Skip to main content

Barbituric Acid Derivatives

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Recently, a number of reviews of various aspects of barbiturate pharmacology have appeared (Prichard 1980; Vida 1977; Ho and Harris 1981; Nicoll 1978). These books and reviews more than adequately cover the current understanding of barbiturate anticonvulsant, hypnotic, and tolerance activity at a cellular level and in the whole organism. In order to avoid, as much as possible, a recapitulation of this literature we will take a slightly different approach by focusing primarily upon the anticonvulsant barbiturates and in particular comparing the pharmacology of phenobarbital (PhB) with an experimental anticonvulsant barbituric acid derivative eterobarb (EtB; N, N-dimethoxymethyl phenobarbital). Where appropriate, and as information exists, we will consider the other anticonvulsant barbituric acid derivative, mephobarbital (MB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright PS, Burnham WM (1980) Development of a new pharmacological seizure model: effects of anticonvulsants on cortical- and amygdala-kindled seizures in the rat. Epilepsia 21: 681–689

    PubMed  CAS  Google Scholar 

  • Alles G, Ellis C, Feigen G, Redemann M (1947) Comparative central depressant actions of some 5-phenyl-5-alkyl barbituric acids. J Pharmacol Exp Ther 89: 356–367

    PubMed  CAS  Google Scholar 

  • Alvan G, Piafsky K, Lind M, Von Bahr (1977) Effect of pentobarbital on the disposition of alprenolol. Clin Pharmacol Ther 22: 316–321

    PubMed  CAS  Google Scholar 

  • Alvin J, Bush M (1974 a) Metabolic fate of dimethoxymethyl-phenobarbital in rat. J Pharmacol Exp Ther 188: 8–14

    Google Scholar 

  • Alvin J, Bush M (1974 b) Metabolism of N,Af-dimethoxymethyl-phenobarbital in the mouse. Pharmacologist 16: 149

    Google Scholar 

  • Baumel IP, Gallagher BB, DiMicco J, Goico H (1973) Metabolism and anticonvulsant properties of primidone in the rat. J Pharmacol Exp Ther 186: 305–314

    PubMed  CAS  Google Scholar 

  • Baumel I, Gallagher B, DiMicco J, Dionne R (1976) Metabolism, distribution, and anticonvulsant properties of A-N-dimethoxymethylphenobarbital in the rat. J Pharmacol Exp Ther 196: 180–187

    PubMed  CAS  Google Scholar 

  • Baylis EM, Fry DE, Marks V (1970) Microdetermination of serum phenobarbitone and diphenylhydantoin by gas-liquid chromatography. Clin Chim Acta 30: 93–103

    PubMed  CAS  Google Scholar 

  • Belknap J, Ondrusek G, Berg J, Waddingham S (1977) Barbiturate dependence in mice: effects of continuous versus discontinuous drug administration. Psychopharmacology 51: 195–198

    PubMed  CAS  Google Scholar 

  • Boisse N, Okamoto M ( 1978 a) Physical dependence to barbital compared to pentobarbital. I. Chronically equivalent dosing method. J Pharmacol Exp Ther 204: 497–506

    Google Scholar 

  • Boisse N, Okamoto M ( 1978 b) Physical dependence to barbital compared to pentobarbital. II. Tolerance characteristics. J Pharmacol Exp Ther 204: 507–513

    Google Scholar 

  • Boisse N, Okamoto N ( 1978 c) Physical dependence to barbital compared to pentobarbital. III. Withdrawal characteristics. J Pharmacol Exp Ther 204: 514–525

    Google Scholar 

  • Boisse N, Okamoto M ( 1978 d) Physical dependence to barbital compared to pentobarbital. IV. Influence of elimination kinetics. J Pharmacol Exp Ther 204: 526–540

    Google Scholar 

  • Breon JL, Mauger J, Osborne G, Lausier J, Paruta A (1976) The aqueous solubility of variously substituted barbituric acids. I. Chemical effects. Drug Devel Comm 2: 521–529

    Google Scholar 

  • Brodie BB, Hogben C (1957) Some physiochemical factors in drug action. J Pharm Pharmacol 9: 345–380

    PubMed  CAS  Google Scholar 

  • Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by ‘psychomotor’ seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107: 273–283

    PubMed  CAS  Google Scholar 

  • Browning RA, Maynert EW (1972) Toxicity: phenobarbital, mephobarbital, and metharbital. In: Woodbury DM, Perry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 345–351

    Google Scholar 

  • Bush M, Sanders E (1967) Metabolic fate of drugs: barbiturates and closely related compounds. Ann Rev Pharmacol 7: 57–76

    PubMed  CAS  Google Scholar 

  • Butler TC (1952) Quantitative studies on the metabolic fate of mephobarbital (N-methyl-phenobarbital). J Pharmacol Exp Ther 106: 235–245

    PubMed  CAS  Google Scholar 

  • Butler TC (1953 a) Quantitative studies of the demethylation of N-methylbarbital (metharbital, Gemonil). J Pharmacol Exp Ther 108: 474–480

    Google Scholar 

  • Butler TC (1953 b) Further studies of metabolic removal of alkyl groups from nitrogen in barbituric acid derivatives. Proc Soc Exp Biol Med 84:105–108

    Google Scholar 

  • Butler TC (1954) Metabolic oxidation of phenobarbital to /?-OH-phenobarbital. Science 120: 494

    PubMed  CAS  Google Scholar 

  • Butler TC (1955) The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin, and 2,4-oxazolidinedione. J Am Pharm Assoc Sci Ed 44: 367–370

    CAS  Google Scholar 

  • Butler TC (1956) The metabolic hydroxylation of phenobarbital. J Pharmacol Exp Ther 116: 326–336

    PubMed  CAS  Google Scholar 

  • Butler TC, Bush MJ (1939) The metabolic fate of TV-methylbarbituric acids. J Pharmacol Exp Ther 65: 205–13

    CAS  Google Scholar 

  • Butler TC, Waddell W (1958) iV-Methylated derivatives of barbituric acid, hydantoin, and oxazolidinedione used in treatment of epilepsy. Neurology (suppl) 8: 106–112

    Google Scholar 

  • Butler TC, Mahafee D, Mahafee C (1952) Quantitative studies of the metabolic fate of mephobarbital. J Pharmacol Exp Ther 106: 235–245

    PubMed  CAS  Google Scholar 

  • Butler TC, Mahafee C, Waddell WJ (1954) Phenobarbital: studies of elimination, accumulation, tolerance and dosage schedules. J Pharmacol Exp Ther 111: 425–435

    PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR (1950) Evaluation of antiepileptic drugs. Arch Neurol Psychiatry 63: 55–60

    Google Scholar 

  • Christiansen C, Rodbro P, Lund M (1973) Effect of vitamin D on bone mineral mass in normal subjects and in epileptic patients on anticonvulsants: a controlled therapeutic trial. Br Med J 2: 208–209

    PubMed  CAS  Google Scholar 

  • Collins AJ, Horlington M (1969) A sequential screening test based on the running component of audiogenic seizures in mice, including reference compound PD50 values. Br J Pharmacol 37: 140–150

    PubMed  CAS  Google Scholar 

  • Conney A (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317–366

    PubMed  CAS  Google Scholar 

  • Cook CE (1978) Radioimmunoassay. In: Pippenger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 163–173

    Google Scholar 

  • Craig C, Hirano K, Shideman F (1960) Anticonvulsant activity of a metabolite of phenobarbital. Fed Proc 19: 280

    Google Scholar 

  • Craig CR, Shideman FE (1971) Metabolism and anticonvulsant properties of mephobarbital and phenobarbital in rats. J Pharmacol Exp Ther 176: 35–41

    PubMed  CAS  Google Scholar 

  • Crigler JF, Gold NI (1969) Effect of sodium phenobarbital on bilirubin metabolism in an infant with congenital nonhemolytic unconjugated hyperbilirubinemia and kernicterus. J Clin Invest 48: 42–55

    PubMed  CAS  Google Scholar 

  • Cucinell SA (1972) Phenobarbital: interactions with other drugs. In: Woodbury DM, Penry JK, Schmidt RP (eds). Raven, New York, pp 319–327

    Google Scholar 

  • Cucinell SA, Coriney AH, Sansur MS, Burns J J (1965) Drug interactions in man. I. Lowering effect of phenobarbital on plasma levels of bishydroxycoumarin (Dicumarol) and diphenylhydantoin (Dilantin). Clin Pharmacol Ther: 420–429

    Google Scholar 

  • Davies JE, Edmundson WF, Carter CH, Barquet A (1969) Effect of anticonvulsant drugs on dicophane ( D.D.T.) residues in man. Lancet 2: 7–9

    Google Scholar 

  • DeLuca HF (1979) Vitamin D metabolism and function. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Domek N, Barlow C, Roth L (1960) An ontogenetic study of phenobarbital-14C in cat brain. J Pharmacol Exp Ther 130: 285–293

    PubMed  CAS  Google Scholar 

  • Doran W (1959) Barbituric acid hypnotics. In: Blicke J, Cos R (eds) Medicinal chemistry, vol 4. John Wiley, New York, pp 1–340

    Google Scholar 

  • Douglas H (1966) Haemorrhage in the newborn. Lancet 1: 816–817

    Google Scholar 

  • Druskin MS, Wallen MH, Bonagura L (1962) Anticonvulsant-associated megaloblastic anemia response to 25 micrograms of folic acid administered by mouth daily. N Engl J Med 267: 483–485

    PubMed  CAS  Google Scholar 

  • Dymling IR, Johnell D, Lindgren L, Niesson BE, Walloe A, Wiklund PE (1979) In: Norman AW, Schaefer K, Herrati DV, Grupoleit HG, Coburn JW, DeLuca HF, Mawer EB, Suda T (eds) Vitamin D basic research and its clinical applications. Walter de Gruyter, Berlin, pp 1193–1197

    Google Scholar 

  • Ebert A, Yim G, Miya T (1964) Distribution and metabolism of barbital-14C in tolerant and nontolerant rats. Biochem Pharmacol 13: 1267–1274

    PubMed  CAS  Google Scholar 

  • Eisenhardt T, Levin S, Touchstone J, Cooper D (1977) Phenobarbital metabolism during chronic administration in rats. Fed Proc 36: 844

    Google Scholar 

  • Ferngren H (1968) Further studies on clinically induced seizures and their antagonism by anticonvulsants during postnatal development in the mouse. Acta Pharmacol Toxicol 26: 177–188

    CAS  Google Scholar 

  • Fink GB, Swinyard EA (1959) Modification of maximal audiogenic and electroshock seizures in mice by psychopharmacologic drugs. J Pharmacol Exp Ther 127: 318–324

    PubMed  CAS  Google Scholar 

  • Fischer E, Dilthey A (1904) Justus Liebigs. Ann Chem 335: 334

    Google Scholar 

  • Freer LS (1978) Characterization of the functional tolerance development to N,Ndi- methoxymethylphenobarbital. Unpublished doctoral thesis, Department of Pharmacology, Georgetown University, Washington DC

    Google Scholar 

  • Freudenthal R, Carrol F (1973) Metabolism of certain commonly used barbiturates. Drug Metab Rev 2: 265–278

    PubMed  CAS  Google Scholar 

  • Frey HH, Kampmann E (1966) Interaction of amphetamine with anticonvulsant drugs. II. Effect of amphetamine on the absorption of anticonvulsant drugs. Acta Pharmacol Toxicol (Kbh.) 24: 310–316

    Google Scholar 

  • Frey HH, Magnussen MP (1971) A hitherto undescribed feature in the anticonvulsant effect of phenobarbital. Pharmacology 5: 1–8

    PubMed  CAS  Google Scholar 

  • Frey HH, Gobel W, Loscher W (1979) Pharmacokinetics of primidone and its active metabolites in the dog. Arch Int Pharmacodyn Ther 242: 14–30

    PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W, Reiche R, Schultz D (1981) Pharmacology of antiepileptic drugs in the gerbil -1. Pharmacokinetics. Neuropharmacol 20: 769–771

    Google Scholar 

  • Friis ML (1979) Epilepsy among parents of children with facial clefts. Epilepsia 20: 69–76

    PubMed  CAS  Google Scholar 

  • Gallagher BB (1976) Adrenal hyperplasia in epileptic patients. In: Kellaway P, Petersen I (eds) Quantitative analytic studies in epilepsy. Raven, New York, pp 165–169

    Google Scholar 

  • Gallagher B, Woodbury S (1975) A double-blind comparison of the anticonvulsant di- methoxymethyl phenobarbital and phenobarbital. In: Janz D (ed) Epileptology. Georg Thieme, Stuttgart, pp 117–122

    Google Scholar 

  • Gallagher B, Baumel I, DiMicco J, Vida J (1973) Metabolism and distribution of di- methoxymethyl phenobarbital in the rat. Fed Proc 32: 684

    Google Scholar 

  • Gallagher B, Baumel I, Woodbury S, DiMicco J (1975) Clinical evaluation of eterobarb, a new anticonvulsant. Neurology 25: 399–404

    PubMed  CAS  Google Scholar 

  • Glasson B, Benakis A (1961) Etude du phenobarbital-C14 dans 1′organisme du rat. Helv Physiol Acta 19: 324–334

    Google Scholar 

  • Goldbaum LR, Smith PK (1954) The interaction of barbiturates with serum albumin and its possible relation to their disposition and pharmacological actions. J Pharmacol Exp Ther 111: 197–209

    PubMed  CAS  Google Scholar 

  • Goodman LS, Grewal MS, Brown WC, Swinyard EA ( 1953 a) Comparison of maximal seizures evoked by pentylenetetrazol ( Metrazol) and electroshock in mice and their modification by anticonvulsants. J Pharmacol Exp Ther 108: 168–176

    Google Scholar 

  • Goodman LS, Swinyard EA, Brown WC, Schiffman DO, Grewal MS, Bliss EL ( 1953 b) Anticonvulsant properties of 5-phenyl-5-ethyl hexahydropyrimidine-4,6-dione ( Myso- line), a new antiepileptic. J Pharmacol Exp Ther 108: 428–436

    Google Scholar 

  • Granick S (1965) Hepatic porphyria and drug-induced or chemical porphyria. Ann NY Acad Sci 123: 188–197

    PubMed  CAS  Google Scholar 

  • Greeley RH (1974) New approach to derivatization and gas-chromatographic analysis of barbiturates. Clin Chem 20: 192–194

    PubMed  CAS  Google Scholar 

  • Haglund K, Seideman P, Collote P, Borg KO, Von Bahr C (1979) Influence of pentobarbital on metoprolol plasma levels. Clin Pharmacol Ther 26: 326–329

    PubMed  CAS  Google Scholar 

  • Hahn TJ (1980) Drug-induced disorders of vitamin D and mineral metabolism. Clin Endocrinol Metab 9: 107–129

    PubMed  CAS  Google Scholar 

  • Hahn TJ, Hendin BA, Scharp CR, Boisseau VC, Haddad JG (1975) Serum 25-hydroxycal- ciferol levels and bone mass in children on chronic anticonvulsant therapy. N Eng J Med 292: 550–554

    CAS  Google Scholar 

  • Hansch C, Clayton J (1973) Lipophilic character and biological activity of drugs. II. The parabolic case. J Pharm Sci 62: 1–21

    Google Scholar 

  • Hansch C, Dunn W (1972) Linear relationships between lipophilic character and biological activity of drugs. J Pharm Sci 61:1 –19

    Google Scholar 

  • Hansch C, Steward A, Anderson S, Bentley D (1968) The parabolic dependence of drug action upon lipophilic character as revealed by a study of hypnotics. J Med Chem 11:1– 11

    Google Scholar 

  • Hartlage LC (to be published) Neuropsychological assessment of anticonvulsant drug toxicity. Clin Neuropsychol

    Google Scholar 

  • Harvey CD, Sherwin AL, Van Der Kleijn E (1977) Distribution of anticonvulsant drugs in gray and white matter of human brain. Can J Neurol Sci 4: 89–92

    PubMed  CAS  Google Scholar 

  • Hauptmann A (1912) Luminal bei Epilepsie. Munch Med Wochenschr 59: 1907–1909

    Google Scholar 

  • Hawk GL, Franconi LC (1978) High-pressure liquid chromatography in quantitation of antiepileptic drugs. In: Pippenger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 9–17

    Google Scholar 

  • Hawkins CF, Meynell MJ (1956) Macrocytosis and megaloblastic anemia in epileptics on anticonvulsant drugs. Q J Med 25: 567–568

    Google Scholar 

  • Hawkins CF, Meynell MJ (1958) Macrocytosis and macrocytic anaemia caused by anticonvulsant drugs. Q J Med 27: 45–63

    PubMed  CAS  Google Scholar 

  • Ho IK, Harris RA (1981) Mechanism of action of barbiturates. Ann Rev Pharmacol Toxicol 21: 83–11

    CAS  Google Scholar 

  • Houghton GW, Richens A, Toseland PA, Davidson S, Falconer MA (1975) Brain concentrations of phenytoin, phenobarbital and primidone in epileptic patients. Eur J Clin Pharmacol 9: 73–78

    PubMed  CAS  Google Scholar 

  • Hutt SJ, Jackson PM, Belstram A, Higgins G (1968) Perceptual-motor behavior in relation to blood phenobarbitone level: a preliminary report. Dev Med Child Neurol 10:626– 632

    Google Scholar 

  • Jenden D, Cho A, Goldberg M, Steinborn J (1978) Study of the metabolism of demethoxy- methyl phenobarbital. National Institutes of Health, Final Report. (Contract 1-NS- 4-2330) pp 1–63

    Google Scholar 

  • Juliusburger J (1912) Uber Luminal, ein neues Hypnoticum and Sedatium. Berl Klin Wochenschr 49: 940–942

    Google Scholar 

  • Kakemi K, Takaichi A, Hori R, Konishi R (1967) Absorption of barbituric acid derivatives from rat small intestine. Chem Pharm Bull 15: 1883–1887

    PubMed  CAS  Google Scholar 

  • Kapetanovic IM, Kupferberg HJ, Porter RJ, Theodore W, Schulwan E, Penry JK (1981) Mechanism of valproate-phenobarbital interaction in epileptic patients. Clin Pharmacol Ther 29: 480–86

    PubMed  CAS  Google Scholar 

  • Kato R (1967) Analysis and differentiation of the mechanism in development of drug tolerance. Jpn J Pharmacol 17: 499–508

    PubMed  CAS  Google Scholar 

  • Khoo KC, Mendels J, Rothhart M, Garland WA, Colburn WA, Min BH, Lucek R, Carbone J J, Boxenbaum HG, Kaplan SA (1980) Influence of phenytoin and phenobarbital on the disposition of a single oral dose of clonazepam. Clin Pharmacol Ther 28: 368–375

    PubMed  CAS  Google Scholar 

  • Kupferberg HJ (1978) Quantitative methods for antiepileptic drugs analysis: an overview. In: Pippenger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 9–17

    Google Scholar 

  • Kurse K, Bartels H, Ziegler R, Dreller E, Kracht U (1980) Parathyroid function and serum calcitonin in children receiving anticonvulsant drugs. Eur J Pediatr 133: 151–156

    Google Scholar 

  • Levi AJ, Sherlock S, Walker D (1968) Phenylbutazone and isoniazid metabolism in patients with liver disease in relation to previous drug therapy. Lancet 2: 1275–1279

    Google Scholar 

  • Loewe S (1912) Clinical procedures with Luminal. Chem Abstr 6: 2110

    Google Scholar 

  • Loscher W (1979) A comparative study of the protein binding of anticonvulsant drugs in serum of dog and man. J Pharmacol Exp Ther 208: 429–435

    PubMed  CAS  Google Scholar 

  • Lous P (1954) Blood, serum and cerebrospinal fluid levels and renal clearance of phenemal in treated epileptics. Acta Pharmacol Toxicol (Copenh) 10: 166–177

    CAS  Google Scholar 

  • Magnussen MP (1968) The effect of ethanol on gastrointestinal absorption of drugs in the rat. Acta Pharmacol Toxicol (Copenh) 26: 130–144

    CAS  Google Scholar 

  • Mark L (1963) Metabolism of barbiturates in man. Clin Pharmacol Ther 4: 504–530

    CAS  Google Scholar 

  • Mark L, Papper E, Brodie B, Rovenstine E (1949) Quantitative pharmacologic studies with penthothai. NY State J Med 49: 1546–1549

    CAS  Google Scholar 

  • Matsumoto H, Gallagher B (1975) Metabolism and excretion of C14-eterobarb in epileptic patients. In: Janz D (ed) Epileptology. George Thieme, Stuttgart, pp 122–129

    Google Scholar 

  • Mattson RH, Gallagher BB, Glass DH (1973) Folate therapy in epilepsy: a controlled study. Arch Neurol 29: 78–81

    PubMed  CAS  Google Scholar 

  • Maynert E (1972) Phenobarbital, mephobarbital and metharbital: absorption, distribution and excretion. In: Woodbury D, Penry K, Schmidt R (eds) Raven, New York, pp 303– 318

    Google Scholar 

  • Maynert E, Van Dyke H (1949) The metabolism of barbiturates. Pharmacol Rev 1: 217–242

    PubMed  CAS  Google Scholar 

  • Meinardi H, Stoel LMK (1974) Side effects of anti-epileptic drugs. In: Vinker PJ, Bruyn GW (eds) Handbook of clinical neurology. American Elsevier, New York, pp 705–738

    Google Scholar 

  • Morselli PL, Rizzo M, Garattini S (1971) Interaction between phenobarbital and diphenylhydantoin in animals and in epileptic patients. Ann NY Acad Sci 179: 88–107

    PubMed  CAS  Google Scholar 

  • Nakane Y, Okuma T, Takahashi R, Sato R, Wada T, Sato T, Fukushima Y, Kumashiro H, Oho T, Takahasbi T, Aoki Y, Kazamatsuri H, Inami M, Komai S, Seino M, Miyakoshi M, Tanimura T, Hazama H, Kawahara R, Otsuki S, Hosokawa K, Inanaga K, Nakazawa Y, Yamamoto K (1980) Multi-institutional study on the teratogenicity and fetal toxicity of antiepileptic drugs: a report of a collaborative study group in Japan. Epilepsia 21: 663–680

    PubMed  CAS  Google Scholar 

  • Nicoll R (1978) Selective action of barbiturates on synaptic transmission. In: Lipton MA, Dimascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York

    Google Scholar 

  • Okamoto M, Rosenberg H, Boisse N (1975) Tolerance characteristics produced during the maximally tolerable chronic pentobarbital dosing in cat. J Pharmacol Exp Ther 192: 555–569

    PubMed  CAS  Google Scholar 

  • Okamoto M, Boisse N, Rosenberg H (1977) Characteristics of functional tolerance during barbiturate physical dependency production. Pharmacologist vol: 231

    Google Scholar 

  • O’Reilly RA, Trager WF, Motley CH, Howald W (1980) Interaction of secobarbital with warfarin pseudoracemates. Clin Pharmacol Ther 28: 187–195

    PubMed  Google Scholar 

  • Petty WC, Karler R (1965) The influence of aging on the activity of anticonvulsant drugs. J Pharmacol Exp Ther 150: 443–148

    PubMed  CAS  Google Scholar 

  • Prichard JW (1980) Phenobarbital: proposed mechanisms of antiepileptic action. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs, mechanisms of action; Advances in neurology, vol 27. Raven Press, New York

    Google Scholar 

  • Raines A, Niner JM, Pace DG (1973) A comparison of the anticonvulsant, neurotoxic and lethal effects of diphenylbarbituricadid, phenobarbital and diphenylhydantoin in the mouse. J Pharmacol Exp Ther 186: 315–322

    PubMed  CAS  Google Scholar 

  • Rapport R, Kupferberg H (1973) Metabolism of dimethoxymethyl phenobarbital in mice: relationship between brain phenobarbital levels and anticonvulsant activity. J Med Chem 16: 599–602

    PubMed  CAS  Google Scholar 

  • Reinhard JF, Reinhard JF Jr (1977) Experimental evaluation of anticonvulsants. In: Vida J A (ed) Medicinal chemistry, a series of monographs, vol 15. Academic, New York, pp 57–111

    Google Scholar 

  • Remmer H (1959) Der beschleunigte Abbau von Pharmaka in den Lebermikrosomen unter dem EinfluB von Luminal. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 235: 279

    PubMed  CAS  Google Scholar 

  • Robichaud RC, Gylys J A, Sledge KL, Hillyard IW (1970) The pharmacology of prazepam. A new benzodiazepine derivative. Arch Int Pharmacodyn Ther 185: 213–227

    Google Scholar 

  • Rosen O, Sandberg I (1950) Studies on TV-substituted barbituric acid derivatives II. Acta Chem Scand 4: 675–687

    CAS  Google Scholar 

  • Rosenberg H, Okamoto M (1974) A method for producing maximal pentobarbital dependence in cats: dependency characteristics. In: Singh L, Lai H (eds) Drug addiction. Experimental pharmacology, vol 3. Miami Symposium Specialist, Miami, pp 89–103

    Google Scholar 

  • Rowland M (1972) Influence of route of administration on drug availability. J Pharm Sci 61: 70–74

    PubMed  CAS  Google Scholar 

  • Samour C, Vida J (1971) Anticonvulsants 1. Alkoxymethyl derivatives of barbiturates and diphenylhydantoin. J Med Chem 14: 187–189

    Google Scholar 

  • Sandberg F (1949) Pharmacological properties of some new TV-substituted barbituric acid derivatives. Acta Physiol Scand 18: 204–217

    PubMed  CAS  Google Scholar 

  • Schanker LS (1961) Mechanisms of drug absorption and distribution. Ann Rev Pharmacol 1: 29–44

    CAS  Google Scholar 

  • Schottelius DD (1978) Homogenous immunoassay system (EMIT) for quantitation of antiepileptic drugs in biological fluids. In: Pippinger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 95 - 108

    Google Scholar 

  • Sherwin AL, Harvey CD, Leppik IE (1976) Quantitation of antiepileptic drugs in human brain. In: Kellaway P, Petersen I (eds) Quantitative analytical studies in epilepsy. Raven, New York, pp 171–182

    Google Scholar 

  • Smith CM (1977) The pharmacology of sedative hypnotics, alcohol and anesthetics: sites and mechanism of action. In: Martin WR (ed) Drug addiction I. (Handbook of experimental pharmacology, vol 45 ) Springer, Berlin Heidelberg New York, pp 413–587

    Google Scholar 

  • Smith, DB, Golstein SG, Roomet A (1975) A comparison of the hypnotic effects of the anticonvulsant dimethoxymethylphenobarbital and phenobarbital in normal human volunteers. Epilepsia 16: 201

    Google Scholar 

  • Soldin SJ, Hill JG (1976) Rapid micromethod for measuring anticonvulsant drugs in serum by high performance liquid chromatography. Clin Chem 22: 856–859

    PubMed  CAS  Google Scholar 

  • Spehlmann R, Colley B (1968) Effects of diazepam ( Valium) on experimental seizures in unanesthetized cat. Neurology 18: 52–59

    Google Scholar 

  • Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173: 125–132

    Google Scholar 

  • Steinmann HW (1967) Anfallsprophylaxe mit Phenobarbital im Tierexperiment. Dtsch Z Nervenheilkd 192: 226–229

    Google Scholar 

  • Svendsen A, Brochmann-Hannsen (1962) Gas chromatography of barbiturates: application to the study of their metabolism and excretion in humans. J Pharm Sci 51: 494–495

    CAS  Google Scholar 

  • Svensmark O, Buchthal F (1963) Accumulation of phenobarbital in man. Epilepsia 4:199– 206

    Google Scholar 

  • Swinyard EA (1949) Laboratory assay of clinically effective antiepileptic drugs. J Am Pharm Assoc Sci Ed 38: 201–204

    CAS  Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    PubMed  CAS  Google Scholar 

  • Tang B, Inaba J, Kalow W (1977) N-Hydroxyphenobarbital - the major metabolite of phenobarbital in man. Fed Proc 36: 966

    Google Scholar 

  • Tang BK, Kalow W, Grey A A (1978) Amobarbital metabolism in man: TV-glucoside formation. Res Commun Chem Pathol Pharmacol 21: 45–53

    Google Scholar 

  • Toman JEP, Swinyard EA, Goodman LS (1946) Properties of maximal seizures and their alteration by anticonvulsant drugs and other agents. J Neurophysiol 1: 231–240

    Google Scholar 

  • Vajda F, Williams FM, Davidson S, Falconer MA, Breckenridge A (1974) Human brain, cerebrospinal fluid and plasma concentrations of diphenylhydantoin and phenobarbital. Clin Pharmacol Ther 15: 597–603

    PubMed  CAS  Google Scholar 

  • Van Creveld S (1958) Nouveax aspects de la maladie hemorragique du nouveax-ne. Arch Fr Pediatr 15: 721–735

    Google Scholar 

  • Van Duijn H, Visser SL (1972) The action of some anticonvulsant drugs on cobalt induced epilepsy and on the bemegride threshold in alert cats. Epilepsia 13: 409–420

    PubMed  Google Scholar 

  • Vida J (1977) Advances in anticonvulsant drug development. In: Vida JA (ed) Medicinal chemistry, a series of monographs, vol 15. Academic, New York, pp 1–9

    Google Scholar 

  • Vida J, Gerry E (1977) Cyclic ureides. In: Vida JA (ed) Medicinal chemistry, a series of monographs, vol 15. Academic, New York, pp 157–193

    Google Scholar 

  • Vida J, Hooker M, Reinhard J (1973 a) Anticonvulsants 3: phenobarbital and mephobarbital derivatives. J Med Chem 16: 602–605

    Google Scholar 

  • Vida J, Hooker M, Samour C, Reinhard J (1973 b) Anticonvulsants 4: metharbital and phenobarbital derivatives. J Med Chem 16: 1378–1381

    Google Scholar 

  • Waddell WJ, Butler TC (1957) The distribution and excretion of phenobarbital. J Clin Invest 36: 1217–1226

    PubMed  CAS  Google Scholar 

  • Williams R, Parke D (1964) The metabolic fate of drugs. Ann Rev Pharmacol 4: 85

    CAS  Google Scholar 

  • Zanzi I, Roginsky MS, Rosen A, Cohn SH (1981) Skeletal mass in patients receiving chronic anticonvulsant therapy. Mineral Electrolyte Metab 5: 240–248

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gallagher, B.B., Freer, L.S. (1985). Barbituric Acid Derivatives. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics