Ther 180: 558–568

    PubMed  CAS  Google Scholar 

  • Balzamo E, Meldrum BS (1972) Photic epilepsy in Papio papio and drugs modifying cerebral monoamine levels. Brain Res 42: 543–544

    Google Scholar 

  • Bhattacharya SK, Ghosh P, Bose R (1978) Pentylenetetrazol induced clonic convulsions in rat. Role of brain monoamines. Mater Med Pol 10: 184–187

    Google Scholar 

  • Billiet M, Bernard P, Delaunois A, De Schaepdryver A (1970) Induced changes in caudate nucleus dopamine and electroshock threshold. Arch Int Pharmacodyn Ther 188: 396–400

    PubMed  CAS  Google Scholar 

  • Boggan WO (1973) Serotonin and convulsions. In: Barchas J, Usdin E (eds) Serotonin and behavior. Academic, New York, pp 167–172

    Google Scholar 

  • Boggan WO, Seiden LS (1971) Dopa reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol Behav 6: 215–217

    PubMed  CAS  Google Scholar 

  • Boggan WO, Freedman DX, Lovell RA, Schlesinger K (1971) Studies in audiogenic seizure susceptibility. Psychopharmacologia (Berlin) 20: 48–56

    CAS  Google Scholar 

  • Bourn WM, Chin L, Picchioni AL (1972) Enhancement of audiogenic seizure by 6-hydroxydopamine. J Pharm Pharmacol 24: 913–914

    PubMed  CAS  Google Scholar 

  • Bourn WM, Chin L, Picchioni AL (1977) Effect of neonatal 6-hydroxydopamine treatment on audiogenic seizures. Life Sci 21: 701–705

    PubMed  CAS  Google Scholar 

  • Bourn WM, Chin L, Picchioni AL (1978) The role of dopamine in sound-induced convulsions. J Pharm Pharmacol 30: 800–801

    PubMed  CAS  Google Scholar 

  • Browning RA, Maynert EW (1978 a) Effects of intraventricularly administered monoamines on seizure susceptibility and body temperature in rats. Neuropharmacology 17: 649–653

    Google Scholar 

  • Browning RA, Maynert EW (1978 b) Effect of intracisternal 6-hydroxydopamine on seizure susceptibility in rats. Eur J Pharmacol 50: 97–101

    Google Scholar 

  • Buterbaugh GG (1978) Effect of drugs modifying central serotonergic function on the response of extensor and nonextensor rats to maximal electroshock. Life Sci 23: 2393–2404

    PubMed  CAS  Google Scholar 

  • Buterbaugh GG, London ED (1977) The relationship between magnitude of electroshock stimulation and the effects of digitoxigenin, pentylenetetrazol and brain monoamine reduction on electroshock convulsive thresholds. Neuropharmacology 16: 617–623

    PubMed  CAS  Google Scholar 

  • Callaghan DA, Schwark WS (1979) Involvement of catecholamines in kindled amygdaloid convulsions in the rat. Neuropharmacology 18: 541–545

    PubMed  CAS  Google Scholar 

  • Chen G, Bohner B (1956) A study of the neuropharmacologic properties of certain convulsants, anticonvulsants and reserpine. J Pharmacol Exp Ther 117: 142–147

    PubMed  CAS  Google Scholar 

  • Chen G, Bohner B (1961) The anti-reserpine effects of certain centrally-acting agents. J Pharmacol Exp Ther 131: 179–184

    PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1954) A facilitation action of reserpine on the central nervous system. Proc Soc Exp Biol Med 86: 507–510

    PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1968 a) Drug effects on the disposition of active biogenic amines in the CNS. Life Sci 7: 1063–1074

    Google Scholar 

  • Chen G, Ensor CR, Bohner B (1968 b) Studies of drug effects on electrically induced extensor seizures and clinical implications. Arch Int Pharmacodyn Ther 172: 183–218

    Google Scholar 

  • Chimote KV, Moghe PJ (1977) Putative neurotransmitters in CNS and chemoconvulsions. Arch Int Pharmacodyn Ther 228: 304–313

    PubMed  CAS  Google Scholar 

  • Chow MI, Hendley CD (1959) Effect of monoamine oxidase inhibitors on experimental convulsions. Fed Proc 18: 376

    Google Scholar 

  • Coleman DL, Schlesinger K (1965) Effects of pyridoxine deficiency on audiogenic seizure susceptibility in inbred mice. Proc Soc Exp Biol Med 119: 264–266

    PubMed  CAS  Google Scholar 

  • Corcoran ME, Mason ST (1980) Role of forebrain catecholamines in amygdaloid kindling. Brain Res 190: 473–484

    PubMed  CAS  Google Scholar 

  • Corcoran ME, Fibiger HC, McGeer EG, Wada J A (1973) Potentiation of leptazol seizures by 6-hydroxydopamine. J Pharm Pharmacol 25: 497–499

    PubMed  CAS  Google Scholar 

  • Corcoran ME, Fibiger HC, McCaughran J A, Wada J A (1974) Potentiation of amygdaloid kindling and metrazol-induced seizures by 6-hydroxydopamine in rats. Exp Neurol 45: 118–133

    PubMed  CAS  Google Scholar 

  • Cox B, Lomax P (1976) Brain amines and spontaneous epileptic seizures in the Mongolian gerbil. Pharmacol Biochem Behav 4: 263–267

    PubMed  CAS  Google Scholar 

  • Crunelli V, Bernasconi S, Samanin R (1979) Evidence against serotonin involvement in the tonic component of electrically induced convulsions and in carbamazepine anticonvulsant activity. Psychopharmacology (Berlin) 66: 79–85

    CAS  Google Scholar 

  • Dashputra PG, Sharma ML, Jagtap MK, Khapre MD, Rajapurkar MV (1966) Modification of metrazol induced convulsions in rats by antihistamines. Arch Int Pharmacodyn Ther 160: 106–112

    PubMed  CAS  Google Scholar 

  • De la Torre JC, Mullan S (1970) A possible role for 5-hydroxytryptamine in drug-induced seizures. J Pharm Pharmacol 22: 858–859

    PubMed  Google Scholar 

  • De la Torre JC, Kawanaga HM, Mullan S (1970) Seizure susceptibility after manipulation of brain serotonin. Arch Int Pharmacodyn Ther 188: 298–304

    PubMed  Google Scholar 

  • De Schaepdryver AF, Piette Y, Delaunois AL (1962) Brain amines and electroshock threshold. Arch Int Pharmacodyn Ther 140: 358–367

    Google Scholar 

  • Dow RC, Hill AG, McQueen JK (1974) Effects of some dopamine receptor stimulants on cobalt-induced epilepsy in the rat. Br J Pharmacol 52: 135 P

    Google Scholar 

  • Eichbaum FW, Yasaka WJ (1973) Inhibition of post-decapitation convulsions by reserpine. Experientia 29: 816–817

    PubMed  CAS  Google Scholar 

  • Fariello RG, Hornykiewicz O (1979) Substantia nigra and pentylenetetrazol threshold in rats: correlation with striatal dopamine metabolism. Exp Neurol 65: 202–208

    PubMed  CAS  Google Scholar 

  • Frey HH (1964) Note on the interactions of amphetamine with anticonvulsant drugs. Acta Pharmacol Toxicol (Copenh) 21: 290–298

    CAS  Google Scholar 

  • Fukuda T, Araki Y, Suenaga N (1975) Inhibitory effects of 6-hydroxydopamine on the clonic convulsions induced by electroshock and decapitation. Neuropharmacology 14: 579–583

    PubMed  CAS  Google Scholar 

  • Gerald MC, Gupta TK (1977) Catecholaminergic involvement in the effects of amphetamine isomers on seizure susceptibility. Eur J Pharmacol 41: 231–234

    PubMed  CAS  Google Scholar 

  • Gerald MC, Richter NA (1976) Studies on the effects of histaminergic agents on seizure susceptibility in mice. Psychopharmacologia (Berlin) 46: 277–282

    CAS  Google Scholar 

  • Gerald MC, Riffee WH (1973) Acute and chronic effects of d- and /-amphetamine on seizure susceptibility in mice. Eur J Pharmacol 21:323–330 Goldberg ME, Milmore JE, Haubrich MK, Haubrich DR (1975) Increased susceptibility to seizures and decreased catecholamine turnover in spontaneously hypertensive rats. Eur J Pharmacol 33: 389–393

    Google Scholar 

  • Gray WD, Rauh CE (1971) The relation between monoamines in brain and the anticonvulsant action of inhibitors of carbonic anhydrase. J Pharmacol Exp Ther 177: 206–218

    PubMed  CAS  Google Scholar 

  • Gray WD, Rauh CE (1974) The anticonvulsant action of the carbonic anhydryse inhibitor methazolamide: possible involvement of a noradrenergic mechanism. Eur J Pharmacol 28: 42–54

    PubMed  CAS  Google Scholar 

  • Gyorgy L (1979) Role of dopaminergic and GABA-ergic interactions in seizure susceptibility. Arch Int Pharmacodyn Ther 241:280–286 Horton R, Anlezark G, Meldrum B (1980) Noradrenergic influences on sound-induced seizures. J Pharmacol Exp Ther 214: 437–442

    Google Scholar 

  • Jaeger V, Esplin B, Capek R (1979) The anticonvulsant effects of propranolol and j5-adrenergic blockade. Experientia 35: 80–81

    PubMed  CAS  Google Scholar 

  • Jenney EH (1954) Changes in convulsant thresholds after rauwolfia serpentina, reserpine and veriloid. Fed Proc 13: 370

    Google Scholar 

  • Jenney EH, Pfeiffer CC (1956) The predictable value of anticonvulsant indices. Ann NY Acad Sci 64: 679–689

    PubMed  CAS  Google Scholar 

  • Jerlicz M, Kostowski W, Bidzinski A, Hauptmann M (1978 a) Audiogenic seizure susceptibility in rats with lesioned raphe nuclei and treated with /?-chlorophenylalanine. Pol J Pharmacol Pharm 30: 63–68

    Google Scholar 

  • Jerlicz M, Kostowski W, Bidzinski A, Hauptmann M, Dymecki J (1978 b) Audiogenic seizures in rats: relation to noradrenergic neurons of the locus coeruleus. Acta Physiol Pol 29: 409–412

    Google Scholar 

  • Jobe PC, Picchioni AL, Chin L (1973 a) Role of brain 5-hydroxytryptamine in audiogenic seizure in the rat. Life Sci 13: 1–13

    Google Scholar 

  • Jobe PC, Picchioni AL, Chin L (1973 b) Effect of lithium carbonate and a-methyl-/?-tyrosine on audiogenic seizure intensity. J Pharm Pharmacol 25: 830–831

    Google Scholar 

  • Jobe PC, Picchioni AL, Chin L (1973 c) Role of brain norepinephrine in audiogenic seizure in the rat. J Pharmacol Exp Ther 184: 1–10

    Google Scholar 

  • Jobe PC, Stull RE, Geiger PF (1974) The relative significance of norepinephrine, dopamine and 5-hydroxytryptamine in electroshock seizure in the rat. Neuropharmacology 13: 961–968

    PubMed  CAS  Google Scholar 

  • Jones BJ, Roberts DJ (1968) The effects of intracerebroventricularly administered noradnamine and other sympathomimetic amines upon leptazol convulsions in mice. Br J Pharmacol 34: 27–31

    PubMed  CAS  Google Scholar 

  • Kellogg C (1971) Serotonin metabolism in the brains of mice sensitive or resistant to audiogenic seizures. J Neurobiol 2: 209–219

    PubMed  CAS  Google Scholar 

  • Kellogg C (1976) Audiogenic seizures: relation to age and mechanisms of monoamine neurotransmission. Brain Res 106: 87–103

    PubMed  CAS  Google Scholar 

  • Kilian M, Frey HH (1973) Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12: 681–692

    PubMed  CAS  Google Scholar 

  • Killam EK (1976) Measurement of anticonvulsant activity in the Papio papio model of epilepsy. Fed Proc 35: 2264–2269

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Przegalinski E, Czuczwar S (1977) Participation of 5-hydroxytryptamine in anticonvulsive action of benzodiazepines. Pol J Pharmacol Pharm 29: 385–391

    PubMed  CAS  Google Scholar 

  • Kleinrok Z, Czuczwar S, Wojcik A, Przegalinski E (1978) Brain dopamine and seizure susceptibility in mice. Pol J Pharmacol Pharm 30: 513–519

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Shirakabe T, Kishikawa H, Mori A (1976) Catecholamine levels in penicillin-induced epileptic focus of the cat cerebral cortex. Acta Neurochir 23: 93–100

    Google Scholar 

  • Kobinger W (1958 a) Reversibility of a facilitatory action of reserpine on the central nervous system, by methylamphetamine. Experientia 14:337–338

    Google Scholar 

  • Kobinger W (1958 b) Beeinflussung der Cardiazolkrampfschwelle durch veranderten 5- Hydroxytryptamingehalt des Zentralnervensystems. Naunyn Schmiedeberg’s Arch Exp Pathol Pharmakol 233:559–566

    Google Scholar 

  • Koe BK, Weissman A (1968) The pharmacology of para-chlorophenylalanine, a selective depletor of serotonin stores. In: Garattini S, Shore PA (eds) Advances in pharmacology, vol 6B. Academic, New York, pp 29–47

    Google Scholar 

  • Kohn R, Millichap JG (1958) Properties of seizures induced by histamine. Proc Soc Exp Biol Med 99: 623–628

    PubMed  CAS  Google Scholar 

  • Koslow SH, Roth LJ (1971) Reserpine and acetazolamide in maximum electroshock seizure in the rat. J Pharmacol Exp Ther 176: 711–717

    PubMed  CAS  Google Scholar 

  • Kostowski W, Bidzinski A, Hauptmann M, Malinowski JE, Jerlicz M, Dymecki J (1978) Brain serotonin and epileptic seizures in mice: a pharmacological and biochemical study. Pol J Pharmacol Pharm 30: 41–47

    PubMed  CAS  Google Scholar 

  • Kovacs DA, Zoll JG (1974) Seizure inhibition by median raphe nucleus stimulation in rat. Brain Res 70: 165–169

    PubMed  CAS  Google Scholar 

  • Lazarova MB, Roussinov KS (1978) On certain effects of dopaminergic agents in pentylenetetrazol convulsions. Acta Physiol Pharmacol Bulg 4: 50–55

    PubMed  CAS  Google Scholar 

  • Lazarova M, Roussinov K, Kleinrok Z, Rajtar G (1980) On some relationship between GABA-ergic and 5-HT-ergic mechanisms in pentylenetetrazol convulsive-seizure reactions. Agressologie 21: 253–257

    PubMed  CAS  Google Scholar 

  • Lazarova M, Roussinov K, Yanev S, Petkov V, Stach R, Kacz D (1981) Effect of chronic /wra-chlorophenylalanine treatment on convulsive-seizure reactions. Acta Biol Med Ger 40: 309–316

    PubMed  CAS  Google Scholar 

  • Lehmann A (1967) Audiogenic seizure data in mice supporting new theories of biogenic amine mechanisms in the central nervous system. Life Sci 6: 1423–1431

    PubMed  CAS  Google Scholar 

  • Lehmann A (1968) Modification de l’intensite de la crise audiogene par des substances actives sur le metabolisme des amines biogenes du cerveau de souris. C R Soc Biol (Paris) 162: 24–27

    CAS  Google Scholar 

  • Lehmann A (1977) Mechanisms underlying modifications in the severity of audiogenic convulsions. Life Sci 20: 2047–2060

    PubMed  CAS  Google Scholar 

  • Lessin AW, Parkes MW (1959) The effects of reserpine and other agents upon leptazol convulsions in mice. Br J Pharmacol 14: 108–111

    CAS  Google Scholar 

  • Leszkovszky G, Tardos L (1965) Some effects of propranolol on the central nervous system. J Pharm Pharmacol 17: 518–520

    PubMed  CAS  Google Scholar 

  • Little JM, Conrad EA (1960) Pentylenetetrazol seizure activity in mice as influenced by route of administration, acute adrenalectomy and reserpine. J Pharmacol Exp Ther 129: 454–461

    PubMed  CAS  Google Scholar 

  • London ED, Buterbaugh GG (1978) Modification of electroshock convulsive responses and thresholds in neonatal rats after brain monoamine reduction. J Pharmacol Exp Ther 206: 81–90

    PubMed  CAS  Google Scholar 

  • Lovell RA (1971) Some neurochemical aspects of convulsions. In: Lajtha A (ed) Handbook of neurochemistry, vol VI. Plenum, New York, pp 63–102

    Google Scholar 

  • Madan BR, Barar FSK (1974) Anticonvulsant activity of some -adrenoceptor blocking agents in mice. Eur J Pharmacol 29: 1–4

    PubMed  CAS  Google Scholar 

  • Maj J, Vetulani J (1970) Some pharmacological properties of N,N-disubstituted dithiocar- bamates and their effect on the brain catecholamine levels. Eur J Pharmacol 9: 183–189

    PubMed  CAS  Google Scholar 

  • Mason ST, Corcoran ME (1978) Forebrain noradrenaline and metrazol-induced seizures. Life Sci 23: 167–172

    PubMed  CAS  Google Scholar 

  • Mason ST, Corcoran ME (1979 a) Seizure susceptibility after depletion of spinal or cerebellar noradrenaline with 6-OHDA. Brain Res 166: 418–421

    Google Scholar 

  • Mason ST, Corcoran ME (1979b) Catecholamines and convulsions. Brain Res 170: 497–507

    PubMed  CAS  Google Scholar 

  • Maynert EW (1969) The role of biochemical and neurohumoral factors in the laboratory evaluation of antiepileptic drugs. Epilepsia 10: 145–162

    PubMed  CAS  Google Scholar 

  • Maynert EW, Marczynski TJ, Browning RA (1975) The role of the neurotransmitters in the epilepsies. In: Friedlander WJ (ed) Advances in neurology, vol 13. Raven, New York, pp 79–147

    Google Scholar 

  • McGeer EG, Ikeda H, Asakura T, Wada J A (1969) Lack of abnormality in brain aromatic amines in rats and mice susceptible to audiogenic seizure. J Neurochem 16: 945–950

    PubMed  CAS  Google Scholar 

  • Mclntyre DC, Saari M, Pappas BA (1979) Potentiation of amygdala kindling in adult or infant rats by injections of 6-hydroxydopamine. Exp Neurol 63: 527–544

    Google Scholar 

  • McKenzie GM, Soroko FE (1972) The effects of apomorphine, (-h)-amphetamine and L- dopa on maximal electroshock convulsions - a comparative study in the rat and mouse. J Pharm Pharmacol 24: 696–701

    PubMed  CAS  Google Scholar 

  • McKenzie GM, Soroko FE (1973) Inhibition of the anticonvulsant activity of L-dopa by FLA–63, a dopamines-hydroxylase inhibitor. J Pharm Pharmacol 25: 76–77

    PubMed  CAS  Google Scholar 

  • Meldrum B, Anlezark G, Trimble M (1975) Drugs modifying dopaminergic activity and behaviour, the EEG and epilepsy in Papio papio. Eur J Pharmacol 32: 203–213

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Balzamo E (1971) Etude des effets de l’-a-methylparatyrosine chez le Papio papio. C R Soc Biol (Paris) 165: 2379–2381

    CAS  Google Scholar 

  • Meldrum BS, Naquet R (1970) Effects of psilocybin, dimethyltryptamine and various lysergic acid derivatives on photically-induced epilepsy in the baboon (Papio papio). Br J Pharmacol 40: 144P–145 P

    PubMed  CAS  Google Scholar 

  • Meldrum BS, Balzamo E, Wada JA, Vuillon-Cacciuttolo G (1972) Effects of L-tryptophan, L–3,4-dihydroxyphenylalanine and tranylcypromine on the electroencephalogram and on photically induced epilepsy in the baboon, Papio papio. Physiol Behav 9: 615–621

    Google Scholar 

  • Mennear JH, Rudzik AD (1968) The effect of pronethalol on the anticonvulsant action of acetazolamide. Life Sci 7: 1265–1269

    Google Scholar 

  • Mohr E, Corcoran ME (1981) Depletion of noradrenaline and amygdaloid kindling. Exp Neurol 72: 507–511

    PubMed  CAS  Google Scholar 

  • Murmann W, Almirante L, Saccani-Guelfi M (1966) Central nervous system effects of four -adrenergic receptor blocking agents. J Pharm Pharmacol 18: 317–318

    PubMed  CAS  Google Scholar 

  • Nellhaus G (1968) Relationship of brain serotonin to convulsions. Neurology (Minneap) 18: 298–299

    Google Scholar 

  • Oishi R, Suenaga N, Fukuda T (1979 a) Possible involvement of brainstem norepinephrine in pentylenetetrazol convulsions in rats. Pharmacol Biochem Behav 10: 57–61

    Google Scholar 

  • Oishi R, Suenaga N, Hidaka T, Fukuda T (1979 b) The role of a-adrenoceptors in the regulation of pentylenetetrazol convulsions in mice. J Pharm Pharmacol 31: 709–710

    Google Scholar 

  • Osuide G, Wambebe C (1979) The influence of intraperitoneally injected-hydroxydopamine on electroshock seizure in chicks and rats. Clin Exp Pharmacol Physiol 6: 367–372

    PubMed  CAS  Google Scholar 

  • P’an SY, Funderburk WH, Finger KF (1961) Anticonvulsant effect of nialamide and diphenylhydantoin. Proc Soc Exp Biol Med 108: 680–683

    PubMed  Google Scholar 

  • Pfeifer AK, Galambos E (1965) Action of alpha-methyldopa on the pharmacological and biochemical effect of reserpine in rats and mice. Biochem Pharmacol 14: 37–40

    PubMed  CAS  Google Scholar 

  • Pfeifer AK, Galambos E (1967 a) The effect of reserpine, a-methyl-m-tyrosine, prenylamine, and guanethidine on metrazol-convulsions and the brain monoamine level in mice. Arch Int Pharmacodyn Ther 165: 201–211

    Google Scholar 

  • Pfeifer AK, Galambos E (1967 b) The effect of (+)-/?-chloroamphetamine on the susceptibility to seizures and on the monoamine level in brain and heart of mice and rats. J Pharm Pharmacol 19: 400–402

    Google Scholar 

  • Pfeifer AK, Vizi ES, Satory E (1964) Studies on the action of guanethidine on the central nervous system and on the norepinephrine content of brain in rats. In: Bradley PB, Fliigel F, Hoch PH (eds) Neuro-psychopharmacology, vol 3. Elsevier, Amsterdam, pp 417–419

    Google Scholar 

  • Picchioni AL, Chin L, Breitner C (1962) Relationship between brain levels of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) and susceptibility to electrically-induced seizures. Fed Proc 21:416 Plotnikoff N (1960) Ataractics and strain differences in audiogenic seizures in mice. Psy-chopharmacologia (Berlin) 1: 429–432

    Google Scholar 

  • Prockop DJ, Shore PA, Brodie BB (1959) Anticonvulsant properties of monoamine oxidase inhibitors. Ann NY Acad Sci 80: 643–651

    PubMed  CAS  Google Scholar 

  • Przegalinski E (1975) The role of 5-hydroxytryptamine in the mechanism of action of anticonvulsant drugs. Pol J Pharmacol Pharm 27 [Suppl]: 195–199

    PubMed  CAS  Google Scholar 

  • Przegalinski E (1976 a) Convulsive thresholds and the activity of anticonvulsants in electroseizure test. The role of serotoninergic system. Pol J Pharmacol Pharm 28: 143–155

    Google Scholar 

  • Przegalinski E (1976 b) The role of cerebral 5-hydroxytryptamine for convulsive threshold and anticonvulsant effect of acetazolamide in rats. Arch Immunol Ther Exp (Warsz) 24:821–827

    Google Scholar 

  • Quattrone A, Samanin R (1977) Decreased anticonvulsant activity of carbamazepine in 6-hydroxydopamine-treated rats. Eur J Pharmacol 41: 333–336

    CAS  Google Scholar 

  • Quattrone A, Crunelli V, Samanin R (1978) Seizure susceptibility and anticonvulsant activity of carbamazepine, diphenylhydantoin and phenobarbital in rats with selective depletions of brain monoamines. Neuropharmacology 17: 643–647

    PubMed  CAS  Google Scholar 

  • Racine R, Coscina DV (1979) Effects of midbrain raphe lesions or systemic /7-chlorophen-ylalanine on the development of kindled seizures in rats. Brain Res Bull 4: 1–7

    PubMed  CAS  Google Scholar 

  • Riffee WH, Gerald MC (1976) Effects of amphetamine isomers and CNS catecholaminergic blockers on seizures in mice. Neuropharmacology 15: 677–682

    PubMed  CAS  Google Scholar 

  • Riffee WH, Gerald MC (1977) The effects of chronic administration of (+)-amphetamine on seizure threshold and endogenous catecholamine concentrations and their rates of biosynthesis in mice. Psychopharmacology (Berlin) 51: 175–179

    CAS  Google Scholar 

  • Roussinov KS, Lazarova MB (1978) On certain relationships between gamma-aminobutyric acid ( GABA) and dopaminergic agents in pentylenetetrazol convulsions. Acta Physiol Pharmacol Bulg 4: 43–49

    Google Scholar 

  • Roussinov KS, Lazarova MB, Atanassova-Shopova S (1976) On certain relationships be-tween gamma-aminobutyric acid ( GABA) and adrenergic mechanisms in convulsive- seizure reactions. Acta Physiol Pharmacol Bulg 2: 69–76

    Google Scholar 

  • Rudzik AD, Johnson GA (1970) Effect of amphetamine and amphetamine analogs on convulsive thresholds. In: Costa E, Garattini S (eds) Amphetamines and related compounds. Raven, New York, pp 715–728

    Google Scholar 

  • Safta L, Cuparencu B, Danau M, Comes L (1976) Some behavioural changes induced by amantadine (adamantine). Acta Biol Med Ger 35: 229–233

    PubMed  CAS  Google Scholar 

  • Schlesinger K, Boggan W, Freedman DX (1965) Genetics of audiogenic seizures: I. Relation to brain serotonin and norepinephrine in mice. Life Sci 4: 2345–2351

    Google Scholar 

  • Schlesinger K, Boggan W, Freedman DX ( 1968 a) Genetics of audiogenic seizures: II. Effects of pharmacological manipulation of brain serotonin, norepinephrine and gamma- aminobutyric acid. Life Sci 7: 437–447

    Google Scholar 

  • Schlesinger K, Boggan WO, Griek BJ (1968 b) Pharmacogenetic correlates of pentylenetetrazol and electroconvulsive seizure threshold in mice. Psychopharmacologia (Berlin) 13: 181–188

    Google Scholar 

  • Schlesinger K, Stavnes KL, Boggan WO (1969) Modification of audiogenic and pentylenetetrazol seizures with gamma-aminobutyric acid, norepinephrine and serotonin. Psychopharmacologia (Berlin) 15: 226–231

    CAS  Google Scholar 

  • Schlesinger K, Boggan WO, Freedman DX (1970) Genetics of audiogenic seizures: III. Time response relationships between drug administration and seizure susceptibility. Life Sci 9: 721–729

    Google Scholar 

  • Schlesinger K, Harkins J, Deckard BS, Paden C (1975) Catechol-O-methyl transferase and monoamine oxidase activities in brains of mice susceptible and resistant to audiogenic seizures. J Neurobiol 6: 587–596

    PubMed  CAS  Google Scholar 

  • Schonfeld AR, Glick SD (1980) Neuropharmacological analysis of handling-induced seizures in gerbils. Neuropharmacology 19: 1009–1016

    PubMed  CAS  Google Scholar 

  • Scudder CL, Karczmar AG, Everett GM, Gibson JE, Rifkin M (1966) Brain catecholamines and serotonin levels in various strains and genera of mice and a possible interpretation for the correlations of amine levels with electroshock latency and behavior. Int J Neuropharmacol 5: 343–351

    PubMed  CAS  Google Scholar 

  • Scuvee-Moreau J, Lepot M, Brotchi J, Gerebtzoff MA, Dresse A (1977) Action of phenytoin, ethosuximide and of the carbidopa-L-dopa association in semi-chronic cobalt-induced epilepsy in the rat. Arch Int Pharmacodyn Ther 230: 92–99

    PubMed  CAS  Google Scholar 

  • Siegel J, Murphy GJ (1979) Serotonergic inhibition of amygdala-kindled seizures in cats. Brain Res 174: 337–340

    PubMed  CAS  Google Scholar 

  • Simonton RL, Browning RA (1977) Increased sensitivity to maximal electroshock seizures following selective destruction of noradrenergic neurons with 6-hydroxydopamine. Neurosci Abst 3: 145–148

    Google Scholar 

  • Spencer PS J, Turner TAR (1969) Blockade of biogenic amine synthesis: its effect on the responses to leptazol and dexamphetamine in rats. Br J Pharmacol 37: 94–103

    PubMed  CAS  Google Scholar 

  • Spoerlein MT, Ellman AM (1961) Facilitation of metrazol-induced seizures by iproniazid and beta-phenylisopropylhydrazine in mice. Arch Int Pharmacodyn Ther 133: 193–199

    PubMed  CAS  Google Scholar 

  • Stach R, Lazarova MB, Kacz D (1981) Serotonergic mechanism in seizures kindled from the rabbit amygdala. Naunyn Schmiedebergs Arch Pharmacol 316: 56–58

    PubMed  CAS  Google Scholar 

  • Stull RE, Jobe PC, Geiger PF, Ferguson GG (1973) Effects of dopamine receptor stimulation and blockade on Ro 4–1284-induced enhancement of electroshock seizure. J Pharm Pharmacol 25: 842–844

    PubMed  CAS  Google Scholar 

  • Stull RE, Jobe PC, Geiger PF (1977) Brain areas involved in the catecholamine mediated regulation of electroshock seizure intensity. J Pharm Pharmacol 29: 8–11

    PubMed  CAS  Google Scholar 

  • Trimble M, Anlezark G, Meldrum B (1977) Seizure activity in photosensitive baboons following antidepressant drugs and the role of serotoninergic mechanisms. Psychophar- macology (Berlin) 51: 159–164

    CAS  Google Scholar 

  • Truitt EB Jr, Ebersberger EM (1962) Decarboxylase inhibitors affect convulsion thresholds to hexafluorodiethyl ether. Science 135: 105–106

    PubMed  Google Scholar 

  • Walter S, Balzano E, Vuillon-Cacciuttolo G, Naquet R (1971) Effets comportementaux et electrographiques du diethylamide de l’acide af-lysergique (LSD 25) sur le Papio papio photo-sensible. Electroencephalogr Clin Neurophysiol 30: 294–305

    PubMed  CAS  Google Scholar 

  • Wenger GR, Stitzel RE, Craig CR (1973) The role of biogenic amines in the reserpine-in- duced alteration of minimal electroshock seizure thresholds in the mouse. Neuropharmacology 12: 693–703

    PubMed  CAS  Google Scholar 

  • Wolf HH, Stock GA Jr (1966) Utility of two convulsant techniques as indicators of CNS excitability. J Pharm Sci 55: 1455–1457

    CAS  Google Scholar 

  • Wolf HH, Rollins DE, Rowland CR, Reigle TG (1969) The importance of endogenous catecholamines in the activity of some CNS stimulants. Int J Neuropharmacol 8: 319–328

    PubMed  CAS  Google Scholar 

  • Worms P, Lloyd KG (1979) The anticonvulsant effect of neuroleptics: dependence on intact noradrenergic transmission. In: Usdin E, Kopin IJ, Barchas J (eds) Catechol-amines: basic and clinical frontiers. Pergamon, New York, pp 1643–1645

    Google Scholar 

  • Yeoh PN, Wolf HH (1968) Effects of some adrenergic agents on low frequency electroshock seizures. J Pharm Sci 57: 340–342

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

PrzegaliƄski, E. (1985). Monoamines and the Pathophysiology of Seizure Disorders. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics