Basic Methods of Investigative Neuroradiology

  • M. Sovak
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 73)

Abstract

Experimental neuroradiology, like any other investigative radiological field, relies on interdisciplinary improvisation. The purpose of this text is not to review the field, but rather to present a choice of references which can readily be retrieved and which contain applicable methodology to contrast media (CM) research.

Keywords

Toxicity Catheter Xylocaine Lanthanum Atropine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes CD, Etherington LG (1973) Drug dosage in laboratory animals, a handbook. University of California Press, BerkeleyGoogle Scholar
  2. 2.
    Goodman LS, Gilman A (1980) Pharmacological basis of therapeutics. MacMillan, New YorkGoogle Scholar
  3. 3.
    Committee for the preparation of a technical guide for comparative anesthesia in laboratory animals (1969) Comparative anesthesia in laboratory animals. Fed Proc 28:1369–1586Google Scholar
  4. 4.
    Lumb WV, Jones EW (1973) Veterinary anesthesia. Lea and Febiger, PhiladelphiaGoogle Scholar
  5. 5.
    Melby EC, Altman NH (eds) (1974) Handbook laboratory animal science. CRC Press, ClevelandGoogle Scholar
  6. 6.
    Russell RJ, David TD (1977) A guide to the type and amount of tranquilizers, anesthetics, analgesics, and euthanasia agents for laboratory animals. Naval Medical Research Institute, Bethesda, p 36Google Scholar
  7. 7.
    Soma LR (ed) (1971) Textbook of veterinary anesthesia. Williams and Wilkins, BaltimoreGoogle Scholar
  8. 8.
    Jones LM, Booth NH, McDonald LE (eds) (1977) Veterinary pharmacology and therapeutics, 4th edn. Iowa State Univ Press, Ames, IowaGoogle Scholar
  9. 9.
    Green CJ (1979) Animal anesthesia. Laboratory animals, LondonGoogle Scholar
  10. 10.
    Stunkard JA, Miller JC (1974) An outline guide to general anesthesia in exotic species. Vet Med/Small Anim Clin 69:1181–1186Google Scholar
  11. 11.
    Schmid-Schöenbein H, Gosen J, Heinich L, Klose HJ, Volger E (1972) A counter-rotating “rheoscope chamber” for the study of the microrheology of blood-cell aggregation by microscopic observation and microphotometry. Microvasc Res 6:366–376CrossRefGoogle Scholar
  12. 12.
    Aspelin P, Schmid-Schönbein H (1978) Effect of ionic and non-ionic contrast media on red cell aggregation in vitro. Acta Radiol [Diagn] (Suppl) 19:766–784Google Scholar
  13. 13.
    Almen T, Wiedemann MP (1968) Application of CM to the external surface of the vasculature. Invest Radiol 3:151–158PubMedCrossRefGoogle Scholar
  14. 14.
    Wiedemann MP (1963) Passage of the arteriovenous pathways. In: Hamiton FW, Dow P (eds) Am Physiol Soc, pp 891–933 (Handbook of physiology, sect 2, vol 2)Google Scholar
  15. 15.
    Endrich B, Ring J, Intaglietta M (1979) Effects of radiopaque contrast media on the microcirculation of the rabbit omentum. Radiology 132:331–339PubMedGoogle Scholar
  16. 16.
    Intaglietta M (1977) Measurement of flow dynamics in the microcirculation. Med Instrum 11:149–152PubMedGoogle Scholar
  17. 17.
    Silverman NR, Intaglietta M, Simon AL, Tompkins WR (1972) Determination of pulmonary pulsatile perfusion by fluoroscopic videa densitometry. J Appl Physiol 33:147PubMedGoogle Scholar
  18. 18.
    Hilal SK (1974) Cerebral hemodynamics assessed by angiography. In Newton TH, Potts DG (eds) Radiology of the skull and brain, vol 2, angiography. Mosby, St Louis, p 1049Google Scholar
  19. 19.
    Fischer HW (1974) Contrast media. In: Newton TH, Potts DG (eds) Radiology of the skull and brain, vol 2, angiography. Mosby, St Louis, p 893Google Scholar
  20. 20.
    Ingvar DHI, Lassen NA (eds) (1977) Cerebral function, metabolism and circulation. Munksgaard, CopenhagenGoogle Scholar
  21. 21.
    Sokoloff L (1961) Local cerebral circulation at rest and during altered cerebral activity induced by anesthesia or visual stimulation. In: Kety SS, Elkes J (eds) Regional neurochemistry; the regional chemistry, physiology and pharmacology of the nervous system. Pergamon, New York, pp 107–117Google Scholar
  22. 22.
    Seipel JH (1967) The biophysical basis and clinical applications of rheoencephalography. Neurology 17:443–451PubMedGoogle Scholar
  23. 23.
    Fuster B (1977) Carotid cutaneous photoplethysmography test: a method to explore the carotid and vertebral basilar systems. Clin Electroencephalogr 8:6–26Google Scholar
  24. 24.
    Barns RW, Clayton JM, Bone GE, Slaymaker EE, Reinerton J (1977) Supraorbital photoplethysmography, simple accurate screening of carotid occlusive disease. J Surg Res 22:319–327CrossRefGoogle Scholar
  25. 25.
    Wood EH (1965) Thermography in the diagnosis of cerebravascular disease. Radiology 85:270–283PubMedGoogle Scholar
  26. 26.
    Brisman R, Hilal SK, Tenner M (1972) Doppler ultrasound measurements of superior sagittal sinus blood velocity. J Neurosurg 37:312–315PubMedCrossRefGoogle Scholar
  27. 27.
    Consigny PM, Baltaxe HA (1980) Measurements of blood vessel diameter and blood flow with an intravascular electromagnetic flow meter. Invest Radiol 15:396CrossRefGoogle Scholar
  28. 28.
    Wolff HG (1938) The cerebral blood vessels — anatomical principles. Res Publ Assoc Res Nerv Ment Dis 18:29–68Google Scholar
  29. 29.
    Purves MJ (1972) The physiology of the cerebral circulation. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Broman T, Olsson O (1948) The tolerance of cerebral blood-vessels to a contrast medium of the diodrast group. Acta Radiol 30:326–342CrossRefGoogle Scholar
  31. 31.
    Broman T, Olsson O (1956) Technique for pharmacodynamic investigation of contrast media for cerebral angiography. Effect on blood-brain barrier in animal experiments. Acta Radiol 45:96–100PubMedGoogle Scholar
  32. 32.
    Steinwall O (1958) An improved technique for testing the effect of contrast media and other substances on the blood-brain barrier. Acta Radiol 49:281–284PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer HW, Eckstein JW (1961) Comparison of cerebral angiographic media by their circulatory effects; an experimental study. Am J Roentgenol 86:166–177Google Scholar
  34. 34.
    Lundervold A, Engeset A (1966) Polygraphic recordings during cerebral angiography. Acta Radiol [Diagn] (Stockh) 5:368–380Google Scholar
  35. 35.
    Gonsette RE (1978) Animal experiments and clinical experiences in cerebral angiography with a new contrast agent (ioxaglic acid) with a low hyperosmolality. Ann Radiol (Paris) 21:271–273Google Scholar
  36. 36.
    Olin T, Redman H (1967) Experimental evaluation of contrast media in the vertebral circulation. Acta Radiol [Suppl] (Stockh) 270:216–227Google Scholar
  37. 37.
    Tornell G (1968) Bradycardial reactions in cerebral angiography induced by sodium and methyl-glucamine iothalamate (Conray). Acta Radiol [Diagn] (Stockh) 7:489–501Google Scholar
  38. 38.
    Jeppsson PG, Olin T (1970) Neurotoxicity of roentgen contrast media. Study of the blood-brain barrier in the rabbit following selective injection of contrast media into the internal carotid artery. Acta Radiol [Diagn] (Stockh) 10:17–34Google Scholar
  39. 39.
    Gonsette RE (1973) Biologic tolerance of the central nervous system to metrizamide. Acta Radiol [Suppl] (Stockh) 335:25–44Google Scholar
  40. 40.
    Gonsette RE, Liesenborgh L (1980) New contrast media in cerebral angiography: animal experiments and preliminary clinical studies. Invest Radiol 15:S270–S274PubMedCrossRefGoogle Scholar
  41. 41.
    Bradbury M (1979) The concept of a blood-brain barrier. Wiley, ChichesterGoogle Scholar
  42. 42.
    Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural chemistry by a new technique. J Histochem Cytochem 14:291–302PubMedCrossRefGoogle Scholar
  43. 43.
    Clawson CC, Hartman JF, Vernier RL (1966) Electron microscopy of the effect of gram-negative endotoxin on the blood-brain barrier. J Comp Neurol 127:183–198PubMedCrossRefGoogle Scholar
  44. 44.
    Lasser EC, Kolb WP, Lang JH (1974) Contrast media activation of serum complement system. (Letter) Invest Radiol 9:4A–6ASGoogle Scholar
  45. 45.
    Mayer MM (1971) Complement and complement fixation. In: Kabat EA, Mayer MM (eds) Experimental immunochemistry, 2nd edn. Thomas, Springfield, pp 133–240Google Scholar
  46. 46.
    Lasser EC, Lang JH, Sovak M, Kolb W, Lyon S, Hamblin AE (1977) Steroids: theoretical and experimental basis for utilization in prevention of contrast media reactions. Radiology 125:1–9PubMedGoogle Scholar
  47. 47.
    Phelps ME, Hoffman EJ, Huang SC, Kühl DE (1978) ECAT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 19:635–647PubMedGoogle Scholar
  48. 48.
    Phelps ME, Kühl DE, Mazziotta JC (1981) Metabolic mapping of the brain’s response to visual stimulation: studies in humans. Science 211:1445–1558PubMedCrossRefGoogle Scholar
  49. 49.
    Singer JR (1959) Blood flow rates by nuclear magnetic resonance measurements. Science 130:1652–1653PubMedCrossRefGoogle Scholar
  50. 50.
    Singer JR (1960) Flow rates using nuclear or electron paramagnetic resonance techniques with applications to biological and chemical processes. J Appl Physics 31:125–127CrossRefGoogle Scholar
  51. 51.
    Kerber CW (1975) Experimental arteriovenous fistula. Creation and percutaneous catheter obstruction with cyanoacrylate. Invest Radiol 10:10–17PubMedCrossRefGoogle Scholar
  52. 52.
    Kerber CW, Buschman RW (1977) Experimental carotid aneurysms: simple surgical production and radiographic evaluation. Invest Radiol 12:154–157PubMedCrossRefGoogle Scholar
  53. 53.
    Sawyer PN (1964) Bioelectric phenomena and intravascular thrombosis: the first 12 years. Surgery 56:1020–1026PubMedGoogle Scholar
  54. 54.
    Alksne JF, Smith RW (1977) Iron-acrylic compound for stereotaxic aneurysm thrombosis. J Neurosurg 47:137–141PubMedCrossRefGoogle Scholar
  55. 55.
    Matsumoto R (1972) Tissue adhesives in surgery. Medical Examination Publishing Company, FlushingGoogle Scholar
  56. 56.
    Dubois PJ, Kerber CW, Heinz ER (1979) Interventional techniques in neuroradiology. Radiol Clin North Am 17:515–542PubMedGoogle Scholar
  57. 57.
    Luginbuhl H (1966) Comparative aspects of cerebral vascular anatomy and pathology in different species. In: Cerebral vascular diseases. Transactions of the conference on cerebral vascular diseases (5th). Grune & Stratton, New YorkGoogle Scholar
  58. 58.
    Luginbuhl H, Detweiler DK (1968) Animal models for the study of cerebrovascular disease. In: Proceedings of 1st symposium on animal models for biomedical research. Natl Acad Sciences, Washington DC, pp 35–41Google Scholar
  59. 59.
    Ferris EJ, Prusty S, Hollander W (1978) Radiologic evaluation of cerebrovascular disease in experimental atherosclerosis in a subhuman primate model. Invest Radiol 13:430PubMedCrossRefGoogle Scholar
  60. 60.
    Cromwell LD, Harris AB (1980) Treatment of cerebral arteriovenous malformations: a combined neurosurgical and neuroradiological approach. J Neurosurg 52:705–708PubMedCrossRefGoogle Scholar
  61. 61.
    Kistler JP, Lees RS, Candia G, Zervas NT, Crowell RM, Ojemann RG (1979) Intravenous nitroglycerin in experimental cerebral vasospasm. A preliminary report. Stroke 10:26–29PubMedCrossRefGoogle Scholar
  62. 62.
    Bingham WG, Goldman H, Friedman SJ, Murphy S, Yashon D, Hunt WE (1975) Blood flow in normal and injured monkey spinal cord. J Neurosurg 43:162–171PubMedCrossRefGoogle Scholar
  63. 63.
    Ducker TB, Salcman M, Perot PL Jr, Ballantine D (1978) Experimental spinal cord trauma. I: Correlation of blood flow, tissue oxygen and neurologic status in the dog. Surg Neurol 10:60–63PubMedGoogle Scholar
  64. 64.
    Ducker TB, Salcman M, Lucas JT, Garrison WB, Perot PL Jr (1976) Experimental spinal cord trauma. II: Blood flow, tissue oxygen, evoked potentials in both paretic and plegic monkeys. Surg Neurol 10:64–70Google Scholar
  65. 65.
    Ducker TB, Salcman M, Daniell HB (1978) Experimental spinal cord trauma. III. therapeutic effect of immobilization and pharmacologic agents. Surg Neurol 10:71–76PubMedGoogle Scholar
  66. 66.
    Funkquist B (1960) Lumbar subarachnoid puncture and injection in the dog. Nord Vet Med 12:805–812Google Scholar
  67. 67.
    Punto L, Suolanen J (1976) Testing of myelographic CM using the pig as an experimental animal. Invest Radiol 11:331–334PubMedCrossRefGoogle Scholar
  68. 68.
    Konig JRF, Klippel RA (1967) The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brainstem. Kreiger, HuntingtonGoogle Scholar
  69. 69.
    Smith AR, Freund H, Rossi-Fanelli F, Berlatzky Y, Fischer JE (1979) Long-term sampling of intraventricular CSF in the non-anesthetized monkey and dog. J Surg Res 26:69–73PubMedCrossRefGoogle Scholar
  70. 70.
    Snider RS, Lee JC (1961) A stereotaxic atlas of the monkey brain. University of Chicago Press, ChicagoGoogle Scholar
  71. 71.
    Wood JG, Poplack DG, Flor WJ, Gunby EN, Ommaya AK (1977) Chronic ventricular cerebrospinal fluid sampling, drug injections, and pressure monitoring using subcutaneous reservoirs in monkeys. Neurosurgery 1:132–135PubMedCrossRefGoogle Scholar
  72. 72.
    Percheron G (1975) Ventricular landmarks for thalamic stereotaxy in Macaca. J Med Primatol 4:217–244PubMedGoogle Scholar
  73. 73.
    Féger J, Ohye C, Gallouin F, Albe-Fessard D (1975) Stereotaxic technique for stimulation and recording in non-anesthetized monkeys: application to the determination of connections between caudate nucleus and substantia nigra. Adv Neurol 10:35–45PubMedGoogle Scholar
  74. 74.
    Kun M, Alwasiak J, Gronska J (1978) Morphological changes on the CNS after Dimer X ventriculography. Neuroradiology 15:99–106PubMedCrossRefGoogle Scholar
  75. 75.
    Gonsette RE, Brucher JM (1981) Neurotoxicity of novel water soluble CM for intrathecal application. Invest Radiol [Suppl] 15:S255–S259Google Scholar
  76. 76.
    Valzelli L (1964) A simple method to inject drugs intracerebrally. Med Exp 11:23–26PubMedGoogle Scholar
  77. 77.
    Schumacher M, Doller P, Voigt K (1979) Neuroradiologie der normalen und pathologischen Anatomie des Rattenhirnes. Fortschr Röntgenstr 131:293–299CrossRefGoogle Scholar
  78. 78.
    Dor P, Salomon G (1970) The arterioles and capillaries of the brainstem and cerebellum: a microangiographic study. Neuroradiology 1:27–29CrossRefGoogle Scholar
  79. 79.
    Levinger IM (1971) The cerebral ventricles of the rat. J Anat 108:447–451PubMedGoogle Scholar
  80. 80.
    Ikada K (1978) Cerebral angiography of the rat: technical note. J Neurosurg 49:319 – 321CrossRefGoogle Scholar
  81. 81.
    Hebel R, Stromberg MW (1977) Anatomy of the laboratory rat. Williams and Wilkins, BaltimoreGoogle Scholar
  82. 82.
    Hilal SK, Dauth GW, Hess KH, Human S (1978) Development and evaluation of a new water-soluble iodinated myelographic contrast medium with markedly reduced convulsive effects. Radiology 126:417–422PubMedGoogle Scholar
  83. 83.
    Nabeshima S, Reese TS (1972) Barrier to proteins within the spinal meninges. J Neuropath 31:176–177Google Scholar
  84. 84.
    Plum F, Siesjo BK (1975) Recent advances in CSF physiology. Anesthesiology 42:708–730PubMedCrossRefGoogle Scholar
  85. 85.
    Potts DG, Gomez DG, Abbott GF (1977) Possible causes of complications of myelography with water-soluble contrast medium. Acta Radiol [Suppl] 355:390–402Google Scholar
  86. 86.
    Golman K, Dahl SG (1973) Absorption of labelled metrizamide, diatrizoate, inulin and water from cerebrospinal fluid to blood. Acta Radiol 335:276–285Google Scholar
  87. 87.
    Golman K, Olivecrona H, Gustafson C, Salvesen S, Almen T, Maly P (1980) Excitation and depression of non-anesthetized rabbits following injection of contrast media into the SAS. Acta Radiol 362:83Google Scholar
  88. 88.
    Partain CL, Wu HP, Staab EV, Johnston RE (1978) A multiregional kinetics model for cerebrospinal fluid. Radiology 127:705–711PubMedGoogle Scholar
  89. 89.
    Kinney AB, Blount M, Donohoe KM (1974) Cerebrospinal fluid circulation and encephalography. Nurs Clin North Am 9:611–621PubMedGoogle Scholar
  90. 90.
    Smith AR, Freund H, Rossi-Fanelli F, Berlatzky Y, Fischer JE (1979) Long-term sampling of intraventricular CSF in the unanesthetized monkey and dog. J Surg Res 26:69–73PubMedCrossRefGoogle Scholar
  91. 91.
    Schmidt RC (1980) Mental disorders after myelography with metrizamide and other water-soluble contrast media. Neuroradiology 19:153–157PubMedCrossRefGoogle Scholar
  92. 92.
    Praestholm J (1977) Experimental evaluation of water soluble contrast media for myelography. Neuroradiology 13:25–35PubMedCrossRefGoogle Scholar
  93. 93.
    Melartin E (1970) Intracisternal toxicity of angiographic contrast media. Thesis, Turku, FinlandGoogle Scholar
  94. 94.
    Oftedal SI (1973) Meningal reactions to water-soluble contrast media in cats. Acta Radiol [Suppl] (Stockh) 335:153–160Google Scholar
  95. 95.
    Lanner G (1977) New methods and findings in the measurement of intracranial pressure. Fortschr Med 95:2565–2569PubMedGoogle Scholar
  96. 96.
    Lane B, Kricheff II (1974) Cerebrospinal fluid pulsations at myelography: a video-densitometric study. Radiology 110:579–587PubMedGoogle Scholar
  97. 97.
    Burton CV (1978) Lumbrosacral arachnoiditis. Spine 3:24–30PubMedCrossRefGoogle Scholar
  98. 98.
    Summer K, Traugott U (1975) Eosinophil leucocytes in the CSF after myelography. J Neurol 210:127–134PubMedCrossRefGoogle Scholar
  99. 99.
    Skalpe IO, Torvik A (1975) Toxicity of metrizamide and meglumine iocarmate in the spinal subarachnoid space: an experimental study in rats with special reference to long-term effects. Invest Radiol 10:154–159PubMedCrossRefGoogle Scholar
  100. 100.
    Bartels JE, Braund KG (1980) Experimental arachnoid fibrosis produced by metrizamide in the dog. Vet Radiol 21:78–81CrossRefGoogle Scholar
  101. 101.
    Haughton VM, Ho KC (1981) Arachnoiditis from myelography with iopamidol, metrizamide and iocarmate compared in the animal model. Invest Radiol 15:S267–S274CrossRefGoogle Scholar
  102. 102.
    Haughton VM, Ho KC, Larsen SJ, Unger GF, Correa-Paz F (1977) Experimental production of arachnoiditis with water-soluble myelographic media. Radiology 123:681–685PubMedGoogle Scholar
  103. 103.
    Sovak M, Ranganathan R, Johnson M (1980) Spectral analysis of lapine EEG: neurotoxicologic evaluation of new nonionic contrast media. Invest Radiol 15:452–456PubMedCrossRefGoogle Scholar
  104. 104.
    Sovak M, Kerber CW, Ranganathan R, Bickford RG, Alksne JF (1983) Iotrol, a new myelographic agent: 2. comparative electroencephalographic evaluation by spectrum analysis. AJNR 4:319–322PubMedGoogle Scholar
  105. 105.
    Hammer B, Lackner W (1980) Iopamidol, a new non-ionic hydrosoluble contrast medium for neuroradiology. Neuroradiology 19:119–121PubMedCrossRefGoogle Scholar
  106. 106.
    Garcia J, Hankins WG, Rusiniak KW (1974) Behavioral regulation of the milieu interne in man and rat. Science 185:824–831PubMedCrossRefGoogle Scholar
  107. 107.
    Deutsch JA, Davis JK, Cap M (1976) Conditioned taste aversion: oral and postingestinal factors. Behav Biol 18:545–560PubMedCrossRefGoogle Scholar
  108. 108.
    Revusky SH (1968) Aversion to sucrose produced by contingent X-irradiation; temporal and dosage parameters. J Comp Physiol Psychol 65:17–22PubMedCrossRefGoogle Scholar
  109. 109.
    Deutsch JA, Hardy WT (1977) Cholecystokinin produces bait shyness in rats. Nature 266:196PubMedCrossRefGoogle Scholar
  110. 110.
    Nachman M (1970) Learned taste and temperature aversions due to lithium chloride sickness after temporal delays. J Comp Physiol Psychol 73:22–30PubMedCrossRefGoogle Scholar
  111. 111.
    Dragoin W, McCleary GE, McCleary P (1971) A comparison of two methods of measuring conditioned taste aversions. Behav Res Methods Instr 3:309–310CrossRefGoogle Scholar
  112. 112.
    Sovak M, Deutsch JA, Ranganathan R (1982) Evaluation of intrathecal contrast media by aversion conditioning in rats. Invest Radiol 17:101–106PubMedCrossRefGoogle Scholar
  113. 113.
    Kooi KA, Tucker RP, Marshall RE (1978) Fundamentals of EEG, 2nd edn. Harper and Row, New YorkGoogle Scholar
  114. 114.
    Scott E (ed) (1976) Understanding EEG. Druckworth, LondonGoogle Scholar
  115. 115.
    Low M (1973) The EEG handbook. Beckman Instruments, Schiller ParkGoogle Scholar
  116. 116.
    Venables PH, Martin I (eds) (1967) Manual of psychophysiological methods. Elsevier/North Holland, AmsterdamGoogle Scholar
  117. 117.
    Basmajian JV, Kukulka CG, Narayan MG, Takebe K (1975) Biofeedback treatment of footdrop after stroke compared with standard rehabilitation technique: effects on voluntary control and strength. Arch Phys Med Rehab 56:231–236Google Scholar
  118. 118.
    Ellingson RJ, Houfek EE (1952) Seconal and chloralhydrate as sedatives in clinical electroencephalography. Electroencephalogr Clin Neurophysiol 4:93–96PubMedCrossRefGoogle Scholar
  119. 119.
    Oftedal SI, Kayed K (1976) Epileptogenic effect of water-soluble contrast media; an experimental investigation in rabbits. Acta Radiol [Suppl] (Stockh) 335:45–56Google Scholar
  120. 120.
    Emde JW, Shipton HW (1974) A dual digital integrator for EEG studies. Electroencephalogr Clin Neurophysiol 37:185–187PubMedCrossRefGoogle Scholar
  121. 121.
    Kellaway PE, Petersen E (eds) (1973) Automation of clinical electroencephalography. Raven Press, New YorkGoogle Scholar
  122. 122.
    Rémond AJG (ed) (1972) Handbook of electroencephalography in clinical neurophysiology, vol 4, part B. Elsevier, AmsterdamGoogle Scholar
  123. 123.
    Bickford RG (1979) Newer methods of recording and analyzing EEG. In: Klass DW, Daly DD (eds) Current practice of clinical electroencephalography. Raven, New YorkGoogle Scholar
  124. 124.
    Regan D (1972) Evoked potentials in psychology, sensory physiology and clinical medicine. Chapman and Hall, LondonGoogle Scholar
  125. 125.
    Oftedal SI, Sawhney BB (1973) Effects of water soluble contrast media on cortically evoked potentials in the cat. Acta Radiol [Suppl] (Stockh) 335:133–145Google Scholar
  126. 126.
    Hilal SK, Dauth GW, Burger LC/Gilman S (1977) Effect of isotonic contrast agents on spinal reflexes in the cat. Radiology 122:149–155PubMedGoogle Scholar
  127. 127.
    Allen WE, Van-Gilder JC, Collins WF III (1976) Evaluation of the neurotoxicity of water-soluble myelographic contrast agents by electrophysiological monitors. Radiology 118:89–95PubMedGoogle Scholar
  128. 128.
    Harvey JP, Freiberger RH (1965) Myelography with an absorbable agent. J Bone Joint Surg [Am] 47A:397–416Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. Sovak

There are no affiliations available

Personalised recommendations