Skip to main content

Role of Blood Flow in Intestinal Permeation

  • Chapter
Pharmacology of Intestinal Permeation II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 2))

Abstract

The net transfer of a substance from the intestinal lumen into the intestinal venous blood can be defined as intestinal absorption. The substances, drugs and nutrients, permeate from the bulk phase of the luminal fluid through the unstirred fluid layer adjacent to the mucosal surface to the intestinal cells (Fig. 1). The intestinal epithelium is passed on cellular and/or paracellular pathways by passive and active transport mechanisms, respectively. After having traversed the subepithelial interstitial space and the capillary walls, the molecules are picked up by the blood in the subepithelial capillaries. Finally the drugs and nutrients appear in the intestinal venous blood, eventually together with their metabolites. In rodents the intestinal wall is thin, so that a small fraction of the substances is not drained by the blood, but reaches the serosal side. Usually this fraction penetrates into neighbouring intestinal segments or into the peritoneum, appearing finally in the systemic blood. Under experimental conditions, if the intestinal segment is placed outside the abdominal cavity, this fraction enters the tissue covering the intestine or the solution bathing the segment (Ochsenfahrt 1971, 1979). Permeation from the intestinal lumen into the serosal fluid is the pathway when the intestinal

Schematic view of intestinal permeation and drainage by blood. UL, unstirred fluid layer adjacent to mucosal surface; E, epithelium; CW, capillary wall; DL, deeper layers of intestinal wall; Φ L/I , disappearance rate from intestinal lumen; Φ I/B , appearance rate in intestinal venous blood; Φ I/S , appearance rate in serosal fluid; α, fraction of subepithelial blood flow rate or absorption site blood flow rate; ̇V B , total blood flow rate of intestinal segment

segment is excised and investigated in vitro. According to the quantity measured we distinguish: the disappearance rate from the intestinal lumen, the appearance rate in the intestinal venous blood and the appearance rate in the serosal fluid (Fig. 1).

This chapter submitted in April 1980 covers the literature up to 1979

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahonen J, Inberg MV, Jääskeläinen AJ, Havia T, Aho AJ, Scheinin TM (1972) Effect of oxygen ventilation in mesenteric arterial occlusion in the dog. Scand J Gastroenterol 7:9–16

    PubMed  CAS  Google Scholar 

  • Ã…hrén C, Haglund U (1973) Mucosal lesions in the small intestine of the cat. Acta Physiol Scand 88:541–550

    PubMed  Google Scholar 

  • Barr WH, Riegelman S (1970) Intestinal drug absorption and metabolism. I. Comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. J Pharm Sci 59:154–163

    PubMed  CAS  Google Scholar 

  • Barrowman JA (1978) Physiology of the gastro-intestinal lymphatic system. Cambridge University Press, Cambridge

    Google Scholar 

  • Bender AD (1965) The effect of increasing age on the distribution of peripheral blood flow in man. J Am Geriatr Soc 13:192–198

    PubMed  CAS  Google Scholar 

  • Bender AD (1968) Effect of age on intestinal absorption: Implications for drug absorption in the elderly. J Am Geriatr Soc 16:1331–1339

    PubMed  CAS  Google Scholar 

  • Beubler E, Juan H (1977) The function of prostaglandins in transmucosal water movement and blood flow in the rat jejunum. Naunyn Schmiedebergs Arch Pharmacol 299:89–94

    PubMed  CAS  Google Scholar 

  • Beubler E, Juan H (1978) PGE-release, blood flow and transmucosal water movement after mechanical stimulation of the rat jejunal mucosa. Naunyn Schmiedebergs Arch Pharmacol 305:91–95

    PubMed  CAS  Google Scholar 

  • Beubler E, Lembeck F (1976) Methylxanthines and intestinal drug absorption. Naunyn Schmiedebergs Arch Pharmacol 292:73–77

    PubMed  CAS  Google Scholar 

  • Biber B (1974) The effects of intestinal vasodilator mechanisms on the rate of 85Kr absorption in the cat. Acta Physiol Scand 90:578–582

    PubMed  CAS  Google Scholar 

  • Biber B, Jodal M, Lundgren O, Svanvik J (1970) Intestinal vasodilatation after mechanical stimulation of the jejunal mucosa. Experientia 26:263–264

    PubMed  CAS  Google Scholar 

  • Biber B, Lundgren O, Svanvik J (1971) Studies on the intestinal vasodilatation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol Scand 82:177–190

    PubMed  CAS  Google Scholar 

  • Biber B, Lundgren O, Stage L, Svanvik J (1973a) An indicator-dilution method for studying intestinal hemodynamics in the cat. Acta physiol Scand 87:433–447

    PubMed  CAS  Google Scholar 

  • Biber B, Lundgren O, Svanvik J (1973b) The influence of blood flow on the rate of absorption of 85Kr from the small intestine of the cat. Acta Physiol Scand 89:227–238

    PubMed  CAS  Google Scholar 

  • Biber B, Lundgren O, Svanvik J (1973c) Intramural blood flow and blood volume in the small intestine of the cat as analyzed by an indicator-dilution technique. Acta Physiol Scand 87:391–404

    PubMed  CAS  Google Scholar 

  • Biber B, Fara J, Lundgren O (1974) A pharmacological study of intestinal vasodilator mechanisms in the cat. Acta Physiol Scand 90:673–683

    PubMed  CAS  Google Scholar 

  • Binder HJ (1977) Mechanisms underlying the absorption of water and ions. Int Rev Physiol 12:285–304

    PubMed  CAS  Google Scholar 

  • Bohlen HG, Henrich H, Gore RW, Johnson PC (1978) Intestinal muscle and mucosal blood flow during direct sympathetic stimulation. Am J Physiol 235:H40–H45

    PubMed  CAS  Google Scholar 

  • Bolton JE, Munday KA, Parsons BJ, York BG (1975) Effects of angiotensin II on fluid transport, transmural potential difference and blood flow by rat jejunum in vivo. J Physiol (Lond) 253:411–428

    CAS  Google Scholar 

  • Bond JH, Levitt MD (1979) Use of microspheres to measure small intestinal villous blood flow in the dog. Am J Physiol 236:E577–E583

    PubMed  CAS  Google Scholar 

  • Bond JH, Levitt DG, Levitt MD (1974) Use of inert gases and carbon monoxide to study the possible influence of counter current exchange on passive absorption from the small bowel. J Clin Invest 54:1259–1265

    PubMed  CAS  Google Scholar 

  • Bond JH, Levitt DG, Levitt MD (1977) Quantitation of countercurrent exchange during passive absorption from dog small intestine — evidence for marked species differences in efficiency of exchange. J Clin Invest 59:308–318

    PubMed  CAS  Google Scholar 

  • Boyd CAR (1977) Amino acid inhibition of the exit of monosaccharide from the intestinal epithelium. J Physiol (Lond) 271:48P–49P

    CAS  Google Scholar 

  • Boyd CAR (1978) A classification of systems available for amino acid exit from small intestine into the blood. J Physiol (Lond) 276:52P–53P

    CAS  Google Scholar 

  • Boyd CAR, Parsons DS (1976) Movement of sugars between compartments of vascularly perfused intestine. J Physiol (Lond) 258:12P–13P

    CAS  Google Scholar 

  • Boyd CAR, Parsons DS (1978) Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the samll intestine. J Physiol (Lond) 274:17–36

    CAS  Google Scholar 

  • Boyd CAR, Parsons DS (1979) Movement of monosaccharides between blood and tissues of vascularly perfused small intestine. J Physiol (Lond) 287:371–391

    CAS  Google Scholar 

  • Boyd CAR, Cheeseman CI, Parsons DS (1975) Amino acid movements across the wall of anuran small intestine perfused through the vascular bed. J Physiol (Lond) 250:409–429

    CAS  Google Scholar 

  • Bresler EH (1978) A model for transepithelial fluid transport. Am J Physiol 235:F626–F637

    PubMed  CAS  Google Scholar 

  • Brunsson I, Eklund S, Jodal M, Lundgren O, Sjövall H (1979) The effect of vasodilatation and sympathetic nerve activation on net water absorption in the cat’s small intestine. Acta Physiol Scand 106:61–68

    PubMed  CAS  Google Scholar 

  • CedgÃ¥rd S, Hallbäck DA, Jodal M, Lundgren O (1978) The effects of cholera toxin on intramural blood flow distribution and capillary hydraulic conductivity in the cat small intestine. Acta Physiol Scand 102:148–158

    PubMed  Google Scholar 

  • Cheeseman CI (1979) Factors affecting the movement of amino acids and small peptides across the vascularly perfused anuran small intestine. J Physiol (Lond) 293:457–468

    CAS  Google Scholar 

  • Chiu CJ, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. II. The protective effect of intraluminal glucose as energy substrate. Arch Surg 101:484–488

    PubMed  CAS  Google Scholar 

  • Coburn RF (1968) Carbon monoxide uptake in the gut. Ann NY Acad Sci 150:13–21

    PubMed  CAS  Google Scholar 

  • Crouthamel W, Doluisio JT, Johnson RE, Diamond L (1970) Effect of mesenteric blood flow on intestinal drug absorption. J Pharm Sci 59:878–879

    PubMed  CAS  Google Scholar 

  • Crouthamel W, Diamond L, Dittert LW, Doluisio JT (1975) Drug absorption VII: influence of mesenteric blood flow on intestinal drug absorption in dogs. J Pharm Sci 64:664–671

    PubMed  CAS  Google Scholar 

  • Csáky TZ, Varga F (1975) Subepithelial capillary blood flow estimated from blood-to-lumen flux of barbital in ileum of rats. Am J Physiol 229:549–552

    PubMed  Google Scholar 

  • Csernay L, Wolf F, Varró V (1965) Der Kreislaufgradient im Dünndarm. Z Gastroenterol 3:261–265

    Google Scholar 

  • Davidson RE, Leese HJ (1977) Sucrose absorption by the rat small intestine in vivo and in vitro. J Physiol (Lond) 267:237–248

    CAS  Google Scholar 

  • Diamond L, Doluisio JT, Crouthamel WG (1970) Physiological factors affecting intestinal drug absorption. Eur J Pharmacol 11:109–114

    PubMed  CAS  Google Scholar 

  • Dobson A (1978) Tritiated water clearance and capillary blood flow to the epithelium of the rumen. J Physiol (Lond) 277:74P

    Google Scholar 

  • Dobson A (1979) The choice of models relating tritiated water absorption to subepithelial blood flow in the rumen of sheep. J Physiol (Lond) 297:111–121

    CAS  Google Scholar 

  • Dobson A, Sellers AF, Thorlacius SO (1971) Limitation of diffusion by blood flow through bovine ruminai epithelium. Am J Physiol 220:1337–1343

    PubMed  CAS  Google Scholar 

  • Donowitz M, Wicklein D, Reynolds DG, Hynes RA, Charney AN, Zinner MJ (1979) Effect of altered intestinal water transport on rabbit ileal blood flow. Am J Physiol 236:E482–E487

    PubMed  CAS  Google Scholar 

  • Duffy PA, Granger DN, Taylor AE (1978) Intestinal secretion induced by volume expansion in the dog. Gastroenterology 75:413–418

    PubMed  CAS  Google Scholar 

  • Dugas MC, Crane RK (1975) Response of transmural electrical parameters across in vitro everted sacs of hamster jejunum to variations in oxygenation rate. Biochim Biophys Acta 401:486–501

    PubMed  CAS  Google Scholar 

  • Eklund S, Jodal M, Lundgren O, Sjöqvist A (1979) Effects of vasoactive intestinal polypeptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol Scand 105:461–468

    PubMed  CAS  Google Scholar 

  • Ewe K, Hölker B (1974) Einfluß eines diphenolischen Laxans (Bisacodyl) auf den Wasser-und Elektrolyttransport im menschlichen Colon. Klin Wochenschr 52:827–833

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Haglund U, Jodal M, Lundgren O, Olbe L, Schaffalitzky de Muckadell OB (1978) Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J Physiol (Lond) 284:291–305

    CAS  Google Scholar 

  • Fara JW, Campbell R (1976) Intestinal vascular and secretory responses to gastrointestinal hormones. Fed Proc 35:449

    Google Scholar 

  • Fara JW, Madden KS (1975) Effect of secretin and cholecystokinin on small intestinal blood flow distribution. Am J Physiol 229:1365–1370

    PubMed  CAS  Google Scholar 

  • Fisher RB, Gardner MLG (1974) A kinetic approach to the study of absorption of solutes by isolated perfused small intestine. J Physiol (Lond) 241:211–234

    CAS  Google Scholar 

  • Forster RE (1967) Measurement of gastrointestinal blood flow by means of gas absorption. Gastroenterology 52:381–386

    PubMed  CAS  Google Scholar 

  • Forth W (1967) Eisen- und Kobalt-Resorption am perfundierten Dünndarmsegment. 3. Konferenz der Gesellschaft für Biologische Chemie, Oestrich/Rheingau, 27.–29. April 1967: Springer, Berlin Heidelberg New York, pp 242–250

    Google Scholar 

  • Forth W, Rummel W, Baldauf J (1966) Wasser- und Elektrolytbewegung am Dünn- und Dickdarm unter dem Einfluß von Laxantien, ein Beitrag zur Klärung ihres Wirkungsmechanismus. Naunyn Schmiedebergs Arch Pharmacol 254:18–32

    CAS  Google Scholar 

  • Gatch WD, Culbertson CG (1935) Circulatory disturbances caused by intestinal obstruction. Ann Surg 102:619–635

    PubMed  CAS  Google Scholar 

  • Gibaldi M, Grundhofer B (1972) Rate-limiting barriers in intestinal absorption. Proc Soc Exp Biol Med 141:564–568

    PubMed  CAS  Google Scholar 

  • Gits J, Gerber GB (1973) Absorption of sodium ions from rat intestine in vivo and from a perfused isolated preparation. Biophysik 10:39–43

    PubMed  CAS  Google Scholar 

  • Gore RW, Bohlen HG (1977) Microvascular pressures in rat intestinal muscle and mucosal villi. Am J Physiol 233:H685–H693

    PubMed  CAS  Google Scholar 

  • Granger DN, Taylor AE (1978) Effect of solute-coupled transport on lymph flow and oncotic pressures in cat ileum. Am J Physiol 235:E429–E436

    PubMed  CAS  Google Scholar 

  • Granger DN, Valleau JD, Parker RE, Lane RS, Taylor AE (1978) Effects of adenosine on intestinal hemodynamics, oxygen delivery, and capillary fluid exchange. Am J Physiol 235:H707–H719

    PubMed  CAS  Google Scholar 

  • Granger DN, Shackleford JS, Taylor AE (1979a) PGE1-induced intestinal secretion: mechanism of enhanced transmucosal protein efflux. Am J Physiol 236:E788–E796

    PubMed  CAS  Google Scholar 

  • Granger DN, Richardson PDI, Taylor AE (1979b) Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pfluegers Arch 381:25–33

    CAS  Google Scholar 

  • Greenway CV, Murthy VS (1972) Effects of vasopressin and isoprenaline infusions on the distribution of blood flow in the intestine; criteria for the validity of microsphere studies. Br J Pharmacol Chemother 46:177–188

    CAS  Google Scholar 

  • Grim E, Lindseth EO (1958) Distribution of blood flow to the tissues of the small intestine of the dog. Univ Minn Med Bull 30:138–145

    Google Scholar 

  • Guthrie JE, Quastel JH (1956) Absorption of sugars and amino acids from isolated surviving intestine after experimental shock. Arch Biochem Biophys 62:485–496

    PubMed  CAS  Google Scholar 

  • Haass A, Lullmann H, Peters T (1972) Absorption rates of some cardiac glycosides and portal blood flow. Eur J Pharmacol 19:366–370

    PubMed  CAS  Google Scholar 

  • Haglund U (1973) Vascular reactions in the small intestine of the cat during hemorrhage. Acta Physiol Scand 89:129–141

    PubMed  CAS  Google Scholar 

  • Haglund U, Lundgren O (1974) The small intestine in hemorrhagic shock. Gastroenterology 66:625–627

    PubMed  CAS  Google Scholar 

  • Haglund U, Jodal M, Lundgren O (1972) The importance of the intestinal countercurrent exchanger for the absorption of fatty acids. Acta Physiol Scand 84:27A

    Google Scholar 

  • Haglund U, Jodal M, Lundgren O (1973a) An autoradiography study of the intestinal absorption of palmitic and oleic acid. Acta Physiol Scand 89:306–317

    PubMed  CAS  Google Scholar 

  • Haglund U, Lundgren O, Svanvik J (1973b) On the pathogenesis of the intestinal mucosal lesions in shock. Acta Physiol Scand 87:49A–50A

    Google Scholar 

  • Haglund U, Hultén L, Ã…hrén C, Lundgren O (1975) Mucosal lesions in the human small intestine in shock. Gut 16:979–984

    PubMed  CAS  Google Scholar 

  • Haljamäe H, Jodal M, Lundgren O, Svanvik J (1971) The distribution of Na in intestinal villi during absorption of sodium chloride. Acta Physiol Scand 83:283–285

    PubMed  Google Scholar 

  • Haljamäe H, Jodal M, Lundgren O (1973) Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol Scand 89:580–593

    PubMed  Google Scholar 

  • Hallbäck DA (1979) Fluid and electrolyte transport in the small intestine as related to the countercurrent exchanger. Physiological and pathophysiological aspects. University of Göteborg

    Google Scholar 

  • Hallbäck DA, Jodal M (1978) Intestinal countercurrent. Gastroenterology 75:553–554

    PubMed  Google Scholar 

  • Hallbäck DA, Hultén L, Jodal M, Lindhagen J, Lundgren O (1978) Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology 74:683–690

    PubMed  Google Scholar 

  • Hallbäck DA, Jodal M, Lundgren O (1979) Vascular anatomy and tissue osmolality in the filiform and fungiform papillae of the cat’s tongue. Acta Physiol Scand 105:469–480

    PubMed  Google Scholar 

  • Hamilton JD, Dawson AM, Webb J (1967) Limitation of the use of inert gases in the measurement of small gut mucosal blood flow. Gut 8:509–521

    PubMed  CAS  Google Scholar 

  • Hanson PJ, Parsons DS (1976) The utilization of glucose and production of lactate by in vitro preparations of rat small intestine: effects of vascular perfusion. J Physiol (Lond) 255:775–795

    CAS  Google Scholar 

  • Hendrix TR, Paulk HT (1977) Intestinal secretion. Int Rev Physiol 12:257–284

    PubMed  CAS  Google Scholar 

  • Hoving J, Wilson JHP, Valkema AJ, Woldring MG (1977) Estimation of fat absorption from single fecal specimens using 131I-triolein and 75Se-triether. Gastroenterology 72:406–412

    PubMed  CAS  Google Scholar 

  • Hueckel HJ, Chiu CJ, Hinchey EJ (1973) The effect of intraluminally administered glucose in reducing fluid and electrolyte loss from the ischemic intestine. Surg Gynecol Obstet 136:780–784

    PubMed  CAS  Google Scholar 

  • Hultén L, Jodal M, Lindhagen J, Lundgren O (1976) Blood flow in the small intestine of cat and man as analyzed by inert gas washout technique. Gastroenterology 70:45–51

    PubMed  Google Scholar 

  • Hultén L, Lindhagen J, Lundgren O (1977) Sympathetic nervous control of intramural blood flow in the feline and human intestines. Gastroenterology 72:41–48

    PubMed  Google Scholar 

  • Imamura Y, Ichibagase H (1977) Effect of simultaneous administration of drugs on absorption and excretion. VIII. Effect of plasmaprotein binding displacement on the intestinal absorption of sulfonamides in rabbits. Chem Pharm Bull (Tokyo) 25:3400–3405

    CAS  Google Scholar 

  • Jodal M (1973) The significance of the intestinal countercurrent exchanger for the absorption of sodium and fatty acids. Akademisk Avhandling, Göteborg

    Google Scholar 

  • Jodal M (1974) An autoradiographic study of the intestinal absorption of 22Na. Acta Physiol Scand 90:79–85

    PubMed  CAS  Google Scholar 

  • Jodal M (1977) The intestinal countercurrent exchanger and its influence on intestinal absorption. In: Kramer M, Lauterbach F (eds) Intestinal Permeation. Workshop Conference Hoechst, vol 4. Excerpta Medica, Amsterdam, pp 48–55

    Google Scholar 

  • Jodal M, Lundgren O (1973a) The distribution of absorbed 3H-palmitic acid in the intestinal villi of the cat during various circulatory conditions. Acta Physiol Scand 89:318–326

    PubMed  CAS  Google Scholar 

  • Jodal M, Lundgren O (1973b) Studies on the in vivo absorption of butyric acid in the small intestine of the cat. Acta Physiol Scand 89:327–333

    PubMed  CAS  Google Scholar 

  • Jodal M, Lundgren O (1975) Demonstration of tissue hyperosmolarity in the tips of intestinal villi during sodium chloride absorption. Acta Physiol Scand 95:7A–8A

    Google Scholar 

  • Jodal M, Svanvik J, Lundgren O (1977) The importance of the intestinal countercurrent exchanger for 85Kr absorption from the feline gut. Acta Physiol Scand 100:412–423

    PubMed  CAS  Google Scholar 

  • Jodal M, Hallbäck DA, Lundgren O (1978a) Tissue osmolality in intestinal villi during luminal perfusion with isotonic electrolyte solutions. Acta Physiol Scand 102:94–107

    PubMed  CAS  Google Scholar 

  • Jodal M, Lundgren O, Sjöquist A, Haglund U (1978b) Countercurrent controversy. Gastroenterology 75:767–769

    Google Scholar 

  • Kampp M, Lundgren O (1966a) Blood flow and flow distribution within the small intestine of the cat. Acta Physiol Scand 68 [Suppl 277]: 102

    Google Scholar 

  • Kampp M, Lundgren O (1966b) Evidence for countercurrent exchange in intestinal villi. Acta Physiol Scand 68 [Suppl 277]: 103

    Google Scholar 

  • Kampp M, Lundgren O (1968) Blood flow and flow distribution in the small intestine of cat as analysed by the Kr85 wash-out technique. Acta Physiol Scand 72:282–297

    PubMed  CAS  Google Scholar 

  • Kampp M, Lundgren O, Nilsson NJ (1967) Extravascular short-circuiting of oxygen indicating countercurrent exchange in the intestinal villi of the cat. Experientia 23:197

    PubMed  CAS  Google Scholar 

  • Kampp M, Lundgren O, Sjöstrand J (1968a) The distribution of intravascularly administered lipid soluble and lipid insoluble substances in the mucosa and the submucosa of the small intestine of the cat. Acta Physiol Scand 72:469–480

    PubMed  CAS  Google Scholar 

  • Kampp M, Lundgren O, Nilsson NJ (1968b) Extravascular shunting of oxygen in the small intestine of the cat. Acta Physiol Scand 72:396–403

    PubMed  CAS  Google Scholar 

  • Kampp M, Lundgren O, Sjöstrand J (1968c) On the components of the Kr85 wash-out curves from the small intestine of the cat. Acta Physiol Scand 72:257–281

    PubMed  CAS  Google Scholar 

  • Kingham JGC, Whorwell PJ, Loehry CA (1976) Small intestinal permeability. 1. Effects of ischaemia and exposure to acetyl salicylate. Gut 17:354–361

    PubMed  CAS  Google Scholar 

  • Kojima S, Miyake J (1975) Factors influencing absorption and excretion of drugs. IV. Effect of hypertonic and hypotonic solutions on in situ rat intestinal absorption of several drugs. Chem Pharm Bull (Tokyo) 23:1247–1255

    CAS  Google Scholar 

  • Kojima S, Smith RB, Crouthamel WG, Doluisio JT (1972) Drug absorption VI: water flux and drug absorption in an in situ rat gut preparation. J Pharm Sci 61:1061–1064

    PubMed  CAS  Google Scholar 

  • Kokko JP (1978) Countercurrent exchanger in the small intestine of man: is there evidence for its existence? Gastroenterology 74:791–792

    PubMed  CAS  Google Scholar 

  • Kulenkampff H (1975) The structural basis of intestinal absorption. In: Forth W, Rummel W (eds) Pharmacology of intestinal absorption: gastrointestinal absorption of drugs, vol I. Pergamon, Oxford, pp 1–69 (International encyclopedia of pharmacology and therapeutics, section 39B)

    Google Scholar 

  • Lasker J, Rickert DE (1978) Absorption and glucuronylation of diethylstilbestrol by the rat small intestine. Xenobiotica 8:665–672

    PubMed  CAS  Google Scholar 

  • Lee JS (1961) Flows and pressures in lymphatic and blood vessels of intestine in water absorption. Am J Physiol 200:979–983

    PubMed  CAS  Google Scholar 

  • Lee JS (1963) Role of mesenteric lymphatic system in water absorption from rat intestine in vitro. Am J Physiol 204:92–96

    PubMed  CAS  Google Scholar 

  • Lee JS (1965) Motility, lymphatic contractility, and distention pressure in intestinal absorption. Am J Physiol 208:621–627

    PubMed  CAS  Google Scholar 

  • Lee JS (1969) Role of lymphatic system in water and solute transport from rat intestine in vitro. Q J Exp Physiol 54:311–321

    CAS  Google Scholar 

  • Lee JS (1971) Contraction of villi and fluid transport in dog jejunal mucosa in vitro. Am J Physiol 221:488–495

    PubMed  CAS  Google Scholar 

  • Lee JS (1973) Effects of pressures on water absorption and secretin in rat jejunum. Am J Physiol 224:1338–1344

    PubMed  CAS  Google Scholar 

  • Lee JS (1974) Glucose concentration and hydrostatic pressure in dog jejunal villus lymph. Am J Physiol 226:675–681

    PubMed  CAS  Google Scholar 

  • Lee JS (1979) Lymph capillary pressure of rat intestinal villi during fluid absorption. Am J Physiol 237:E301–E307

    PubMed  CAS  Google Scholar 

  • Lee JS, Duncan KM (1968) Lymphatic and venous transport of water from rat jejunum: a vascular perfusion study. Gastroenterology 54:559–567

    PubMed  CAS  Google Scholar 

  • Lee JS, Silverberg JW (1976) Effect of histamine on intestinal fluid secretion in the dog. Am J Physiol 231:793–798

    PubMed  CAS  Google Scholar 

  • Levitt MD (1978) Countercurrent controversy. Gastroenterology 75:767

    PubMed  CAS  Google Scholar 

  • Levitt MD, Levitt DG (1973) Use of inert gases to study the interaction of blood flow and diffusion during passive absorption from the gastrointestinal tract of the rat. J Clin Invest 52:1852–1862

    PubMed  CAS  Google Scholar 

  • Levitt MD, Bond JH, Levitt DG (1974) Does contercurrent exchange influence small-bowell function? Am J Dig Dis 19:771–774

    PubMed  CAS  Google Scholar 

  • Levitt DG, Sircar B, Lifson N, Lender EJ (1979) Model for mucosal circulation of rabbit small intestine. Am J Physiol 237:E373–E382

    PubMed  CAS  Google Scholar 

  • Lichtenstein B, Winne D (1973) The influence of blood flow on the absorption of 3-O-methylglucose from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 279:153–172

    PubMed  CAS  Google Scholar 

  • Lichtenstein B, Winne D (1974) The influence of blood flow on the phlorizine-insensitive and sensitive galactose absorption in rat jejunum. Naunyn Schmiedebergs Arch Pharmacol 282:195–212

    PubMed  CAS  Google Scholar 

  • Lifson N, Sircar B, Levitt DG, Lender EJ (1979) Heterogeneity of macroscopic and single villus blood flow in rabbit small intestine. Microvasc Res 17:158–180

    PubMed  CAS  Google Scholar 

  • Lluch Trull M (1954) Influencia del aporte de oxigeno en la absorción intestinal de glucosa. Rev Esp Fisiol 10:275–314

    PubMed  CAS  Google Scholar 

  • Love AHG (1976) Intestinal blood flow and sodium exchange. In: Robinson JWL (ed) Intestinal ion transport. The proceedings of the international symposium on intestinal ion transport, Titisee, may 1975. MTP Press, Lancaster, pp 261–265

    Google Scholar 

  • Love AHG, Matthews J (1972) Intestinal absorption and blood flow. Eur J Clin Invest 2:294

    Google Scholar 

  • Love AHG, Matthews JGW, Veall N (1972) Intestinal blood flow and sodium transport. Gut 13:853–854

    PubMed  CAS  Google Scholar 

  • Love AHG, Chen LC, Reeve J, Veall N (1977) The relative transfer rates for sodium and xenon from gut lumen to plasma in man. Clin Sci Mol Med 52:249–254

    PubMed  CAS  Google Scholar 

  • Lundgren O (1967) Studies on blood flow distribution and countercurrent exchange in the small intestine. Acta Physiol Scand [Suppl] 303:1–42

    CAS  Google Scholar 

  • Lundgren O (1970) Counter current exchange in the small intestine. Am Heart J 79:285–288

    Google Scholar 

  • Lundgren O (1974) The circulation of the small bowel mucosa. Gut 15:1005–1013

    PubMed  CAS  Google Scholar 

  • Lundgren O, Haglund U (1978) The pathophysiology of the intestinal countercurrent exchanger. Life Sci 23:1411–1422

    PubMed  CAS  Google Scholar 

  • Lundgren O, Jodal M (1975) Regional blood flow. Annu Rev Physiol 37:395–414

    PubMed  CAS  Google Scholar 

  • Lundgren O, Kampp M (1966) The wash-out of intraarterially injected krypton85 from the intestine of the cat. Experientia 22:268–270

    PubMed  CAS  Google Scholar 

  • Lundgren O, Svanvik J (1968) Uptake of Kr85 from the lumen of the small intestine to the intestinal blood in the cat. Acta Physiol Scand 74:20A–21A

    Google Scholar 

  • Lundgren O, Svanvik J (1973) Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand 88:551–563

    PubMed  CAS  Google Scholar 

  • MacFerran SN, Mailman D (1967) Effects of glucagon on canine intestinal sodium and water fluxes and regional blood flow. J Physiol (Lond) 266:1–12

    Google Scholar 

  • Mailman D (1978a) Effects of vasoactive intestinal polypeptide on intestinal absorption and blood flow. J Physiol (Lond) 279:121–132

    CAS  Google Scholar 

  • Mailman DS (1978b) Absorptive site (ASBF) and total (TBF) intestinal blood flow measured by 3H2O clearances. Physiologist 21:75

    Google Scholar 

  • Mailman D (1979) Effects of pentagastrin (G5) on canine intestinal absorption and blood flow. Fed Proc 38:1315

    Google Scholar 

  • Mailman D, Jordan K (1975) The effect of saline and hyperoncotic dextran infusion on canine ileal salt and water absorption and regional blood flow. J Physiol (Lond) 252:97–113

    CAS  Google Scholar 

  • Matthews JGW, Love AHG (1974) Interrelationship of mesenteric ischemia and diarrhoea. Proc R Soc Med 67:12

    PubMed  CAS  Google Scholar 

  • McArdle AH, Chiu CJ, Gurd FN (1972) Intraluminal glucose. Substrate for ischemic intestine. Arch Surg 105:441–445

    PubMed  CAS  Google Scholar 

  • McIver MA, Redfield AC, Benedict EB (1926) Gaseous exchange between the blood and the lumen of the stomach and intestines. Am J Physiol 76:92–111

    CAS  Google Scholar 

  • Micflikier AB, Bond JH, Sircar B, Levitt MD (1976) Intestinal villus blood flow measured with carbon monoxide and microspheres. Am J Physiol 230:916–919

    PubMed  CAS  Google Scholar 

  • Mirkovitch V, Menge H, Robinson JWL (1975) Protection of the intestinal mucosa during ischaemia by intraluminal perfusion. Res Exp Med (Bed) 166:183–191

    CAS  Google Scholar 

  • Mirkovitch V, Robinson JWL, Menge H, Cobo F (1976) The consequences of ischaemia after mechanical obstruction of the dog ileum. Res Exp Med (Berl) 168:45–55

    CAS  Google Scholar 

  • Nell G, Overhoff H, Forth W, Rummel W (1973) The influence of water gradients and oxyphenisatin on the net transfer of sodium and water in the rat colon. Naunyn Schmiedebergs Arch Pharmacol 277:363–372

    PubMed  CAS  Google Scholar 

  • Nelson RA, Beargie RJ (1965) Relationship between sodium and glucose transport in canine jejunum. Am J Physiol 208:375–379

    PubMed  CAS  Google Scholar 

  • Norris HT, Sumner DS (1974) Distribution of blood flow to the layers of the small bowel in experimental cholera. Gastroenterology 66:973–981

    PubMed  CAS  Google Scholar 

  • Nylander G, Wikström S (1968) Propulsive gastrointestinal motility in regional and graded ischemia of the small bowel. An experimental study in the rat. I. Immediate results. Acta Chir Scand [Suppl] 385:1–67

    Google Scholar 

  • Ochsenfahrt H (1971) The mucosal-serosal transfer of drugs in the rat jejunum with and without blood flow. Naunyn Schmiedebergs Arch Pharmacol 270:Suppl R 102

    Google Scholar 

  • Ochsenfahrt H (1973) Untersuchungen zur Resorption von Arzneimitteln aus der isolierten, vaskular perfundierten Jejunumschlinge der Ratte mit und ohne Durchblutung am Beispiel einiger organischer Substanzen. Habilitationsschrift, Fachbereich Theoretische Medizin, Eberhard-Karls-Universität, Tübingen

    Google Scholar 

  • Ochsenfahrt H (1976) The blood-to-lumen flux of drugs in the vascularly perfused jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 293: Suppl R 45

    Google Scholar 

  • Ochsenfahrt H (1979) The relevance of blood flow for the absorption of drugs in the vascularly perfused, isolated intestine of the rat. Naunyn Schmiedebergs Arch Pharmacol 306:105–112

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1969) Der Einfluß der Durchblutung auf die Resorption von Arzneimitteln aus dem Jejunum der Ratte. Naunyn Schmiedebergs Arch Pharmacol 264:55–75

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1972a) The contribution of blood flow changes to solvent drag phenomenon. Life Sci 11:1105–1113

    CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1972b) Solvent drug influence on the intestinal absorption of basic drugs. Life Sci 11:1115–1122

    CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1973) The contribution of solvent drag to the intestinal absorption of tritiated water and urea from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 279:133–152

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1974a) The contribution of solvent drag to the intestinal absorption of the basic drugs amidopyrine and antipyrine from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 281:175–196

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D (1974b) The contribution of solvent drag to the intestinal absorption of the acidic drugs benzoic acid and salicylic acid from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 281:197–217

    PubMed  CAS  Google Scholar 

  • Ochsenfahrt H, Winne D, Sewing KF, Lembeck F (1966) Die Ausscheidung von Tritium-Wasser in das Jejunum der Ratte unter dem Einfluß von 5-Hydroxytryptamin und Noradrenalin. Naunyn Schmiedebergs Arch Pharmacol 254:461–469

    CAS  Google Scholar 

  • Pals DT, Steggerda FR (1966) Relation of intraintestinal carbon dioxide to intestinal blood flow. Am J Physiol 210:893–896

    PubMed  CAS  Google Scholar 

  • Parker RE, Granger DN (1979) Effect of graded arterial occlusion on ileal blood flow distribution. Proc Soc Exp Biol Med 162:146–149

    PubMed  CAS  Google Scholar 

  • Parsons DS (1975) Energetics of intestinal transport. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 9–36

    Google Scholar 

  • Parsons DS, Prichard JS (1968) A preparation of perfused small intestine for the study of absorption in amphibia. J Physiol (Lond) 198:405–434

    CAS  Google Scholar 

  • Prasad KN, Osborne JW (1963) Influence of β-mercaptoethylamine, mesenteric vessel clamping and pH on intestinal absorption of Fe59 in rats. Proc Soc Exp Biol Med 114:523–527

    PubMed  CAS  Google Scholar 

  • Pytkowski B, Lewartowski B (1972) Motility dependent absorption of amino acids in canine small intestine segment hemoperfused in vitro. Pfluegers Arch Ges Physiol 335:125–138

    CAS  Google Scholar 

  • Pytkowski B, Michalowski Y (1977) Motility- and blood flow-dependent absorption of amino acids in canine small intestine. Eur J Clin Invest 7:79–86

    PubMed  CAS  Google Scholar 

  • Rabinovitch J (1927) Factors influencing the absorption of water and chlorides from the intestine. Am J Physiol 82:279–289

    CAS  Google Scholar 

  • Rausis C, Robinson JWL, Mirkovitch V, Saegesser F (1972) Ischémie colique nécrosante et gangreneuse: faits cliniques et recherche expérimentale. Helv Chir Acta 39:251–258

    PubMed  CAS  Google Scholar 

  • Rees MH (1920) The influence of pituitary extracts on the absorption of water from the small intestine. Am J Physiol 53:43–48

    CAS  Google Scholar 

  • Richey DP, Bender AD (1975) Effects of human aging on drug absorption and metabolism. In: Goldman R, Rockstein M, Sussman ML (eds) The physiology and pathology of human aging. Academic, New York, pp 59–93

    Google Scholar 

  • Richey DP, Bender AD (1977) Pharmacokinetic consequences of aging. Annu Rev Pharmacol Toxicol 17:49–65

    PubMed  CAS  Google Scholar 

  • Robinson JWL (1966) Certain aspects of intestinal amino-acid absorption. Thèse de Doctorat, Faculté des Sciences, Université de Lausanne

    Google Scholar 

  • Robinson JWL, Mirkovitch V (1972) The recovery of function and microcirculation in small intestinal loops following ischaemia. Gut 13:784–789

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Mirkovitch V (1977) The roles of intraluminal oxygen and glucose in the protection of the rat intestinal mucosa from the effects of ischaemia. Biomedicine 27:60–62

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Jéquier JC, Taminelli F (1964) The measurement of amino-acid absorption in vitro. Gastroenterologia 102:292–299

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Jéquier JC, Felber JP, Mirkovitch V (1965) Amino acid absorption by the intestinal mucosa. Its dependence on the blood supply and its recovery after ischemia. J Surg Res 5:150–152

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Antonioli JA, Mirkovitch V (1966) The intestinal response to ischaemia. Naunyn Schmiedebergs Arch Pharmacol 255:178–191

    CAS  Google Scholar 

  • Robinson JWL, Rausis C, Basset P, Mirkovitch V (1972) Functional and morphological response of the dog colon to ischaemia. Gut 13:775–783

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Mirkovitch V, Rausis C (1973) Récupération fonctionelle et morphologique de l’intestin grêle de chien après ischémie aiguë. Helv Chir Acta 39:287–290

    Google Scholar 

  • Robinson JWL, Haroud M, Winistörfer B, Mirkovitch V (1974) Recovery of function and structure of dog ileum and colon following two hour’s acute ischaemia. Eur J Clin Invest 4:443–452

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Menge H, Mirkovitch V (1975) The response of the dog colon mucosa one hour’s ischaemia. Res Exp Med (Berl) 165:127–134

    CAS  Google Scholar 

  • Robinson JWL, Menge H, Sepülveda FV, Cobo F, Mirkovitch V (1976) The functional response of the dog ileum to one hour’s ischaemia. Clin Sci Mol Med 50:115–122

    PubMed  CAS  Google Scholar 

  • Ross G (1971) Effects of norepinephrine infusions on mesenteric arterial blood flow and its tissue distribution. Proc Soc Exp Biol Med 137:921–924

    PubMed  CAS  Google Scholar 

  • Rummel W, Nell G, Wanitschke R (1975) Action mechanisms of antiabsorptive and hydragogue drugs. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 209–227

    Google Scholar 

  • Rusznyák I, Földi M, Szabó G (1957) Physiologie und Pathologie des Lymphkreislaufes. Fischer, Jena

    Google Scholar 

  • San Martin R, Mailman D (1972) Effect of head upward tilting on unidirectional Na and H2O fluxes across the canine ileum. Proc Soc Exp Biol Med 140:694–699

    Google Scholar 

  • Schultz SG, Curran PF (1968) Intestinal absorption of sodium chloride and water. In: Code CF (ed) Intestinal absorption. American Physiological Society, Washington, DC, pp 1245–1275 (Handbook of physiology, vol 3/6)

    Google Scholar 

  • Shields R, Code CF (1961) Effect of increased portal pressure on sorption of water and sodium from the ileum of dogs. Am J Physiol 200:775–780

    Google Scholar 

  • Smyth DH (1965) Water movement across the mammalian gut. Symp Soc Exp Biol 19:307–328

    PubMed  CAS  Google Scholar 

  • Soergel KH, Whalen GE, Harris JA, Geenen JE (1968) Effect of antidiuretic hormone on human small intestinal water and solute transport. J Clin Invest 47:1071–1082

    PubMed  CAS  Google Scholar 

  • Svanvik J (1973a) Mucosal blood circulation and its influence on passive absorption in the small intestine. Acta Physiol Scand [Suppl] 385:1–44

    CAS  Google Scholar 

  • Svanvik J (1973b) The effect of reduced perfusion pressure and regional sympathetic vasoconstrictor activation on the rate of absorption of 85Kr from the small intestine of the cat. Acta Physiol Scand 89:239–248

    PubMed  CAS  Google Scholar 

  • Svanvik J (1973c) Mucosal hemodynamics in the small intestine of the cat during regional sympathetic vasoconstrictor activation. Acta Physiol Scand 89:19–29

    PubMed  CAS  Google Scholar 

  • Svanvik J, Lundgren O (1977) Gastrointestinal circulation. In: Crane RK (ed) Gastrointestinal physiology. University Park Press, Baltimore, pp 1–34 (International review of physiology II, vol 12)

    Google Scholar 

  • Sylvén C (1970) Influence of blood supply on lipid uptake from micellar solutions by the rat small intestine. Biochim Biophys Acta 203:365–375

    PubMed  Google Scholar 

  • Sylvén C (1971) Uptake of micellar lipids by small intestinal segments (under different experimental conditions). Acta Physiol Scand 83:289–299

    PubMed  Google Scholar 

  • Turnberg LA (1973) Absorption and secretion of salt and water by the small intestine. Digestion 9:357–381

    PubMed  CAS  Google Scholar 

  • Varró V, Csernay L (1967) The portal transfer of glucose in the dog. Am J Dig 12:775–784

    Google Scholar 

  • Varró V, Blahó G, Csernay L, Jung I, Szarvas F (1965) Effect of decreased local circulation on the absorptive capacity of a small intestine loop in the dog. Am J Dig Dis 10:170–177

    PubMed  Google Scholar 

  • Varró V, Jung I, Szarvas F, Csernay L, Sávay G, Ökrös J (1967) The effect of vasoactive substances on the circulation and glucose absorption of an isolated jejunal loop in the dog. Am J Dig Dis 12:46–59

    PubMed  Google Scholar 

  • Wanitschke R, Nell G, Rummel W (1977a) Influence of hydrostatic pressure gradients on net transfer of sodium and water across isolated rat colonic mucosa. Naunyn Schmiedebergs Arch Pharmacol 297:191–194

    PubMed  CAS  Google Scholar 

  • Wanitschke R, Nell G, Rummel W, Specht W (1977b) Transfer of sodium and water through isolated rat colonic mucosa under the influence of deoxycholate and oxyphenisatin. Naunyn Schmiedebergs Arch Pharmacol 297:185–190

    PubMed  CAS  Google Scholar 

  • Wells HS (1931) The passage of materials through the intestinal wall. I. The relation between intra-intestinal pressure and the rate of absorption of water. Am J Physiol 99:209–220

    CAS  Google Scholar 

  • Wells HS (1940) The balance of physical forces which determine the rate and direction of flow of fluid through the intestinal mucosa. Am J Physiol 130:410–419

    Google Scholar 

  • Wikström S (1968) Propulsive gastrointestinal motility in regional and graded ischemia of the small bowel. An experimental study in the rat. II. Late results. Acta Chir Scand [Suppl] 386:1–53

    Google Scholar 

  • Williams JH Jr, Mager M, Jacobson ED (1964) Relationship of mesenteric blood flow to intestinal absorption of carbohydrates. J Lab Clin Med 63:853–863

    PubMed  CAS  Google Scholar 

  • Winne D (1966) Der Einfluß einiger Pharmaka auf die Darmdurchblutung und die Resorption tritiummarkierten Wassers aus dem Dünndarm der Ratte. Naunyn Schmiedebergs Arch Pharmacol 254:199–224

    CAS  Google Scholar 

  • Winne D (1970a) Der Einfluß der Durchblutung auf die Wasser- und Salzresorption im Jejunum der Ratte. Naunyn Schmiedebergs Arch Pharmacol 265:425–441

    PubMed  CAS  Google Scholar 

  • Winne D (1970b) Formal kinetics of water and solute absorption with regard to intestinal blood flow. J Theor Biol 27:1–18

    PubMed  CAS  Google Scholar 

  • Winne D (1971) Die Pharmakokinetik der Resorption bei Perfusion einer Darmschlinge mit variabler Durchblutung. Naunyn Schmiedebergs Arch Pharmacol 268:417–433

    PubMed  CAS  Google Scholar 

  • Winne D (1972a) The influence of blood flow and water net flux on the absorption of tritiated water from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 272:417–436

    PubMed  CAS  Google Scholar 

  • Winne D (1972b) The influence of blood flow and water net flux on the blood-to-lumen flux of tritiated water in the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 274:357–374

    PubMed  CAS  Google Scholar 

  • Winne D (1973) The influence of blood flow on the absorption of L- and D-phenylalanine from the jejunum of the rat. Naunyn Schmiedebergs Arch Pharmacol 277:113–138

    PubMed  CAS  Google Scholar 

  • Winne D (1975) The influence of villous counter current exchange on intestinal absorption. J Theor Biol 53:145–176

    PubMed  CAS  Google Scholar 

  • Winne D (1977) The vasculature of the jejunal villus. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Proceedings of the fourth workshop conference Hoechst, 19–22 October 1975. Excerpta Medica, Amsterdam, pp 56–57

    Google Scholar 

  • Winne D (1978a) Blood flow in intestinal absorption models. J Pharmacokinet Biopharm 6:55–78

    PubMed  CAS  Google Scholar 

  • Winne D (1978b) The permeability coefficient of the wall of a villous membrane. J Math Biol 6:95–108

    PubMed  CAS  Google Scholar 

  • Winne D (1979a) Influence of blood flow on intestinal absorption of drugs and nutrients. Pharmacol Ther [B] 6:333–393

    CAS  Google Scholar 

  • Winne D (1979b) Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn Schmiedebergs Arch Pharmacol 307:265–274

    PubMed  CAS  Google Scholar 

  • Winne D, Markgraf I (1979) The longitudinal intraluminal concentration gradient in the perfused rat jejunum and the appropriate mean concentration for calculation of the absorption rate. Naunyn Schmiedebergs Arch Pharmacol 309:271–279

    PubMed  CAS  Google Scholar 

  • Winne D, Ochsenfahrt H (1967) Die formale Kinetik der Resorption unter Berücksichtigung der Darmdurchblutung. J Theor Biol 14:293–315

    Google Scholar 

  • Winne D, Remischovsky J (1970) Intestinal blood flow and absorption of non-dissociable substances. J Pharm Pharmacol 22:640–641

    PubMed  CAS  Google Scholar 

  • Winne D, Remischovsky J (1971a) Der Einfluß der Durchblutung auf die Resorption von Harnstoff, Methanol und Äthanol aus dem Jejunum der Ratte. Naunyn Schmiedebergs Arch Pharmacol 268:392–416

    PubMed  CAS  Google Scholar 

  • Winne D, Remischovsky J (1971b) Der Einfluß der Durchblutung auf die Resorption von Polyalkoholen aus dem Jejunum der Ratte. Naunyn Schmiedebergs Arch Pharmacol 270:22–40

    PubMed  CAS  Google Scholar 

  • Yablonski ME, Lifson N (1976) Mechanism of production of intestinal secretion by elevated venous pressure. J Clin Invest 57:904–915

    PubMed  CAS  Google Scholar 

  • Yu YM, Yu LCC, Chou CC (1975) Distribution of blood flow in the intestine with hypertonic glucose in the lumen. Surgery 78:520–525

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winne, D. (1984). Role of Blood Flow in Intestinal Permeation. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation II. Handbook of Experimental Pharmacology, vol 70 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69508-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69508-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69510-0

  • Online ISBN: 978-3-642-69508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics