Skip to main content

Hydantoins

  • Chapter
Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Selective antiepileptic therapy with organic compounds began in 1912 when Hauptmann (1912) reported on the clinical efficacy of phenobarbital. Prior to this the only effective drug therapy for epilepsy involved the bromide ion, introduced clinically in 1857 (Locock 1857). Although modestly successful in the treatment of generalized tonic-clonic (GTC, grand mal) seizures, the bromide ion proved to be highly toxic at therapeutic concentrations. Phenobarbital, on the other hand, afforded a relatively low-risk modality of treatment, and proved to be effective against GTC seizures, as well as some of the partial (focal) seizures (e. g., Jacksonian). However, further significant advances were not realized until a quarter century later when Merritt and Putnam (1938 a, b) reported on the efficacy of phenytoin (5,5,-diphenylhydantoin) in GTC seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott J A, Schwab RS (1954) Mesantoin in the treatment of epilepsy; a study of its effects on the leukocyte count in seventy-nine cases. N Engl J Med 250: 197–199

    PubMed  CAS  Google Scholar 

  • Achari G, Sinha SP (1967) Anticonvulsant property of a new hydantoin derivative. J Indian Med Assoc 49: 115–117

    PubMed  CAS  Google Scholar 

  • Agarwal P, Blake MI (1968) Determination of the pKJ value for 5,5-diphenylhydantoin. J Pharm Sci 57: 1434–1435

    PubMed  CAS  Google Scholar 

  • Alvan G, Bertler A, Eeg-Olofsson O, Karlsson E, Sjoqvist F, Tomson G (1975) Biological availability - a comparison of three phenytoin preparations. Lakartidningen 72:2621– 2623

    Google Scholar 

  • Alvin JD, Bush MT (1977) Physiological disposition of anticonvulsants. In: Vida J A (ed) Anticonvulsants. Medicinal chemistry, vol 15. Academic, New York, pp 113–150

    Google Scholar 

  • Anderson RJ, Sternberg JC (1978) A rate nephelometer for immunoprecipitin measurement of specific serum proteins. In: Ritchie RF (ed) Automated immunoanalysis 2. Marcel Dekker, New York, pp 409–469

    Google Scholar 

  • Atkinson AJ, MacGee J, Strong J, Garteiz D, Gaffney TE (1970) Identification of 5-meta- hydroxyphenyl-5-phenyl-hydantoin as a metabolite of diphenylhydantoin. Biochem Pharmacol 19: 2483–2491

    PubMed  CAS  Google Scholar 

  • Ashworth B, Horn DB (1977) Evidence of osteomalacia in an outpatient group of adult epileptics. Epilepsia 18: 37–43

    PubMed  CAS  Google Scholar 

  • Ayala GF, Johnston D (1980) Antiepileptic drugs: phenytoin: electrophysiological studies in simple neuronal systems. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 339–351

    Google Scholar 

  • Ayala GF, Lin G, Johnston D ( 1977 a) The mechanism of action of diphenylhydantoin on invertebrate neurons: I. Effects on basic membrane properties. Brain Res 121: 245–258

    Google Scholar 

  • Ayala GF, Johnston D, Lin S, Dichter HN ( 1977 b) The mechanism of action of diphenylhydantoin on invertebrate neurons. II. Effects on synaptic mechanisms. Brain Res 121: 259–270

    Google Scholar 

  • Azzaro AJ, Gutrecht J A (1973) The effect of diphenylhydantoin (DPH) on the in vitro accumulation and catabolism of H3-/-norepinephrine ( H3-NE) in cerebral cortex slices. Neurology 23: 431

    Google Scholar 

  • Baker PF, Hodgkin AC, Ridgway EF (1971) Depolarization and calcium entry in squid giant axons. J Physiol (Lond) 218: 709–755

    CAS  Google Scholar 

  • Barnes CD, Eltherington LG (1966) Drug dosage in laboratory animals - a handbook. University of California Press, Berkeley

    Google Scholar 

  • Barnes TC (1954) Effect of anticonvulsive drugs on electroencephalographic response to flickering light in unanesthetized rabbits. Fed Proc Fed Am Soc Exp Biol 13: 333–334

    Google Scholar 

  • Barth N, Alvan G, Borga O, Sjoqvist F (1976) Two fold interindividual variation in plasma protein binding of phenytoin in patients with epilepsy. Clin Pharmacokinet 1: 444–452

    PubMed  CAS  Google Scholar 

  • Bashour FA, Jones RE, Edmonson R (1965) Ventricular tachycardia in acute myocardial infarction. Preliminary report on the prophylactic use of Dilantin. Clin Res 13: 399

    Google Scholar 

  • Baskin SI, Dutta S, Marks BH (1973) The effects of diphenylhydantoin and potassium on the biological activity of ouabain in the guinea pig heart. Br J Pharmacol 47: 85–96

    PubMed  CAS  Google Scholar 

  • Bazemore RP, Zuckermann EC (1974) On the problem of diphenylhydantoin-induced seizures. Arch Neurol 31: 243–249

    PubMed  CAS  Google Scholar 

  • Bernstein H, Gold H, Lang TW, Papelbaum S, Bazika V, Corday E (1965) Sodium diphenylhydantoin in the treatment of recurrent cardiac arrhythmias. JAMA 191: 695–697

    PubMed  CAS  Google Scholar 

  • Best WR (1963) Drug associated blood dyscrasias. JAMA 185: 286–290

    PubMed  CAS  Google Scholar 

  • Bianchi C, Beani L, Bertelli A (1975) Effects of some anti-epileptic drugs on brain acetylcholine. Neuropharmacology 14: 327–332

    PubMed  CAS  Google Scholar 

  • Bianchine JR, Macaraeg PVJ Jr, Lasagna L, Azarnoff DL, Brunk SF, Hvidberg EF, Owen J A Jr (1968) Drugs as etiologic factors in the Stevens-Johnson syndrome. Am J Med 44: 390–405

    PubMed  CAS  Google Scholar 

  • Biltz H (1908) Uber die Konstitution der Einwirkungsprodukte von substituierten Harnstoffen auf Benzil und uber einige neue Methoden zur Darstellung der 5,5-Diphenylhy- dantoine. Ber Dtsch Chem Ges 41: 1379

    CAS  Google Scholar 

  • Bius DL, Yonekawa WD, Kupferberg HJ, Cantor F, Dudley KH (1980) Gas chromato- graphic-mass spectrometric studies on the metabolic fate of ethotoin in man. Drug Metab Dispos 8: 223–229

    PubMed  CAS  Google Scholar 

  • Bochner F, Hooper WD, Sutherland JM, Eadie MJ, Tyrer JH (1973) The renal handling of diphenylhydantoin and 5-(/?-hydroxyphenyl)-5-phenylhydantoin. Clin Pharmacol Ther 14: 791–796

    PubMed  CAS  Google Scholar 

  • Boobis SW (1977) Alteration of plasma albumin in relation to decreased drug binding in uremia. Clin Pharmacol Ther 22: 147–153

    PubMed  CAS  Google Scholar 

  • Booker HE, Darcey B (1973) Serum concentrations of free diphenylhydantoin and their relationship to clinical intoxication. Epilepsia 14: 177–184

    PubMed  CAS  Google Scholar 

  • Bowdle TA, Neal GD, Levy RH, Heimbach DM (1980) Phenytoin pharmacokinetics in burned rats and plasma protein binding of phenytoin in burned patients. J Pharmacol Exp Ther 213: 97–99

    PubMed  CAS  Google Scholar 

  • Brodie DC, Huitric AC, Kumler WD (1958) Some anticonvulsant skeletal muscle relaxing, and toxic properties of a series of substituted cyclohexanones. J Am Pharm Assoc Sci Ed 47: 240–244

    CAS  Google Scholar 

  • Brodows RG, Campbell RG (1974) Control of refractory fasting hypoglycemia in a patient with suspected insulinoma with diphenylhydantoin. J Clin Endocrinol Metab 38:159– 161

    Google Scholar 

  • Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107: 273–283

    PubMed  CAS  Google Scholar 

  • Buchthal F, Lennox-Buchthal MA (1972) Relation of anticonvulsant effect to concentration in serum. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 193–209

    Google Scholar 

  • Camerman A, Camerman N ( 1971 a) The stereochemical basis of anticonvulsant drug action. I. The crystal and molecular structure of diphenylhydantoin, a noncentrosymmet- ric structure solved by centric symbolic addition. Acta Crystallogr 27: 2205–2211

    Google Scholar 

  • Camerman A, Camerman N ( 1972 a) The stereochemical basis of anticonvulsant drug action. II. Molecular structure of diazepam. J Am Chem Soc 94: 268–272

    Google Scholar 

  • Camerman A, Camerman N (1975) The stereochemical basis of anticonvulsant drug action. V. The crystal and molecular structure of sulthiame. Can J Chem 53: 2194–2198

    CAS  Google Scholar 

  • Camerman A, Camerman N (1977) Ethylphenacemide and phenacemide: conformational similarities to diphenylhydantoin and stereochemical basis of anticonvulsant activity. Proc Natl Acad Sci USA 74: 1264–1266

    PubMed  CAS  Google Scholar 

  • Camerman A, Camerman N (1980) Stereochemical similarities in chemically different antiepileptic drugs. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Raven, New York, pp 223–231

    Google Scholar 

  • Camerman N, Camerman A ( 1971 b) The stereochemical basis of anticonvulsant drug action. III. The structure of procyclidine hydrochloride. Mol Pharmacol 7: 406–412

    Google Scholar 

  • Camerman N, Camerman A ( 1972 b) The stereochemical basis of anticonvulsant drug action IV. The crystal and molecular structure of trihexyphenidyl. J Am Chem Soc 94: 8553–8556

    Google Scholar 

  • Caplan RH, Mordon R, Kristoff K, Wickus G (1977) Diphenylhydantoin effects on thyroid function tests. Ann Neurol 1: 603–604

    PubMed  CAS  Google Scholar 

  • Carraz G, Emin N (1967) Action anticonvulsivante du monoureide de l’acide di-jz-propylacetique et du derive hydantoinique de cet acide. Therapie 22: 641–652

    PubMed  CAS  Google Scholar 

  • Caspary WF (1972) Inhibition of intestinal calcium transport by diphenylhydantoin in rat duodenum. Naunyn Schmiedebergs Arch Pharmacol 274: 146–153

    PubMed  CAS  Google Scholar 

  • Chanarin I (1969) The megaloblastic anaemias. Oxford, Blackwell

    Google Scholar 

  • Chang T, Glazko AJ (1972) Diphenylhydantoin: biotransformation. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 149–162

    Google Scholar 

  • Chang T, Okerholm RA, Glazko A J (1972) A 3-0-methylated catechol metabolite of diphenylhydantoin (Dilantin) in rat urine. Res Commun Chem Pathol Pharmacol 4:13– 23

    Google Scholar 

  • Chen G, Ensor CR (1950) Evaluation of antiepileptic drugs. Arch Neurol Psychiatry 63: 56–60

    PubMed  CAS  Google Scholar 

  • Chou CC, Kuiper DH, Hsieh CP (1972) Effects of diphenylhydantoin on motility and compliance of the canine ileum and colon. Gastroenterology 62: 734

    Google Scholar 

  • Clein NW (1945) New anticonvulsant in treatment of epilepsy (3-methyl 5,5-phenylethyl-hydantoin) (Hydantal). Preliminary report. Northwest Med 44: 210–212

    Google Scholar 

  • Close WJ, Spielman MA (1961) Anticonvulsant drugs. In: Hartung WH (ed) Medicinal chemistry, vol 5. Wiley, New York, pp 1–249

    Google Scholar 

  • Cohen MS, Bower RH, Fidler SM, Hohnsonbaugh RE, Sode J (1973) Inhibition of insulin release by diphenylhydantoin and diazoxide in a patient with benign insulinoma. Lancet 1: 40–1

    PubMed  CAS  Google Scholar 

  • Colburn WA, Gibaldi M (1977) Plasma protein binding and metabolic clearance of phenytoin in the rat. J Pharmacol Exp Ther 203: 500–506

    PubMed  CAS  Google Scholar 

  • Collins AJ, Horlington M (1969) A sequential screening test based on the running component of audiogenic seizures in mice, including reference compound PD50 values. Br J Pharmacol 37: 140–150

    PubMed  CAS  Google Scholar 

  • Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy. A manual for the laboratory worker. Raven, New York, pp 347–372

    Google Scholar 

  • Cook CE, Kepler J A, Christensen HD (1973) Antiserum to diphenylhydantoin: preparation and characterization. Res Commun Chem Pathol Pharmacol 5: 767–774

    PubMed  CAS  Google Scholar 

  • Cook CE, Christensen HD, Amerson Ew, Kepler J A, Tallent CR, Taylor GF (1976) Radioimmunoassay of anticonvulsant drugs: phenytoin, phenobarbital and primidone. In: Kellaway P, Petersen I (eds) Quantitative analytic studies in epilepsy. Raven, New York, pp 39–58

    Google Scholar 

  • Cranford RE, Leppik IE, Patrick B, Anderson CB, Kostick B (1977) Intravenous phenytoin: clinical and pharmacokinetic aspects. Neurology (Minneap) 27: 376

    Google Scholar 

  • Cummings NP, Rosenbloom AL, Kohler WC, Wilder BJ (1973) Plasma glucose and insulin response to oral glucose with chronic diphenylhydantoin therapy. Pediatrics 51:1091– 1093

    Google Scholar 

  • Daly J, Jerina D, Witkop B, Zaltzman-Nirenberg P, Udenfriend S (1969) Identification of 1,2-naphthalene oxide as an intermediate in the enzymatic conversion of naphthalene to naphthol and naphthalene-1,2-dihydrodiol. Fed Proc Fed Am Soc Exp Biol 28: 546

    Google Scholar 

  • Dam M (1966) Organic changes in phenytoin-intoxicated pigs. Acta Neurol Scand 42:491– 494

    Google Scholar 

  • Dam M (1972) Diphenylhydantoin: neurologic aspects of toxicity. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 227–235

    Google Scholar 

  • Davis CM, Fenimore DC (1981) Rapid microanalysis of anticonvulsants by high performance thin layer chromatography. J Chromatogr 222: 265–270

    PubMed  CAS  Google Scholar 

  • Dayton PG, Cucinell SA, Weiss M, Perel JM (1967) Dose-dependence of drug plasma level decline in dogs. J Pharmacol Exp Ther 158: 305–316

    PubMed  CAS  Google Scholar 

  • Deisz RA, Lux HD (1977) Diphenylhydantoin prolongs post-synaptic inhibition and ion-tophoretic GABA action in the crayfish stretch receptor. Neurosci Lett 5: 199–203

    PubMed  CAS  Google Scholar 

  • Del Cerro MP, Snider RS (1967) Studies on Dilantin intoxication. I.Ultrastructural analogies with the lipoidoses. Neurology (Minneap) 17: 452–466

    Google Scholar 

  • DeLorenzo RJ (1977) Antagonistic action of diphenylhydantoin and calcium on the level of phosphorylation of particular rat and human brain proteins. Brain Res 134: 125–138

    PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1980) Antiepileptic drugs: phenytoin: calcium- and calmodulin-dependent protein phosphorylation and neurotransmitter release. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Raven, New York, pp 399–414

    Google Scholar 

  • Deupree JD (1977) The role or non-role of ATPase activation by phenytoin in the stabilization of excitable membranes. Epilepsia 18: 309–315

    PubMed  CAS  Google Scholar 

  • DeWeer P (1980) Antiepileptic drugs: phenytoin: blockage of resting sodium channels. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 353–361

    Google Scholar 

  • Dill WA, Kazenko A, Wolf LM, Glazko AJ (1956) Studies of 5,5-diphenylhydantoin ( Dilantin) in animals and man. J Pharmacol Exp Ther 118: 270–279

    Google Scholar 

  • Druckman R, Moore FJ (1955) Effects of sodium diphenylhydantoinate upon isolated small intestine of the rabbit. Proc Soc Exp Biol Med 90: 173–176

    PubMed  CAS  Google Scholar 

  • Dudley KH, Bius DL (1976) Buffer catalysis of the racemization reaction of some 5-phenyl- hydantoins and its relation to the in vivo metabolism of ethotoin. Drug Metab Dispos 4: 340–348

    PubMed  CAS  Google Scholar 

  • Dudley KH, Bius DL, Butler TC (1970) Metabolic fates of 3-ethyl-5-phenylhydantoin (ethotoin, Peganone),3-methyl-5-phenylhydantoin and 5-phenylhydantoin. J Pharmacol Exp Ther 175: 27–37

    PubMed  CAS  Google Scholar 

  • Dudley KH, Butler TC, Bius DL (1974) The role of dihydropyrimidinase in the metabolism of some hydantoin and succinimide drugs. Drug Metab Dispos 2: 103–112

    PubMed  CAS  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Sci Ed 46: 208–209

    CAS  Google Scholar 

  • Ehrnebo M, Agurell S, Jailing B, Boreus LO (1971) Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol 3: 189–193

    PubMed  CAS  Google Scholar 

  • Esplin DW (1957) Effects of diphenylhydantoin on synaptic transmission in cat spinal cord and stellate ganglion. J Pharmacol Exp Ther 120: 301–323

    PubMed  CAS  Google Scholar 

  • Fabrykant M, Pacella BL (1948) Labile diabetes: electroencephalographic status and effect of anticonvulsive therapy. Ann Intern Med 29: 860–877

    PubMed  CAS  Google Scholar 

  • Fenimore DC, Davis CM (1978) Simultaneous determination of phenobarbital and diphenylhydantoin in blood plasma by high performance thin layer chromatography. J High Resolut Chromatogr Commun 1: 105–106

    CAS  Google Scholar 

  • Ferrendelli J A (1980) Antiepileptic drugs: phenytoin: cyclic nucleotide regulation in the brain. In: Gasler GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 429–33

    Google Scholar 

  • Ferrendelli JA, Kinscherf DA (1977) Phenytoin: effects on calcium flux and cyclic nucleotides. Epilepsia: 18: 331–336

    PubMed  CAS  Google Scholar 

  • Festoff BW, Appel SH (1968) Effect of diphenylhydantoin on synaptosome sodium-potassium-ATPase. J Clin Invest 47: 2752–2758

    PubMed  CAS  Google Scholar 

  • Fichman MP, Kleeman CR, Bethune JE (1970) Inhibition of antidiuretic hormone secretion of diphenylhydantoin. Arch Neurol 22: 45–53

    PubMed  CAS  Google Scholar 

  • Fink GB, Swinyard EA (1959) Modification of maximal audiogenic and electroshock seizures in mice by psychopharmacologic drugs. J Pharmacol Exp Ther 127: 318–324

    PubMed  CAS  Google Scholar 

  • Finnell RH (1981) Phenytoin-induced teratogenesis: a mouse model. Science 211: 483–484

    PubMed  CAS  Google Scholar 

  • Firemark H, Barlow CF, Roth LJ (1963) The entry, accumulation and binding of diphenylhydantoin-2-C14 in brain. Int J Neuropharmacol 2: 25–38

    CAS  Google Scholar 

  • Fishman J, Hahn EF, Norton BI (1976) N-Demethylation of morphine in rat brain is localized in sites with high opiate receptor content. Nature 261: 64–65

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Rane A, Persson B (1975) Diphenylhydantoin binding to proteins in plasma and its dependence on free fatty acid and bilirubin concentration in dogs and newborn infants. Pediatr Res 9: 26–30

    CAS  Google Scholar 

  • Frey HH, Loscher W (1980) Clinical pharmacokinetics of phenytoin in the dog: a revaluation. Am J Vet Res 41: 1635–1638

    PubMed  CAS  Google Scholar 

  • Frey HH, Loscher W, Reiche R, Schultz D (1981) Pharmacology of antiepileptic drugs in the gerbil I. Pharmacokinetics. Neuropharmacology 20: 769–771

    Google Scholar 

  • Fritz H, Miiller D, Hess R (1976) Comparative study of the teratogenecity of phenobarbitone, diphenylhydantoin and carbamazepine in mice. Toxicology 6: 323–330

    PubMed  CAS  Google Scholar 

  • Gabler WL, Hubbard GH (1973) The metabolism of 5,5-diphenylhydantoin ( DPH) in nonpregnant and pregnant rhesus monkeys. Arch Int Pharmacodyn Ther 203: 72–91

    Google Scholar 

  • Gardner A, Gross S, Wunne L (1962) An investigation of gingival hyperplasia resulting from Dilantin therapy in 77 mentally retarded patients. Exp Med Surg 20: 133–135

    PubMed  CAS  Google Scholar 

  • Gauldie J, Bienenstock J (1978) Automated nephelometric analysis of haptens. In: Ritchie RF (ed) Automated immunoanalysis 1. Marcel Dekker, New York, pp 321–333

    Google Scholar 

  • Gayet-Hallion T (1944) Action de certains anticonvulsivants sur le muscle lisse. CR Soc Biol (Paris) 138: 332–334

    CAS  Google Scholar 

  • Gerich JE, Charles MA, Levin SR, Forsham PH, Grodsky GM (1972) In vitro inhibition of pancreatic glucagon secretion by diphenylhydantoin. J Clin Endocrinol Metab 35: 823–824

    PubMed  CAS  Google Scholar 

  • Gesler RM, Lints CE, Swinyard EA (1961) Pharmacology of some substituted 2-thiohy- dantions with particular reference to anticonvulsant properties. Toxicol Appl Pharmacol 3: 107–121

    PubMed  CAS  Google Scholar 

  • Gilbert JC, Wyllie MG (1976) Effects of anticonvulsant and convulsant drugs on the ATPase activities of synaptosomes and their components. Br J Pharmacol 56: 49: 57

    Google Scholar 

  • Glazko AJ ( 1972 a) Diphenylhydantoin. In Brodie BB, Heller WM (eds) Proceedings of the conference on bioavailability of drugs, Washington 1971. Karger, Basel, pp 163–177

    Google Scholar 

  • Glazko AJ (1972b) Diphenylhydantoin: chemistry and methods for determination. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 103–112

    Google Scholar 

  • Glazko AJ, Chang T (1972) Diphenylhydantoin: absorption, distribution and excretion. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 127–136

    Google Scholar 

  • Glazko A J, Chang T, Baukema J, Dill WA, Goulet JR, Buchanan RA (1969) Metabolic disposition of diphenylhydantoin in normal human subjects following intravenous administration. Clin Pharmacol Ther 10: 498–504

    PubMed  CAS  Google Scholar 

  • Goldberg MA (1980) Antiepileptic drugs, phenytoin: binding. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 323–337

    Google Scholar 

  • Goldberg MA, Todoroff T (1973) Binding of diphenylhydantoin to brain protein. Biochem Pharmacol 22: 2973–2980

    PubMed  CAS  Google Scholar 

  • Goldberg MA, Todoroff T (1976) Enhancement of diphenylhydantoin binding by lipid extraction. J Pharmacol Exp Ther 196: 579–585

    PubMed  CAS  Google Scholar 

  • Goldstein RE, Penzotti C, Kuehl KS, Prindle HK Jr, Hall CA, Titus EO (1973) Correlation of antiarrhythmic effects of diphenylhydantoin with digoxin-induced changes in myocardial contractility, sodium-potassium adenosine triphosphatase activity, and potassium efflux. Circ Res 33: 823–824

    Google Scholar 

  • Goodman LS (1956) US Patent 2, 744, 852

    Google Scholar 

  • Goodman LS, Grewal MS, Brown WC, Swinyard EA (1953) Comparison of maximal seizures evoked by pentylenetetrazol ( Metrazol) and electroshock in mice, and their modification by anticonvulsants. J Pharmacol Exp Ther 108: 168–176

    Google Scholar 

  • Goodman LS, Swinyard EA, Brown WC, Schiffman DO (1954) Anticonvulsant properties of 5,5-diphenyltetrahydroglyoxaline-4-one (SKF 2599). J Pharmacol Exp Ther 110: 403–410

    PubMed  CAS  Google Scholar 

  • Goodman LS, Toman JEP, Swinyard EA (1948) Anticonvulsant properties of 5,5-phenyl thienyl hydantoin in comparison with Dilantin and Mesantoin. Proc Soc Exp Biol Med 68: 584–587

    PubMed  CAS  Google Scholar 

  • Goodman LS, Toman JEP, Swinyard EA (1949) Anticonvulsant drugs: mechanism of action and methods of assay. Arch Int Pharmacol Ther 78: 144–162

    CAS  Google Scholar 

  • Greenly RH (1974) New approach to derivatization and gas-chromatographic analysis of barbiturates. Clin Chem 20: 192–194

    Google Scholar 

  • Gruber CM, Harry VG, Drake ME (1940) The toxic actions of sodium diphenylhydan- toinate ( Dilantin) when injected peritoneally and intravenously in experimental animals. J Pharmacol Exp Ther 68: 433–436

    Google Scholar 

  • Gruhzit OM (1939) Sodium diphenyl hydantoinate. Pharmacologic and histopathologic studies. Arch Pathol 28: 761–762

    Google Scholar 

  • Gugler R, Manion CV, Azarnoff DL (1976) Phenytoin: pharmacokinetics and bioavailability. Clin Pharmacol Ther 19: 135–142

    PubMed  CAS  Google Scholar 

  • Gutman Y, Boonyaviroj P (1977) Mechanism of inhibition of catecholamine release from adrenal medulla by diphenylhydantoin and by low concentrations of ouabain (10″10 M). Naunyn Schmiedebergs Arch Pharmacol 296: 293–296

    PubMed  CAS  Google Scholar 

  • Guzek JW, Russell JT, Thron NA (1974) Inhibition by diphenylhydantoin of vasopressin release from isolated rat neurohypophyses. Acta Pharmacol Toxicol 34: 14

    Google Scholar 

  • Haberland C (1962) Cerebellar degeneration with clinical manifestation in chronic epileptic patients. Psychiatr Neurol (Basel) 143: 29–44

    CAS  Google Scholar 

  • Hadfield MG (1972) Uptake and binding of catecholamines. Effect of diphenylhydantoin and a new mechanism of action. Arch Neurol 26: 78–84

    PubMed  CAS  Google Scholar 

  • Hahn F (1960) Analeptics. Pharmacol Rev 12: 447–530

    CAS  Google Scholar 

  • Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. John Wiley, New York

    Google Scholar 

  • Hansen JM, Skovsted L, Lauridsen UB, Kirkegaard C, Siersbaek-Nielsen K (1974) The effect of diphenylhydantoin on thyroid function. J Clin Endocrinol Metab 39: 785–789

    PubMed  CAS  Google Scholar 

  • Hanson JW, Myrainthopoulos NC, Harvey MAS, Smith DW (1976) Risks to the offspring of women treated with hydantoin anticonvulsants, with emphasis on the fetal hydantoin syndrome. J Pediatr 89: 662–668

    PubMed  CAS  Google Scholar 

  • Harned BK, Cunningham RW, Clark MC, Hine CH, Kane MM, Smith FH, Vessey RE, Yuda NN, Zabransky FW (1953) The pharmacology of N-benzyl-/?-chlorpropiona- mide ( Hibicon), a new anticonvulsant. J Pharmacol Exp Ther 107: 403–423

    Google Scholar 

  • Hasbani M, Pincus J, Lee SH (1974) Diphenylhydantoin and calcium movement in lobster nerves. Arch Neurol 31: 250–254

    PubMed  CAS  Google Scholar 

  • Hassell TM, Dudley KH, Hirsch PF, Hutchens LH, Johnston MC, Moriarty JD (1979) Summary of an international symposium on phenytoin-induced teratology and gingival pathology. JADA 99: 652–655

    PubMed  CAS  Google Scholar 

  • Hauptmann A (1912) Luminal bei Epilepsie. Munch Med Wochenschr 59: 1907–1909

    Google Scholar 

  • Hawk GL, Franconi LC (1978) High-pressure liquid chromatography in quantitation of antiepileptic drugs. In: Pippinger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 153–162

    Google Scholar 

  • Hayes MJ, Langman MJS, Short AH (1975) Changes in drug metabolism with increasing age: 2. Phenytoin clearance and protein binding. Br J Clin Pharmacol 2: 73–79

    Google Scholar 

  • Helfant RH, Scherlag BS, Damato AN (1967) The electrophysiological properties of diphenylhydantoin sodium ( Dilantin) as compared to procainamide in the normal and digitalis intoxicated heart. Circulation 36: 108–118

    Google Scholar 

  • Heyma P, Larkins RG, Perry-Keene D, Peter CT, Ross O, Sloman JG (1977) Thyroid hormone levels and protein binding in patients on long-term diphenylhydantoin treatment. Clin Endocrinol (Tokyo) 6: 369–376

    CAS  Google Scholar 

  • Hofeldt FD, Dippe SE, Levin SR, Karam JH, Blum MR, Forshan PH (1974) Effects of diphenylhydantoin upon glucose-induced insulin secretion in three patients with insulinoma. Diabetes 23: 192–198

    PubMed  CAS  Google Scholar 

  • Hooper WD, Bochner F, Eadie MJ, Tyrer JH (1974) Plasma protein binding of diphenylhydantoin. Effects of sex hormones, renal and hepatic disease. Clin Pharmacol Ther 15: 276–282

    Google Scholar 

  • Hoppel C, Garle M, Rane A, Sjoqvist F (1977) Plasma concentrations of 5-(4-hydroxy- phenyl)-5-phenylhydantoin in phenytoin-treated patients. Clin Pharmacol Ther 21: 294–300

    PubMed  CAS  Google Scholar 

  • Houck J (1970) Control of cutaneous collagenolysis. Adv Enzyme Regul 8: 269–278

    PubMed  CAS  Google Scholar 

  • Houghton GW, Richens A, Toseland PA, Davidson S, Falconer MA (1975) Brain concentrations of phenytoin, phenobarbitone and primidone in epileptic patients. Eur J Clin Pharmacol 9: 73–78

    PubMed  CAS  Google Scholar 

  • Isaacs H (1961) A syndrome of continuous muscle-fiber activity. J Neurol Neurosurg Psychiatry 24: 319–325

    PubMed  CAS  Google Scholar 

  • Isaacs H (1964) Quantal squander. S Afr J Lab Clin Med 10: 93–95

    PubMed  CAS  Google Scholar 

  • Isaacs H (1967) Continuous muscle fibre activity in an Indian male with additional evidence of terminal motor fiber abnormality. J Neurol Neurosurg Psychiatry 30: 126–133

    PubMed  CAS  Google Scholar 

  • Ishizaki T, Tokochi K, Chiba K, Tabuchi T, Wagatsuma T (1981) Placental transfer of anticonvulsants (phenobarbital, phenytoin, valproic acid) and the elimination from neonates. Pediatr Pharmacol 1: 291–303

    CAS  Google Scholar 

  • Jailer JW (1951) Adrenocorticotropin content of immature rat pituitary gland. Endocrinology 49: 826–827

    PubMed  CAS  Google Scholar 

  • Johannessen SJ, Strandjord RE (1975) Absorption and protein binding in serum of several anti-epileptic drugs. In: Schneider H, Janz D, Gardner-Thorpe C, Meinardi H, Sherwin AL (eds) Clinical pharmacology of antiepileptic drugs. Springer, Berlin Heidelberg New York, pp 262–273

    Google Scholar 

  • Johnston D, Ayala GF (1975) Diphenylhydantoin: the action of a common anticonvulsant on bursting pacemaker cells in Aplysia. Science 189: 1009–1011

    PubMed  CAS  Google Scholar 

  • Johnston D (1976) Voltage clamp reveals basis of calcium regulation of bursting pacemaker cells in Aplysia. Brain Res 107: 418–423

    PubMed  CAS  Google Scholar 

  • Jones GL, Woodbury DM (1976) Effects of diphenylhydantoin and phenobarbital on protein metabolism in the rat cerebral cortex. Biochem Pharmacol 25: 53–61

    PubMed  CAS  Google Scholar 

  • Jones GL, Amata RJ, Wimbish GH, Peyton GA (1981) Comparison of anticonvulsant potencies of cyheptamide, carbamazepine, and phenytoin. J Pharm Sci 70: 618–620

    PubMed  CAS  Google Scholar 

  • Kaplan SA, Jack ML, Alexander K, Weinfeld RE (1973) Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administration. J Pharm Sci 62: 1789–1796

    PubMed  CAS  Google Scholar 

  • Kemp J, Woodbury D (1971) Subcellular distribution of 4-C14-diphenylhydantoin in rat brain. J Pharmacol Exp Ther 177: 342–349

    PubMed  CAS  Google Scholar 

  • Killam KF, Killam EK, Naquet R (1967) An animal model of light sensitive epilepsy. Electroencephalogr Clin Neurophysiol 22: 497–513

    PubMed  CAS  Google Scholar 

  • Kinniburgh DW, Boyd ND (1981) Phenytoin binding to partially purified albumin in renal disease. Clin Pharmacol Ther 29: 203–210

    PubMed  CAS  Google Scholar 

  • Kizer JS, Cordon MV, Brendel K, Bressler R (1970) The in vitro inhibition of insulin secretion by diphenylhydantoin. J Clin Invest 49: 1942–1948

    PubMed  CAS  Google Scholar 

  • Kokenge R, Kutt H, McDowell F (1965) Neurological sequelae following Dilantin overdose in a patient and in experimental animals. Neurology (Minneap) 15: 823–829

    CAS  Google Scholar 

  • Kootstra A, Woodhouse SP (1974) The effect of diphenylhydantoin on the Na+-K+-stimulated ouabain inhibited ATPase. Proc Univ Otage Med Sch 52: 6–7

    Google Scholar 

  • Krall RL, Penry JK, Kupferberg HJ, Swinyard EA ( 1978 a) Antiepileptic drug development. I. History and a program for progress. Epilepsia 19: 393–408

    Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HK, Swinyard EA ( 1978 b) Antiepileptic drug development II. Anticonvulsant drug screening. Epilepsia 19: 409–428

    Google Scholar 

  • Kupfer A, Birchner J (1979) Stereoselectivity of differential routes of drug metabolism: the fate of the enantiomers of (14C) mephenytoin in the dog. J Pharmacol Exp Ther 209: 190–195

    PubMed  CAS  Google Scholar 

  • Kupfer A, Brilis GM, Watson JT, Harris TM (1980) A major pathway of mephenytoin metabolism in man. Aromatic hydroxylation to /?-hydroxymephenytoin. Drug Metab Dispos 8: 1–4

    Google Scholar 

  • Kupfer A, Roberts RK, Schenker S, Branch RA (1981) Stereoselective metabolism of mephenytoin in man. J Pharmacol Exp Ther 218: 193–199

    PubMed  CAS  Google Scholar 

  • Lai H, Davis WC, Ticku MK (1981) Specific-pentylenetetrazol binding in the rat brain. Soc Neurosci Abstr 7: 445

    Google Scholar 

  • Landolt AM (1974) Treatment of acute postoperative inappropriate antidiuretic hormone secretion with diphenylhydantoin. Acta Endocrinol 76: 625–628

    PubMed  CAS  Google Scholar 

  • Larsen NE, Naestoft J (1974) Quantitative determination of ethotoin in serum by gas chromatography. J Chromatogr 92: 157–161

    CAS  Google Scholar 

  • Laubscher FA (1966) Fatal diphenylhydantoin poisoning. JAMA 198: 1120–1121

    PubMed  CAS  Google Scholar 

  • Laxer KD, Robertson LT, Julien RM, Dow RS (1980) Antiepileptic drugs: phenytoin: relationship between cerebellar function and epileptic discharges. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanisms of action. Raven, New York, pp 415–127

    Google Scholar 

  • Lee SI, Bass NH (1970) Microassay of diphenylhydantoin: blood and regional brain concentrations in rats during acute intoxication. Neurology 20: 115–124

    PubMed  CAS  Google Scholar 

  • Lee WY, Grumer HA, Bronsky D, Waldstein SS (1961) Acute water loading as a diagnostic test for the inappropriate ADH syndrome. J Lab Clin Med 58: 937

    Google Scholar 

  • Lepetit G (1977) Die pH-abhangige „Lipid-Loslichkeit“ von Arzneistoffen. Pharmazie 32: 289–291

    CAS  Google Scholar 

  • Letteri JM, Millk H, Louis S, Kutt H, Durante P, Glazko AJ (1971) Diphenylhydantoin metabolism in uremia. N Engl J Med 285: 648–652

    PubMed  CAS  Google Scholar 

  • Levin SR, Booker J, Smith DF, Grodshy GM (1970) Inhibition of insulin secretion by diphenylhydantoin in the isolated perfused pancreas. J Clin Endocrinol Metab 30:400– 401

    Google Scholar 

  • Lewin E, Bleck V (1977) The effect of diphenylhydantoin administration on sodium-potassium-activated ATPase in cortex. Neurology 21: 647–551

    Google Scholar 

  • Leznicki AL, Dymecki J (1974) The effect of certain anticonvulsants in vitro and in vivo on enzyme activities in rat brain. Neurol Neurochir Pol 24: 413–419

    CAS  Google Scholar 

  • Lipicky RJ, Gilbert DK, Stilman IM (1972) Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc Natl Acad Sci USA 69: 1758–1760

    PubMed  CAS  Google Scholar 

  • Livingston S (1957) Drug therapy for childhood epilepsy. J Chronic Dis 6: 46–80

    PubMed  CAS  Google Scholar 

  • Livingston S (1966) Drug therapy for epilepsy. Thomas, Springfield, I11

    Google Scholar 

  • Locock C (1857) Contribution to discussion on paper by E. H. Sieveking. Lancet 1: 528

    Google Scholar 

  • Loscher W (1979) A comparative study of the protein binding of anticonvulsant drugs in serum of dog and man. J Pharmacol Exp Ther 208: 429–435

    PubMed  CAS  Google Scholar 

  • Loscalzo AE (1945) Treatment of epileptic patients with a combination of 3-methyl,5,5-phenylethylhydantoin and phenobarbital. J Nerv Ment Dis 101: 537–544

    Google Scholar 

  • Loscalzo AE (1952) Mesantoin in the control of epilepsy. Neurology (Minneap) 2: 403–411

    CAS  Google Scholar 

  • Lund L (1974) Clinical significance of generic inequivalence of three different pharmaceutical preparations of phenytoin. Eur J Clin Pharmacol 7: 119–124

    PubMed  CAS  Google Scholar 

  • Lunde RKM, Rane A, Yaffe SJ, Lund L, Sjdqvist F (1970) Plasma protein binding of diphenylhydantoin in man: interaction with other drugs and the effect of temperature and plasma dilution. Clin Pharmacol Ther 11: 844–855

    Google Scholar 

  • Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH (1972) Effect of diphenylhydantoin on insulin secretion in man. N Engl J Med 286: 339–342

    PubMed  CAS  Google Scholar 

  • Marshall FJ (1958) Some 3,3-disubstituted-2-pyrrolidinones. J Org Chem 23: 503–505

    CAS  Google Scholar 

  • Mawer CE, Mullen PW, Rodgers M, Robins AJ, Lucas SB (1974) Phenytoin dose adjustment in epileptic patients. Br J Clin Pharmacol 1: 163–168

    Google Scholar 

  • McLennan H, Elliot KAC (1951) Effects of convulsant and narcotic drugs on acetylcholine synthesis. J Pharmacol Exp Ther 103: 35–43

    PubMed  CAS  Google Scholar 

  • Mendoza DM, Flock EV, Oven CA, Paris J (1966) Effect of 5,5-diphenylhydantoin on the metabolism of L-thyroxine-131I in the rat. Endocrinology 79: 106–118

    PubMed  CAS  Google Scholar 

  • Mercer EN, Ziegler WG, Wickland GF, Dower GE (1976) The effect of diphenylhydantoin upon beating of heart cells grown in vitro. J Pharmacol Exp Ther 155: 267–270

    Google Scholar 

  • Merritt HH, Putnam TJ (1938 a) A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiatry 39: 1003–1015

    Google Scholar 

  • Merritt HH, Putnam TJ (1938 b) Sodium diphenyl hydantoinate in treatment of convulsive disorders. JAMA 111: 1068–1073

    Google Scholar 

  • Merritt HH, Putnam TJ (1939) Sodium diphenylhydantoinate in treatment of convulsive seizures. Toxic symptoms and their prevention. Arch Neurol Psychiatry 42: 1053–1058

    Google Scholar 

  • Mertens HG, Zschocke S (1965) Neuromytonie. Klin Wochenschr 43: 917–925

    CAS  Google Scholar 

  • Millichap JB (1972) Other hydantoins: mephenytoin, ethotoin, and albutoin. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 275– 281

    Google Scholar 

  • Mirkin BL (1971 a) Placental transfer and neonatal elimination of diphenylhydantoin. Am J Obstet Gynecol 109:930–933

    Google Scholar 

  • Mirkin BL (1971b) Diphenylhydantoin: placental transport, fetal localization, neonatal metabolism, and possible teratogenic effects. J Pediatr 79: 329–337

    Google Scholar 

  • Mittler JC, Glick SM (1972) Radioimmunoassay able oxytocin release from isolated neural lobes; responses to ions and drugs. IV International congress of endocrinolgy, Washington, 1972. Excerpta Medica Abstracts of Communications No. 117, p 46

    Google Scholar 

  • Monks A, Boobis S, Wadsworth J, Richens A (1978) Plasma protein binding interaction between phenytoin and valproic acid in vitro. Br J Clin Pharmacol 6: 487–492

    PubMed  CAS  Google Scholar 

  • Morell F, Bradley W, Ptashne M (1958) Effect of diphenylhydantoin on peripheral nerve. Neurology B: 140–144

    Google Scholar 

  • Mull JD, Mullinax F (1966) Diphenylhydantoin allergy: clinical and immunological studies. Arthritis Rheum 9: 525–526

    Google Scholar 

  • Musgrave FS, Purpura DP (1963) Effects of Dilantin on focal epileptogenic activity of cat neurocortex. Electroencephalogr Clin Neurophysiol 15: 923

    Google Scholar 

  • Naestoft J, Larsen N (1977) Mass fragmentographic quantitation of ethotoin and some of its metabolites in human urine. J Chromatogr 143C: 161–169

    PubMed  CAS  Google Scholar 

  • Nakamura K, Masuda Y, Nakatsuji K, Hiroka T (1966) Comparative studies on the distribution and metabolic fate of diphenylhydantoin and 3-ethylcarbonyl-diphenylhy- dantoin (P-6127) after chronic administration to dogs and cats. Naunyn Schmiedebergs Arch Pharmacol 254: 406–417

    CAS  Google Scholar 

  • Nakamura K, O’Hashi K, Nakatsuji K, Hirooka T, Fujimoto F, Ose S (1965) The anticonvulsant activity of 3-ethoxycarbonyl-5,5-diphenylhydantoin (P-6127) in animals. Arch Int Pharmacodyn Ther 156: 261–270

    PubMed  CAS  Google Scholar 

  • Neuman RA, Frank GB (1977) Effects of diphenylhydantoin and phenobarbital on voltage-clamped myelinated nerve. Can J Physiol Pharmacol 55: 42–47

    PubMed  CAS  Google Scholar 

  • Nielsen T, Cottman C (1971) Binding of diphenylhydantoin to brain and subcellular fractions. Eur J Pharmacol 14: 344–350

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Kubo H, Saito M (1979) Competitive nephelometric immunoassay method for antiepileptic drugs in patient blood. J Immunol Methods 29: 85–89

    PubMed  CAS  Google Scholar 

  • Noach EL, Van Rees H (1964) Intestinal distribution of intravenously administered diphenylhydantoin in the rat. Arch Int Pharmacodyn Ther 150: 52–61

    PubMed  CAS  Google Scholar 

  • Noach EL, Woodbury DM, Goodman LS (1958) Studies on absorption, distribution, fate and excretion of 4-C14-labeled diphenylhydantoin. J Pharmacol Exp Ther 122: 301–314

    PubMed  CAS  Google Scholar 

  • Odar-Cederlof I, Borga O (1976 a) Impaired protein binding of phenytoin in uremia and displacement effects of salicylic acid. Clin Pharmacol Ther 20: 36–47

    Google Scholar 

  • Odar-Cedarlof I, Borga O (1976 b) Lack of relationship between serum free fatty acids and impaired plasma protein binding of diphenylhydantoin in chronic renal failure. Eur J Clin Pharmacol 10: 403–405

    Google Scholar 

  • Odar-Cederlof I (1977) Plasma protein binding of phenytoin and warfarin in patients undergoing renal transplantation. Clin Pharmacokinet 2: 147–153

    PubMed  CAS  Google Scholar 

  • Oldendorf W (1974) Lipid solubility and drug penetration of the blood brain barrier Proc Soc Exp Biol Med 147: 813–816

    CAS  Google Scholar 

  • Oppenheimer JH, Tavernetti RR (1962) Studies on the thyroxine-diphenylhydantoin interaction: effect of 5,5-diphenylhydantoin on the displacement of L-thyroxine from thyroxine-binding globulin ( TBG ). Endocrinology 71: 496–504

    Google Scholar 

  • Pento JT (1976) Diphenylhydantoin inhibition of pentagastrin-stimulated calcitonin secretion in the pig. Horm Metab Res 8: 399–401

    PubMed  CAS  Google Scholar 

  • Pento JT, Glick SM, Kagan A (1973) Diphenylhydantoin inhibition of calcitonin secretion induced by calcium and glucagon. Endocrinology 92: 330–333

    PubMed  CAS  Google Scholar 

  • Perry JG, McKinney L, DeWeer P (1978) The cellular mode of action of antiepileptic drug 5,5-diphenylhydantoin. Nature 272: 271–273

    PubMed  CAS  Google Scholar 

  • Perucca E, Richens A (1981) Drug interactions with phenytoin. Drugs 21: 120–137

    PubMed  CAS  Google Scholar 

  • Petty WC, Karler R (1965) The influence of aging on the activity of anticonvulsant drugs. J Pharmacol Exp Ther 150: 443–448

    PubMed  CAS  Google Scholar 

  • Pincus JH, Lee SH (1973) Diphenylhydantoin and calcium. Arch Neurol 29: 239–244

    PubMed  CAS  Google Scholar 

  • Pinto W, Gardner LI, Rosenblum P (1977) Abnormal genitalia as a presenting sign in two male infants with hydantoin embryopathy syndrome. Am J Dis Child 131: 452–455

    PubMed  Google Scholar 

  • Pippenger CE (1978) Pediatric clinical pharmacology of antiepileptic drugs: a special consideration. In: Pippenger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 315–319

    Google Scholar 

  • Pippenger ED, Bastiani RJ, Schneider RS (1975) Evaluation of an experimental homogenous enzyme immunoassay for the quantitation of phenytoin and phenobarbitone in serum of plasma. In: Schneider H, Janz D, Gardner-Thorpe C, Meinardi H, Sherwin AL (eds) Clinical pharmacology of antiepileptic drugs. Springer, Berlin Heidelberg New York pp 331–335

    Google Scholar 

  • Pippenger CE, Penry JK, Kutt H (eds) (1978) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York

    Google Scholar 

  • Popelka SR, Miller DM, Holen JT, Kelso DM (1981) Fluorescence polarization immunoassay II. Analyzer for rapid, precise measurement of fluorescence polarization with use of disposable cuvettes. Clin Chem 27: 1198–1201

    Google Scholar 

  • Porter RJ, Layzer RB (1975) Plasma albumin concentration and diphenylhydantoin binding in man. Arch Neurol 32: 298–303

    PubMed  CAS  Google Scholar 

  • Putnam TJ, Merritt HH (1941) Chemistry of anticonvulsant drugs. Arch Neurol Psychiatry 45: 505–516

    Google Scholar 

  • Raines A, Standaert FG (1967) An effect of diphenylhydantoin on post-tetanic hyperpolarization of intramedullary nerve terminals. J Pharmacol Exp Ther 156: 591–597

    PubMed  CAS  Google Scholar 

  • Raines A, Niner JM, Pace DG (1973) A comparison of the anticonvulsant, neurotoxic and lethal effects of diphenylbarbituric acid, phenobarbital and diphenylhydantoin in the mouse. J Pharmacol Exp Ther 186: 315–322

    PubMed  CAS  Google Scholar 

  • Rambeck B, Boenigk HE, Dunlop A, Mullen PW, Wadsworth J, Richens A (1979) Predicting phenytoin dose: a revised nomogram. Ther Drug Monit 1: 325–333

    PubMed  CAS  Google Scholar 

  • Ramsay RE, Hammond EJ, Perchalski RJ, Wilder BJ (1979) Brain uptake of phenytoin, phenobarbital and diazepam. Arch Neurol 36: 535–539

    PubMed  CAS  Google Scholar 

  • Rane A, Garle M, Borga O, Sjoqvist F (1974) Plasma disappearance of transplacental transferred diphenylhydantoin in the newborn studied by mass fragmentometry. Clin Pharmacol Ther 15: 39–45

    PubMed  CAS  Google Scholar 

  • Rapport RL II, Harris AB, Friel PN, Ojemann GA (1975) Human epileptic brain. Na, K-ATPase activity and phenytoin concentrations. Arch Neurol 32: 549–554

    Google Scholar 

  • Rausing A (1978) Hydantoin induced lymphadenopathies and lymphomas. In: Mathe G, Seligmann M, Tubiana M (eds) Recent results in cancer research, vol 64. Lymphoid neoplasias I. Classification, categorization, natural history. Springer, Berlin Heidelberg New York, pp 263–264

    Google Scholar 

  • Reidenberg M, Affrime M (1973) Influence of disease on binding of drugs to plasma proteins. Ann NY Acad Sci 226: 115–127

    PubMed  CAS  Google Scholar 

  • Rein R, Fukuda N, Win H, Clarke GA, Harris FW (1966) Iterative extended Huckel theory. Chem Phys 45: 4743–4744

    CAS  Google Scholar 

  • Reinhard JF, Reinhard JF Jr (1977) Experimental evaluation of anticonvulsants. In: Vida JA (ed) Anticonvulsants. Medicinal chemistry, vol 15. Academic, New York, pp 57– 111

    Google Scholar 

  • Reynolds EH (1975) Chronic antiepileptic toxicity: a review. Epilepsia 16: 319–352

    PubMed  CAS  Google Scholar 

  • Richens A (1975) A study of the pharmacokinetics of phenytoin (diphenylhydantoin) in epileptic patients, and the development of a nomogram for making dose increments. Epilepsia 16: 627–646

    PubMed  CAS  Google Scholar 

  • Rinne UK (1966) Effect of diphenylhydantoin treatment on the release of corticotropin in epileptic patients. Confin Neurol 27: 431–440

    CAS  Google Scholar 

  • Roe MD, Podosin RL, Blaskovics M (1975) Drug interaction: diazoxide and diphenylhydantoin. J Pediatr 87: 480–184

    PubMed  CAS  Google Scholar 

  • Riimke CL (1967) Increased susceptibility of mice to seizures after some anticonvulsant drugs: Eur J Pharmacol 1: 369–377

    Google Scholar 

  • Ruprah M, Perucca E, Richens A (1980) Decreased serum protein binding of phenytoin in late pregnancy (letter). Lancet 2: 316–317

    PubMed  CAS  Google Scholar 

  • Saad SF, El-Masry AM, Scott PM (1972) Influence of certain anticonvulsants on the concentration of gamma-aminobutyric acid in the cerebral hemisphere of mice. Eur J Pharmacol 17: 386–392

    PubMed  CAS  Google Scholar 

  • Said DM, Fraga JR, Reichelderfer TE (1968) Hyperglycemia associated with diphenylhydantoin intoxication. Med Ann D C 37: 170–172

    CAS  Google Scholar 

  • Sansom LN, O’Reilly WJ, Wiseman CW, Stern LM, Derhan J (1975) Plasma phenytoin levels produced by various phenytoin preparations. Med J Austr 2: 593–595

    CAS  Google Scholar 

  • Savolainen H, Iivanainen M, Elovaara E, Tammisto P (1980) Distribution of 14C- phenytoin in rat Purkinje cells, cerebellar and cerebral neuronal tissue after a single intraperitoneal injection. Eur Neurol 19: 115–120

    PubMed  CAS  Google Scholar 

  • Scherf D, Blumenfeld S, Tanner D, Yildiz M (1960) The effect of diphenylhydantoin ( Dilantin) on atrial flutter and fibrillation provoked by focal application of aconitine or delphinine. Am Heart J 60: 936–947

    Google Scholar 

  • Schlogl K, Wessely F, Kraupp O, Stormann H (1961) Synthese und Pharmakologie einiger 3,5-di- und trisubstituierter Hydantoine. J Med Pharm Chem 4: 231–258

    Google Scholar 

  • Schottelius DD (1978) Homogeneous immunoassay system (EMIT) for quantitation of antiepileptic drugs in biological fluids. In: Pippenger CE, Penry JK, Kutt H (eds) Antiepileptic drugs: quantitative analysis and interpretation. Raven, New York, pp 95–108

    Google Scholar 

  • Schwade ED, Richards RK, Everett GM (1956) Peganone, a new antiepileptic drug. Dis Nerv Syst 17: 155–158

    PubMed  CAS  Google Scholar 

  • Schwartz A, Lindenmayer GE, Allen JC (1975) The sodium-potassium adenosine triphosphatase: pharmacological and biochemical aspects. Pharmacol Rev 27: 3–134

    PubMed  CAS  Google Scholar 

  • Schwartz JR, Vogel W (1977) Diphenylhydantoin: excitability reducing action in a single myelinated nerve fiber. Eur J Pharmacol 44: 241–249

    Google Scholar 

  • Schwartz PA, Rhodes CT, Cooper JW (1977) Solubility and ionization characteristics of phenytoin. J Pharm Sci 66: 994–997

    PubMed  CAS  Google Scholar 

  • Seeman P, Chau-Wong M, Moyyen S (1972) The membrane binding of morphine, diphenylhydantoin and tetrahydrocannabinol. Can J Physiol Pharmacol 50: 1193–1200

    PubMed  CAS  Google Scholar 

  • Selzer ME (1978) The action of phenytoin on a composite electrical-chemical synapse in the lamprey spinal cord. Ann Neurol 3: 202–206

    PubMed  CAS  Google Scholar 

  • Shapiro S, Hartz SC, Siskind V, Mitchell AA, Slone D, Rosenberg L, Monson RR, Heinonen OP, Idanpaan-Heikkila J, Haro S, Saxen L (1976) Anticonvulsants and parental epilepsy in the development of birth defects. Lancet 1: 272–275

    PubMed  CAS  Google Scholar 

  • Sherwin AL, Sokolowski CD (1975) Phenytoin and phenobarbitone levels in human brain and cerebrospinal fluid. In: Schneider H, Janz D, Gardner-Thorpe C, Meinardi H, Sherwin AL (eds) Clinical pharmacology of antiepileptic drugs. Springer, Berlin Heidelberg New York, pp 274–280

    Google Scholar 

  • Sherwin AL, Eisen A A, Sokolowski CD (1973) Anticonvulsant drugs in human epileptogenic brain - correlation of phenobarbitone and primidone in epileptic patients. Arch Neurol 29: 73–77

    PubMed  CAS  Google Scholar 

  • Sherwin AL, Harvey CD, Leppik IE (1977) Antiepileptic drugs in human cerebral cortex: clinical relevance of cortex: plasma ratios. In: Penry JK (ed) Epilepsy, eighth international symposium. Raven, New York, pp 103–108

    Google Scholar 

  • Siegle GJ, Goodwin BB (1972) Sodium-potassium-activated adenosine triphosphatase of brain microsomes: modification of sodium inhibition by diphenylhydantoin. J Clin Invest 51: 1164–1169

    Google Scholar 

  • Sironi YA, Carbrini G, Porro MG, Ravagnati L, Marossero F (1980) Antiepileptic drug distribution in cerebral cortex, Amnion’s horn, and amygdala in man. J Neurosurg 52: 686–692

    Google Scholar 

  • Sjo O, Hvidberg EF, Larsen NE (1975) Dose-dependent kinetics of ethotoin in man. Clin Exp Pharmacol Physiol 2: 185–192

    PubMed  CAS  Google Scholar 

  • Slater IH, O’Leary JF, Leary DE (1950) The effect of 2,2-diethyl 1,3-propanediol (a new anticonvulsant) on spinal cord reflexes. J Pharmacol Exp Ther 100: 316–324

    PubMed  CAS  Google Scholar 

  • Snider RS, Del Cerro MP (1967) Drug-induced dendritic sprouts on Purkinje cells in adult cerebellum. Exp Neurol 17: 466–480

    PubMed  CAS  Google Scholar 

  • Sohn RS, Ferrendelli J A (1973) Inhibition of Ca+ + transport into rat brain synaptosomes by diphenylhydantoin ( DPH ). J Pharmacol Exp Ther 185: 272–275

    Google Scholar 

  • Sohn RS, Ferrendelli J A (1976) Anticonvulsant drug mechanisms. Phenytoin, phenobarbital, and ethosuximide and calcium flux in isolated presynaptic endings. Arch Neurol 33: 626–629

    Google Scholar 

  • Solomon GE, Hilgartner MW, Kutt H (1975) Anticonvulsant induced depression of clotting factors in children. IV Panamerican congress of neurology, oct 1975, Mexico

    Google Scholar 

  • Spain RC, Chidsey CA (1971) Myocardial Na/K adenosine triphosphatase activity during reversal of ouabain toxicity with diphenylhydantoin. J Pharmacol Exp Ther 179:594– 598

    Google Scholar 

  • Spiehler V, Sun L, Miyada DS, Sarandis SG, Walvick ER, Klein MW, Jordan DB, Jessen B (1976) Radioimmunoassay, enzyme immunoassay, spectrophotometry and gas-liquid chromatography compared for determination of phenobarbital and diphenylhydantoin. Clin Chem 22: 749–753

    PubMed  CAS  Google Scholar 

  • Stambaugh JE, Tucker D (1974) Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia. Diabetes 23: 679–683

    PubMed  CAS  Google Scholar 

  • Stewart MJ, Ballinger BR, Devlin EH, Miller AY, Ramsay AC (1975) Bioavailability of phenytoin. A comparison of two preparations. Eur J Clin Pharmacol 9: 209–212

    Google Scholar 

  • Stille G, Brunckow I (1954) Die ganglioplegische Wirkung von 3-Alkylaminoalkyl-Hydantoinen. Arzneimittel-Forsch 4: 723–725

    CAS  Google Scholar 

  • Suzuki T, Saitoh Y, Nishihara K (1970) Kinetics of and diphenylhydantoin disposition in man. Chem Pharm Bull (Tokyo) 18: 405–111

    CAS  Google Scholar 

  • Swinyard EA, Toman JEP (1950) A comparison of the anticonvulsant actions of some phenylhydantoins and their corresponding phenylacetylureas. J Pharmacol Exp Ther 100: 151–157

    PubMed  CAS  Google Scholar 

  • Swinyard EA (1949) Laboratory assay of clinically effective antiepileptic drugs. J Am Pharm Assoc 38: 201–204

    CAS  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy. A manual for the laboratory worker. Raven, New York pp 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Castellion AW, Fink GB, Goodman LS (1963) Some neurophysiological and neuropharmacological characteristics of audiogenic-seizure-susceptible mice. J Pharmacol Exp Ther 140: 375–384

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Jolley JM, Goodman LS (1950) Anticonvulsant properties of Benadryl and Pyribenzamine. Proc Soc Exp Biol Med 75: 239–242

    PubMed  CAS  Google Scholar 

  • Tammisto P, Kauko K, Viukari M (1976) Bioavailability of phenytoin. Lancet 1: 254–255

    PubMed  CAS  Google Scholar 

  • Tenckoff H, Sherrard DJ, Hickman RO, Ladda RL (1968) Acute diphenylhydantoin intoxication. Am J Dis Child 116: 422–125

    Google Scholar 

  • Ticku MK, Ban M, Olsen RW (1978) Binding of [3H]-dihydropicrotoxinin, a gamma- aminobutyric acid synaptic antagonist to rat brain membranes. Mol Pharmacol 14: 391–402

    PubMed  CAS  Google Scholar 

  • Toman JEP (1951) Neuropharmacologic considerations in psychic seizures. Neurology 1: 444–460

    PubMed  CAS  Google Scholar 

  • Toman JEP, Swinyard EA, Goodman LS (1946) Properties of maximal seizures and their alteration by anticonvulsant drugs and other agents. J Neurophys 9: 231–240

    CAS  Google Scholar 

  • Troupin AS, Friel P (1975) Anticonvulsant levels in saliva, serum and cerebrospinal fluid, Epilepsia 16: 223

    PubMed  CAS  Google Scholar 

  • Troupin AS, Ojemann LM, Dodrill CB (1976) Mephenytoin: a reappraisal. Epilepsia 17: 403–414

    PubMed  CAS  Google Scholar 

  • Troupin AS, Friel P, Lovely MP, Wilensky AJ (1979) Clinical pharmacology of mephenytoin and ethotoin. Ann Neurol 6: 410–414

    PubMed  CAS  Google Scholar 

  • Utterback RA, Ojeman R, Malek J (1958) Parenchymatous cerebellar degeneration with Dilantin intoxication. J Neuropath Exp Neurol 17: 516–519

    Google Scholar 

  • Vajda F, Williams FM, Davidson S, Falconer MA, Breckenridge A (1974) Human brain, cerebrospinal fluid and plasma concentrations of diphenylhydantoin and phenobarbital. Clin Pharmacol Ther 15: 597–603

    PubMed  CAS  Google Scholar 

  • Vanasin B, Bass DD, Mendeloff Al, Schuster MM (1973) Alteration of electrical and motor activity of human and dog rectum by diphenylhydantoin. Am J Dig Dis 18: 403–410

    PubMed  CAS  Google Scholar 

  • Van Der Kleijn E, Rijntjes NVM, Guilen PJM, Wijffels CCG (1972) Systemic and brain distribution of diphenylhydantoin in the squirrel monkey. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, p 124

    Google Scholar 

  • Van Rees H, Woodbury DM, Noach EL (1969) Effects of ouabain and diphenylhydantoin on electrolyte and water shifts during intestinal absorption in the rat. Arch Int Pharmacodyn 182: 437

    PubMed  Google Scholar 

  • Vernadakis A, Woodbury DM (1960) Effects of diphenylhydantoin and adenocortical steroids on free glutamic acid, glutamine and gamma-aminobutyric acid concentrations of rat cerebral cortex. In: Roberts E (ed) Inhibition in the nervous system and gamma-aminobutyric acid. Pergamon, Oxford, pp 242–248

    Google Scholar 

  • Vernadakis A, Woodbury DM (1965) Effects of diphenylhydantoin on electroshock seizure thresholds in developing rats. J Pharmacol Exp Ther 148: 144–150

    PubMed  CAS  Google Scholar 

  • Vernadakis A, Woodbury DM (1969) The developing animal as a model. Epilepsia 10:163– 178

    Google Scholar 

  • Verebely K, Kutt H, Sohn Y, Levitt B, Raines A (1970) Uptake and distribution of di-phenylthiohydantoin ( DPTH ). Eur J Pharmol 10: 106–110

    Google Scholar 

  • Vida J A, Gerry EH (1977) Cyclic ureides. In: Vida J A (ed) Anticonvulsants. Medicinal chemistry, vol 15. Academic, New York, pp 151–291

    Google Scholar 

  • Vida J A, O’Dea MH, Samour DM, Reinhard JF (1975) Anticonvulsants. 5. Derivatives of 5-ethyl-5-phenylhydantoin and 5,5-diphenylhydantoin. J Med Chem 18: 383–385

    PubMed  CAS  Google Scholar 

  • Watson EL (1978) Effects of ionophores A23187 and X537A on vascular smooth muscle activity. Eur J Pharmacol 52: 171–178

    PubMed  CAS  Google Scholar 

  • Watson EL, Seigel IA (1976) Diphenylhydantoin effects on salivary secretion and microsomal calcium accumulation and release. Eur J Pharmacol 37: 207–211

    PubMed  CAS  Google Scholar 

  • Watson EL, Woodbury DM (1972) Effects of diphenylhydantoin on active sodium transport in frog skin. J Pharmacol Exp Ther 180: 767–776

    PubMed  CAS  Google Scholar 

  • Watson EL, Woodbury DM (1973) The effect of diphenylhydantoin and ouabain, alone and in combination, on the electrocardiogram and on cellular electrolytes of guinea pig heart and skeletal muscle. Arch Int Pharmacodyn Ther 20: 389–399

    Google Scholar 

  • Waziri M, Ionasescu V, Zellweger H (1976) Teratogenic effects of anticonvulsant drugs. Am J Dis Child 130: 1022–1023

    PubMed  CAS  Google Scholar 

  • Weinberger J, Nichlas WJ, Berl S (1976) Mechanism of action of anticonvulsants. Neurology (Minneap) 26: 162–166

    CAS  Google Scholar 

  • Weintraub RM, Pechet L, Alexander B (1963) Rapid diagnosis of drug-induced thrombocytopenia purpura. JAMA 180: 528–532

    Google Scholar 

  • Westmoreland B, Bass NH (1971) Diphenylhydantoin intoxication during pregnancy. A chemical study of drug distribution in the albino rat. Arch Neurol 24: 158–164

    Google Scholar 

  • Wilder BJ, Serrano EE, Ramsey E, Buchanan RA (1974) A method for shifting from oral to intramuscular diphenylhydantoin administration. Clin Pharmacol Ther 16: 507–513

    PubMed  CAS  Google Scholar 

  • Wilder BJ, Ramsay E, Willmore LJ, Feussner GF, Perchalski RJ, Shumate JB (1977) Efficacy of intravenous phenytoin in the treatment of status epilepticus: kinetics of central nervous system penetration. Ann Neurol 1: 511–519

    PubMed  CAS  Google Scholar 

  • Wilensky A J, Lowden J A (1972 a) The inhibitory effect of diphenylhydantoin on microsomal ATPase. Life Sci 11: 319–327

    Google Scholar 

  • Wilensky AJ, Lowden JA (1972 b) Interaction of diphenylhydantoin-4-14C with subcellular fractions of rat brain. Can J Physiol Pharmacol 50: 346–353

    Google Scholar 

  • Wilson WA, Wachtel H (1978) Prolonged inhibition in burst-firing neurons: synaptic in-activation of the slow regeneration inward current. Science 202: 772–775

    PubMed  CAS  Google Scholar 

  • Winnacker JL, Yeager H, Saunders J A, Russell B, Anast CS (1977) Rickets in children receiving anticonvulsant drugs. Am J Dis Child 131: 286–290

    PubMed  CAS  Google Scholar 

  • Withrow CD (1972) Systemic carbon dioxide derangements. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy. A manual for the laboratory worker. Raven, New York, pp 477–494

    Google Scholar 

  • Witiak DT, Seth SK, Baizman ER, Weibel SL, Wolf BH (1972) Para-substituted iV-acetyl- l(S)~ and -D(I£)-a-amino-N-phenylsuccinimides and -glutarimides. Substituent effects on stereoselective anticonvulsant activity. J Med Chem 15: 1117–1123

    Google Scholar 

  • Wolf HH, Swinyard EA, Goodman LS (1962) Anticonvulsant properties of some iV-substituted hydantoins. J Pharm Sci 51: 74–76

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1955) Effects of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J. Pharmacol Exp Ther 115: 74–95

    PubMed  CAS  Google Scholar 

  • Woodbury DM (1969 a) Mechanisms of action of anticonvulsants. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 647– 681

    Google Scholar 

  • Woodbury DM (1969 b) Role of pharmacological factors in the evaluation of anticonvulsant drugs. Epilepsia 10:121–143

    Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy. A manual for the laboratory worker. Raven, New York, pp 557–601

    Google Scholar 

  • Woodbury DM, Karler R (1960) The role of carbon dioxide in the nervous system. Anesthesiology 21: 686–703

    PubMed  CAS  Google Scholar 

  • Woodbury DM, Kemp JW (1971) Pharmacology and mechanisms of action of diphenylhydantion. Psychiatr Neurol Neurochir 74: 91–115

    PubMed  CAS  Google Scholar 

  • Woodbury DM, Swinyard EA (1972) Diphenylhydantoin: absorption, distribution and excretion. In: Woodbury DM, Penry JK, Schmidt RP (eds) Antiepileptic drugs. Raven, New York, pp 113–123

    Google Scholar 

  • Woodbury DM, Rollins LT, Gardner MD, Hirschi WL, Hogan JR, Rallison ML, Tanner GS, Brodie DA (1958) Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol 192: 79–90

    PubMed  CAS  Google Scholar 

  • Wyke B (1963) Brain function and metabolic disorders. Butterworths, London Yaari Y, Pincus JH, Argov Z (1977) Depression of synaptic transmission by diphenylhydantoin. Ann Neurol 1: 334–338

    Google Scholar 

  • Yacobi A, Lampman J, Levy G (1977) Frequency distribution of free warfarin and free phenytoin fraction values in serum of healthy human adults. Clin Pharmacol Ther 21: 283

    PubMed  CAS  Google Scholar 

  • Yanagihara T, Hamberger A (1971 a) Effect of diphenylhydantoin on protein metabolism in neuron and neuroglial fractions of central nervous tissue. Exp Neurol 32: 152–162

    Google Scholar 

  • Yanagihara T, Hamberger A ( 1971 b) Effect of diphenylhydantoin on protein metabolism in the central nervous system. Study of subcellular fractions. Exp Neurol 31: 87–99

    Google Scholar 

  • Yanagihara T, Hamberger C (1971c) Distribution of diphenylhydantoin in rat organs: study with neuron-glia and subcellular fractions. J Pharmacol Exp Ther 179: 611–618

    PubMed  CAS  Google Scholar 

  • Yonekawa W, Kupferberg H, Cantor F, Dudley KH (1975) Ethotoin distribution and metabolism in epileptic patients. Pharmacologist 17: 193

    Google Scholar 

  • Yunis AA, Arimura GH, Lutcher CL, Blasquez J, Halloran M (1967) Biochemical lesion in dilantin-induced erythroid aplasia. Blood 30: 587–600

    PubMed  CAS  Google Scholar 

  • Zeft HJ, Whalen RE, Ratliff NB Jr, Davenport RT Jr, Mcintosh HD (1968) Diphenylhydantoin therapy in experimental myocardial infarction. J Pharmacol Exp Ther 162:80– 84

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, G.L., Wimbish, G.H. (1985). Hydantoins. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics