Skip to main content

Role of Digestive Enzymes in the Permeability of the Enterocyte

  • Chapter
Pharmacology of Intestinal Permeation II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 2))

Abstract

During the last few decades ideas on the functions of the enterocytes have undergone significant changes. This concerns primarily the concept of intestinal absorption. However, of hardly less importance for the understanding of the mechanisms of absorption were findings of late 1950s which confirmed the existence of a special type of digestion, membrane digestion, occurring directly on the resorptive surface. Subsequently, in the late 1960s and early 1970s these data led to a view of the enterocyte as a system responsible not only for transport, but also for digestive functions. As will be shown in this chapter, discovery of membrane digestion influenced the two main dogmas of gastroenterology: (1) the two-stage scheme of the alimentary system (luminal digestion-absorption) was replaced by the three-stage scheme (luminal digestion-membrane digestion-absorption); (2) the generally accepted view of digestion being performed in the intestinal lumen and absorption by the intestinal mucosa as two autonomous processes was abandoned. Instead, a concept of the digestive transport conveyor with spatial, time and functional integration of the final stages of digestion and initial stages of absorption on the lipoprotein membrane surface of the enterocytes has been proposed. The purpose of this chapter is to define the role of the hydrolases of the apical membrane of the enterocytes in the function of the transport system. It will be demonstrated that absorption may be controlled by the membrane enzymes in several ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibi SA (1971) Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50:2266–2275

    Article  PubMed  CAS  Google Scholar 

  • Adibi SA (1975) Dipeptide absorption and hydrolysis in human small intestine. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. North-Holland, Amsterdam, pp 147–166

    Google Scholar 

  • Adibi SA, Soleimanpour MR (1974) Functional characterization of dipeptide transport system in human jejunum. J Clin Invest 53:1368–1374

    Article  PubMed  CAS  Google Scholar 

  • Agar WT, Hird FJR, Sidhu GS (1954) The uptake of amino acids by the intestine. Biochim Biophys Acta 14:80–84

    Article  PubMed  CAS  Google Scholar 

  • Alpers DH (1972) Protein synthesis in intestinal mucosa: the effect of route of administration of precursor amino acid. J Clin Invest 31:167–173

    Article  Google Scholar 

  • Alpers DH (1977) Protein turnover in intestinal villus and crypt brush border membranes. Biochem Biophys Res Commun 75:130–135

    Article  PubMed  CAS  Google Scholar 

  • Alpers DH, Goodwin C (1971) Effect of size and anatomic location on the degradation rate of intestinal brush border proteins. Gastroenterology 60:760 (Abstr)

    Google Scholar 

  • Alpers DH, Solin M (1970) The characterization of rat intestinal amylase. Gastroenterology 58:833–842

    PubMed  CAS  Google Scholar 

  • Alvarado F (1976) Sodium transport: a re-evaluation of the sodium-gradient hypothesis. In: Robinson JWL (ed) Intestinal ion transport. Medical and Technical Publishing, Lancaster, pp 117–152

    Google Scholar 

  • Alvarado F (1978) Resolution by graphical methods of the equations for allosteric competitive inhibition and activation in Michaelian enzyme and transport systems. Application to the competitive inhibition of glucose transport in brain by phlorizin and phloretin. J Physiol (Paris) 74:633–639

    CAS  Google Scholar 

  • Alvarado F, Mahmood A (1974) Contransport of organic solutes and sodium ions in the small intestine: a general model. Amino acid transport. Biochemistry 13:2882–2890

    Article  PubMed  CAS  Google Scholar 

  • Alvarado F, Robinson JWL (1979) A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush-border membrane. J Physiol (London) 295:457–475

    CAS  Google Scholar 

  • Anderson CM, Zucker FH, Steiz TA (1979) Spacefilling models of kinase clefts and conformation changes. Science 204:375–381

    Article  PubMed  CAS  Google Scholar 

  • Antonowicz I (1979) The role of enteropeptidase in the digestion of protein and its development in human fetal small intestine. In: Development of mammalian absorptive processes. Ciba Found Symp 70:169–183

    Google Scholar 

  • Ashworth CT, Luibel FJ, Stewart SC (1963) The fine structural localization of adenosine triphosphatase in the small intestine, kidney and liver of the rat. J Cell Biol 17:1–18

    Article  PubMed  CAS  Google Scholar 

  • Asp N-G (1971) Small-intestinal β-galactosidases. Characterization of different enzymes and application to human lactase deficiency. Studentenliteratur, Lund

    Google Scholar 

  • Atkins GL, Gardner ML (1977) The computation of saturable and linear components of intestinal and other transport kinetics. Biochim Biophys Acta 468:127–145

    Article  PubMed  CAS  Google Scholar 

  • Atkinson DE (1970) Enzymes as control elements. In: Boyer PD (ed) The enzymes, vol 1. Structure and control. Academic, New York, pp 461–489

    Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic, New York

    Google Scholar 

  • Babkin BP (1927) External secretion of digestive glands (in Russian). Gosizdat, Moscow

    Google Scholar 

  • Babkin BP (1960) Secretory mechanism of digestive glands (in Russian). Medgiz, Leningrad

    Google Scholar 

  • Bangham AD (1972) Lipid bilayers and biomembranes. Annu Rev Biochem 41:753–776

    Article  PubMed  CAS  Google Scholar 

  • Barcroft DK (1937) Basic character of the architecture of physiological functions (in Russian). Biomedgiz, Moscow

    Google Scholar 

  • Barrnett RJ (1959) The demonstration with the electron microscope of the end-products of histochemical reactions in relation to the fine structure of cells. Exp Cell Res [Suppl] 7:65–89

    Article  Google Scholar 

  • Barry RJC, Jackson M J, Smyth DH (1966) Handling of glycerides of acetic acid by rat small intestine in vitro. J Physiol (London) 185:667–683

    CAS  Google Scholar 

  • Bauman VK (1977) Absorption of divalent cations (in Russian). In: Physiology of absorption. Nauka, Leningrad, pp 152–222

    Google Scholar 

  • Benz R, Fröhlich O, Läuger P (1977) Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim. Biophys Acta 464:465–481

    Article  CAS  Google Scholar 

  • Bergelson LD (1975) Biological membranes (in Russian). Nauka, Moskow

    Google Scholar 

  • Bernard CL (1877) Leçons sur la diabete et la glycogenese animale. Baillière, Paris

    Google Scholar 

  • Bierry H (1912) Saccharose spaltende Fermente. Biochem 44:415–425

    Google Scholar 

  • Billington T, Nayudu PRV (1976) Studies on the brush border membrane of mouse duodenum. II. Membrane protein metabolism. J Membr Biol 27:83–100

    Article  PubMed  CAS  Google Scholar 

  • Billington T, Nayudu PRV (1978) Studies on the brush border membrane of mouse duodenum: lipids. Aust J Exp Biol Med Sci 56:25–29

    Article  PubMed  CAS  Google Scholar 

  • Booth AG, Kenny AJ (1976) Proteins of the kidney microvillus membrane. Identification of subunits after sodium dodecyl sulphate/polyacrylamide gel electrophoresis. Biochem J 159:395–407

    PubMed  CAS  Google Scholar 

  • Borgström B (1974) Fat digestion and absorption In: Smyth DH (ed) Intestinal absorption. (Biomembranes, Vol 4 A). Plenum, London, pp 555–620

    Google Scholar 

  • Borgström B (1977) Digestion and absorption of lipids. In: Crane RK (ed) Gastrointestinal physiology II. (International review of physiology, Vol 12). University Park Press, Baltimore, pp 305–323

    Google Scholar 

  • Borgström B, Dahlqvist A (1958) Cellular localisation, solubilization and separation of intestinal glycosidases. Acta Chem Scand 12:1997–2006

    Article  Google Scholar 

  • Borgström S, Borgström B, Rottenberg M (1951) Intestinal absorption and distribution of fatty acids and glycerides in the rat. Acta Physiol Scand 25:120–139

    Article  Google Scholar 

  • Borgström B, Dahlqvist A, Lundh G, Sjövall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36:1521–1536

    Article  PubMed  Google Scholar 

  • Borochov H, Shinitzky M (1976) Vertical displacement of membrane proteins mediated by changes in micro viscosity. Proc Natl Acad Sci USA 73:4526–4530

    Article  PubMed  CAS  Google Scholar 

  • Boullin DJ, Crampton RF, Heading CE, Pelling D (1973) Intestinal absorption of dipeptides containing glycine, phenylalanine, proline, β-alanine or histidine in the rat. Clin Sci Mol Med 45:849–858

    CAS  Google Scholar 

  • Boyd CAR, Cheeseman CI, Parsons DS (1975) Amino acid movements across the wall of anuran small intestine perfused through the vascular bed. J Physiol (London) 250: 409–429

    CAS  Google Scholar 

  • Bradfield JRG (1950) The localization of enzymes in cells. Biol Rev 25:113–157

    Article  CAS  Google Scholar 

  • Braun H, Cogoli A, Semenza G (1977) Carboxyl group at the two active centers of sucrase-isomaltase from rabbit small intestine. Eur J Biochem 73:437–442

    Article  PubMed  CAS  Google Scholar 

  • Bredderman PJ, Wasserman RH (1974) Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. Biochemistry 13:1687–1694

    Article  PubMed  CAS  Google Scholar 

  • Bresler SE, Bresler VM (1974) On liquid-cristalline structure of biological membranes (in Russian). Dokl Akad Nauk SSSR 214:936–939

    Google Scholar 

  • Bretscher A, Weber K (1978) Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol 79:839–845

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258:43–49

    Article  PubMed  CAS  Google Scholar 

  • Brindley DN (1974) The intracellular phase of fat absorption. In: Smyth DH (ed) Intestinal absorption. Plenum, London, pp 621–672

    Google Scholar 

  • Brown WR (1978) Relationships between immunoglobulins and the intestinal epithelium. Gastroenterology 75:129–138

    PubMed  CAS  Google Scholar 

  • Brunner J, Hauser H, Semenza G, Wacker H (1977) Incorporation of pure hydrolases isolated from brush border membrane in single-bilayer lecithin vesicles. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport, FEBS — symposium 42. Springer, Berlin Heidelberg New York, pp 105–113

    Google Scholar 

  • Brunner J, Hauser H, Semenza G (1978) Single bilayer lipid-protein vesicles formed from phosphatidylcholine and small intestinal sucrase-isomaltase. J Biol Chem 253:7538–7546

    PubMed  CAS  Google Scholar 

  • Brunner J, Hauser H, Braun H, Wilson KJ, Wacker H, O’Neil B, Semenza G (1979) The mode of association of the enzyme complex sucrase-isomaltase with the intestinal brush border membrane. J Biol Chem 254:1821–1828

    PubMed  CAS  Google Scholar 

  • Burston D, Matthews DM (1972) Intestinal transport of dipep tides containing acidic and basic L-amino acids and a neutral D-amino acid. Clin Sci 42:4 P

    Google Scholar 

  • Burston D, Marrs TC, Sleisenger MH, Sopahen T, Matthews DM (1977) Mechanisms of peptide transport. In: Peptide transport and hydrolysis. Ciba Found Symp 50: 79–98

    Google Scholar 

  • Cajori FA (1933) The enzyme activity of dog’s intestinal juice and its relation to intestinal digestion. Am J Physiol 104:659–668

    CAS  Google Scholar 

  • Carraway KL (1975) Co valent labeling of membranes. Biochim Biophys Acta 415:379–410

    PubMed  Google Scholar 

  • Caspary WF (1972) Evidence for a sodium-independent transport system to glucose derived from disaccharides. In: Heinz E (ed) Na-linked transport of organic solutes. Springer, Berlin Heidelberg New York, p 99

    Chapter  Google Scholar 

  • Caspary WF (1976) Jonic dependence of glucose transport from disaccharides. In: Robinson JWL (ed) Intestinal ion transport. MTP Press London, pp 153–154

    Google Scholar 

  • Caspary WF (1978) Disaccharide hydrolysis and absorption. In: Varro V, Balint GA (eds) Current views in gastroenterology. Hung Soc Gastroenterol, Budapest, pp 103–104

    Google Scholar 

  • Castillo Del LF, Mason EA, Viehland LA (1979) Energy-barrier models for membrane transport. Biophys Chem 9:111–120

    Article  PubMed  Google Scholar 

  • Cathala G, Brunei C, Chappelet-Tordo D, Lazdunski M (1975) Bovine kidney alkaline phosphatase. Purification, subunit structure, and metalloenzyme properties. J Biol Chem 250:6040–6045

    PubMed  CAS  Google Scholar 

  • Caulson RA, Herbert JD, Hernandez T (1978) Energy for amino acid absorption, transport and protein synthesis in vivo. Comp Biochem Physiol [A] 60:13–20

    Article  Google Scholar 

  • Chain EB, Mansford KRL, Pocchiari F (1960) The absorption of sucrose, maltose and higher oligosaccharides from the isolated rat small intestine. J Physiol (London) 154:39–51

    CAS  Google Scholar 

  • Chapman D (1974) Biological membranes. In: Smyth DH (ed) Intestinal absorption. Plenum, London, pp 123–158

    Google Scholar 

  • Chapman D, Wallach DFH (eds) (1976) Biological membranes vol 3. Academic, London

    Google Scholar 

  • Chappelet-Tordo D, Fosset M, Iwatsubo M, Gache C, Lazdunski M (1974) Intestinal alkaline phosphatase. Catalytic properties and half of the sites reactivity. Biochemistry 13:1788–1795

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman CI, Parsons DS (1974) Intestinal absorption of peptides. Peptide uptake by small intestine of Rana pipiens. Biochim Biophys Acta 373:523–526

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman CI, Parsons DS (1976) The role of some small peptides in the transfer of amino nitrogen across the wall of vascularly perfused intestine. J Physiol (London) 262:459–476

    CAS  Google Scholar 

  • Cheng B, Matthews DM (1970) Rates of uptake of amino acid from L-methionine and the peptide L-methionyl-L-methionine by rat small intestine in vitro. J Physiol (London) 210:37P–38P

    CAS  Google Scholar 

  • Cheng B, Navab F, Lis MT, Miller TN, Matthews DM (1971) Mechanisms of dipeptide uptake by rat small intestine in vitro. Clin Sci 40:247–259

    PubMed  CAS  Google Scholar 

  • Chernyakhovskaya MYu, Ugolev AM (1969) Localization of the final stages of tributyrine hydrolysis in the epithelial small intestinal cells (in Russian). Dokl Akad Nauk SSSR 187:701–703

    CAS  Google Scholar 

  • Cherry RJ (1976) Protein and lipid mobility in biological and model membranes. In: Chapman D, Wallach DFH (eds) Biological membranes, vol 3. Academic, London, pp 47–102

    Google Scholar 

  • Clark SL (1961 a) Alkaline phosphatase of the small intestine studied with electron microscope in suckling and adult mice. Anat Rec 139:216

    Google Scholar 

  • Clark SL (1961 b) The localization of alkaline phosphatase in tissues of mice, using the electron microscope. Am J Anat 109:57–61

    Article  PubMed  Google Scholar 

  • Clarkson TW, Rothstein A (1960) Transport of monovalent cations by the isolated small intestine of the rat. Am J Physiol 199:898–906

    PubMed  CAS  Google Scholar 

  • Code CF (ed) (1968 a) Intestinal absorption. American Physiology Society, Washington DC (Handbook of physiology, sect 6. Alimentary canal, vol III.)

    Google Scholar 

  • Code CF (ed) (1968 b) Bile; digestion; ruminal physiology. American Physiology Society, Washington DC (Handbook of physiology, sect 6. Alimentary canal, vol V)

    Google Scholar 

  • Cogoli A, Semenza G (1975) A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase. J Biol Chem 250:7802–7809

    PubMed  CAS  Google Scholar 

  • Cogoli A, Mosimann H, Vock C, von Balthazar A-K, Semenza G (1972) A simplified procedure for the isolation of the sucrase-isomaltase complex from rabbit intestine. Its amino-acid and sugar composition. Eur J Biochem 30:7–14

    Article  PubMed  CAS  Google Scholar 

  • Cogoli A, Eberle A, Sigrist H, Joss C, Robinson E, Mosimann H, Semenza G (1973) Subunits of the small intestinal sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety. Eur J Biochem 33:40–48

    Article  PubMed  CAS  Google Scholar 

  • Colbeau A, Maroux S (1978) Integration of alkaline phosphatase in the intestinal brush border membrane. Biochim Biophys Acta 511:39–51

    Article  PubMed  CAS  Google Scholar 

  • Conclin K, Yamashiro K, Gray G (1975) Human intestinal sucrase-isomaltase: identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits. J Biol Chem 250:5735–5741

    Google Scholar 

  • Consolazio CF, Iacono JM (1963) Carbohydrates. In: Albanese AA (ed) Newer methods of nutritional biochemistry. Academic, New York, pp 290–367

    Google Scholar 

  • Cook GC (1972) Comparison of intestinal absorption rates of glycine and glycylglycine in man and the effect of glucose in the perfusing fluid. Clin Sci 43:443–453

    PubMed  CAS  Google Scholar 

  • Cori CF (1925) The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J Biol Chem 66:691–715

    CAS  Google Scholar 

  • Cori CF (1926) The absorption of glycine and d,l-alanine. Proc Soc Exp Biol Med 24:125–126

    Google Scholar 

  • Cornish-Bowden A (1976) Principles of enzyme kinetics. Butterworths, London

    Google Scholar 

  • Craft IL, Crampton RF, Lis MT, Matthews DM (1969) Intestinal absorption of L-methionine, glycine and some of their peptides in the rat. J Physiol (London) 200:111–112

    Google Scholar 

  • Crampton RF, Lis MT, Matthews DM (1973) Sites of maximal absorption and hydrolysis of two dipeptides by rat small intestine. Clin Sci 44:583–594

    PubMed  CAS  Google Scholar 

  • Crane RK (1966) Sructural and functional organization of an epithelial cell brush border. In: Intracellular transport symposia. Int Soc Cell Biol, vol 5. Academic, New York, pp 71–102

    Google Scholar 

  • Crane RK (1968 a) Absorption of sugars. In: Code CF, Heidel W (eds) Intestinal absorption. (Handbook of physiology, sec 6. Alimentary canal, vol III). American Physiology Society Washington, pp 1323–1351

    Google Scholar 

  • Crane RK (1968 b) Digestive-absorptive surface of the small bowel mucosa. Annu Rev Med 19:57–68

    Article  PubMed  CAS  Google Scholar 

  • Crane RK (1974) Intestinal absorption of glycose. In: Smyth DH (ed) Intestinal absorption. Plenum, London, pp 541–553

    Google Scholar 

  • Crane RK (1975) 15 years of struggle with the brush border. In: Csaky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 127–141

    Google Scholar 

  • Crane RK (1977) Digestion and absorption: watersoluble organics. In: Crane RK (ed) Gastrointestinal physiology II. Rev Physiol 12:325–365

    Google Scholar 

  • Crane RK, Malathi P, Caspary WF, Ramaswamy K (1970) Evidence for a second glucose transport system in hamster small intestine specific for glucose released by brush border digestive enzymes. Fed Proc 29:595 (abstr)

    Google Scholar 

  • Critchley DR, Howell KE, Eichholz A (1975) Solubilization of brush borders of hamster small intestine and fractionation of some of the components. Biochim Biophys Acta 394:361–376

    Article  PubMed  CAS  Google Scholar 

  • Csáky TZ (1969) Biologicial transport in epithelial cells. Atti Sem Stud Biol 4:163

    Google Scholar 

  • Csáky TZ, Fisher E (1981) Intestinal sugar transport in experimental diabetes. Diabetes 30:568–574

    Article  PubMed  Google Scholar 

  • Csáky TZ, Autenrieth B (1975) Transcellular and intercellular intestinal transport. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 177–185

    Google Scholar 

  • Csáky TZ, Thaïe M (1960) Effect of ionic environment on intestinal sugar transport. J Physiol (London) 151:59–65

    Google Scholar 

  • Csáky TZ, Hartzog HG, Fernald GW (1961) Effect of digitalis on active intestinal sugar transport. J Physiol (London) 200:459–460

    Google Scholar 

  • Cummins DL, Gitzelman R, Lindenmann J, Semenza G (1968) Immunochemical study of isolated human and rabbit intestinal sucrase. Biochim Biophys Acta 160:396–403

    PubMed  CAS  Google Scholar 

  • Curran PF (1960) Na, Cl and water transport by rat ileum in vitro. J Gen Physiol 43:1139–1148

    Google Scholar 

  • Dahlqvist A, Borgström B (1961) Digestion and absorption of disaccharides in man. Biochem J 81:411–418

    PubMed  CAS  Google Scholar 

  • Dahlqvist A, Brun A (1962) A method for the histochemical demonstration of disaccharidase activities: application to invertase and trehalase in some animal tissues. J Histochem Cytochem 10:294–302

    Article  CAS  Google Scholar 

  • Dahlqvist A, Thomson DL (1963 a) The digestion and absorption of sucrose by the intact rat. J Physiol (London) 167:193–209

    CAS  Google Scholar 

  • Dahlqvist A, Thomson DL (1963 b) The digestion and absorption of maltose and trehalose by the intact rat. Acta Physiol Scand 59:111–125

    Google Scholar 

  • Das BC, Gray GM (1970) Intestinal sucrase: in vivo synthesis and degradation. Clin Res 18:378 (abstr)

    Google Scholar 

  • Das M, Radhakrishnan AN (1972) Substrate specificity of a highly active dipeptidase purifïcal from monkey small intestine. Biochem J 128:463–465

    PubMed  CAS  Google Scholar 

  • Das M, Radhakrishnan AN (1974) Studies on the uptake of glycyl-L-leucine by strips of monkey small intestine. Indian J Biochem Biophys 11:12–16

    PubMed  CAS  Google Scholar 

  • Deane HW, Dempsey EW (1945) The localization of phosphatases in the Golgi region of intestinal and other epithelial cells. Anat Rec 93:401

    Article  PubMed  CAS  Google Scholar 

  • DeLaey P (1966 a) Development of the intestinal digestion mechanism of starch as a function of age in rats. Nature 212:78–79

    Article  CAS  Google Scholar 

  • DeLaey P (1966 b) Die Membran Verdauung der Stärke. 1. Mitt. Der Einfluß von Seiten der Perfusionsgeschwindigkeit und der amylolytischen Aktivität des Pankreassaftes auf die „in vivo“Verdauung der Stärke. Nahrung 10:641–648

    Article  CAS  Google Scholar 

  • DeLaey P (1966 c) Die Membran Verdauung der Stärke. 2. Mitt. Der Einfluß von Mucinen auf die Membranverdauung der Stärke. Nahrung 10:649–653

    Article  CAS  Google Scholar 

  • DeLaey P (1966d) Die Membranverdauung der Stärke. 3. Mitt. Der Einfluß von alimentären Komponenten des Chymus auf die Membran Verdauung der Stärke. Nahrung 10:655–663

    Article  CAS  Google Scholar 

  • De Laey P (1967 a) Die Membranverdauung der Stärke. 4. Mitt. Der Einfluß der Größe der intestinalen Schleimhaut auf die Membranverdauung. Nahrung 11:1–7

    Article  Google Scholar 

  • DeLaey P (1967 b) Die Membranverdauung der Stärke. 5. Mitt. Zur Zweigestaltigkeit der Membranverdauung der Stärke. Nahrung 11:9–15

    Article  CAS  Google Scholar 

  • DeLaey P (1967 c) Die Membranverdauung der Stärke. 6. Mitt. Die Bindung der Amylase auf der Intestinal Mucosa. Nahrung 11:17–30

    Article  CAS  Google Scholar 

  • Dempsey EW, Deane HW (1946) The cytological localization, substrate specificity, and pH optima of phosphatases in the duodenum of the mouse. J Cell Comp Physiol 27:159–171

    Article  CAS  Google Scholar 

  • Desnuelle P (1979) Intestinal and renal aminopeptidases: a model of a transmembrane protein. Eur J Biochem 101:1–11

    Article  PubMed  CAS  Google Scholar 

  • Devaux A, McConnel H (1972) Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J Am Chem Soc 94:4475–481

    Article  PubMed  CAS  Google Scholar 

  • Development of mammalian absorptive processes (1979) Ciba Found Symp 70. Excerpta Medica, Amsterdam

    Google Scholar 

  • Deves R, Krupka RM (1979) A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters. Biochim Biophys Acta 556:533–547

    Article  PubMed  CAS  Google Scholar 

  • Dietschy JM, Westergaard H (1975) The effect on unstirred water layers on various transport processes in the intestine. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 197–206

    Google Scholar 

  • Dodds C, Fairweather FA, Miller AL, Rose CFM (1959) Blood-sugar response of normal adults to dextrose, sucrose and liquid glucose. Lancet 1:485–488

    Article  PubMed  CAS  Google Scholar 

  • Dowling RH, Riecken EO (eds) (1974) Intestinal adaptation. Schattauer, Stuttgart

    Google Scholar 

  • Egorova VV, Gozitte IK, Koltushkina GG, Ugolev AM (1977) Comparative characterization of some brush border enzymes isolated from the composition of membranes by detergents and proteases (in Russian). Dokl Akad Nauk SSR 233:487–490

    CAS  Google Scholar 

  • Eichholz A, Crane RK (1965) Studies on the organization of the brush border in intestinal epithelial cells. I. Tris disruption of isolated hamster brush border and density gradient separation of fractions. J Cell Biol 26:687–691

    Article  PubMed  CAS  Google Scholar 

  • Elezky YuK, Tsybulevsky AYu (1979) Ultrastructural and molecular bases of the transport of substances through the enterocyte brush border of the small intestine (in Russian). Adv Modern Biol 2:304–320

    Google Scholar 

  • Emmel VM (1946) The intracellular distribution of alkaline phosphatase activity following various methods of histologic fixation. Anat Rec 95:159–173

    Article  PubMed  CAS  Google Scholar 

  • Etzler ME, Branstrator ML (1974) Differential localization of cell surface and secretory components in rat intestinal epithelium by use of lectins. J Cell Biol 62:329–343

    Article  PubMed  CAS  Google Scholar 

  • Farias RN, Bloj B, Morero RD, Sineriz F, Trucco R (1975) Regulation of allosteric membrane bound enzymes through changes in membrane lipid composition. Biochim Biophys Acta 415:231–251

    PubMed  CAS  Google Scholar 

  • Feher JJ, Wasserman RH (1979) Studies on the subcellular localization of the membrane-bound fraction of intestinal calcium-binding protein. Biochim Biophys Acta 585:599–610

    Article  PubMed  CAS  Google Scholar 

  • Ferguson A (1979) In: Duthie HL, Wormsley KG (eds) Scientific basis of gastroenterology. Livingstone, Edinburgh, pp 49–70

    Google Scholar 

  • Finean JB (1972) The development of ideas on membrane structure. Subcell Biochem 1:363

    CAS  Google Scholar 

  • Finean JB, Coleman R, Michell RH (1978) Membranes and their cellular functions, 2nd ed. Black well Scientific Publications, Oxford

    Google Scholar 

  • Fisher RB (1954) Protein metabolism. Methuen, Willey, London

    Google Scholar 

  • Fisher RB, Parsons DS (1949) A preparation of surviving rat small intestine for the study of absorption. J Physiol (London) 110:36–46

    CAS  Google Scholar 

  • Fisher RB, Parsons DS (1953) Galactose absorption from the surviving small intestine of the rat. J Physiol (London) 119:224–232

    CAS  Google Scholar 

  • Flanagan FR, Forstner GG (1978) Enzyme activity in partly dissociated fragments of rat intestinal maltase/glucoamylase. Biochem J 177:487–492

    Google Scholar 

  • Fleischer S, Packer L (eds) (1974) Biomembranes, vol 32, part B. Characterization of membranes and membrane components, Sect I; Model membranes, Sect IV. Academic, New York, pp 3–272,

    Google Scholar 

  • Fleischer S, Packer L (eds) (1974) Biomembranes, vol 32, part B. Characterization of membranes and membrane components, Sect I; Model membranes, Sect IV. Academic, New York 485–554

    Google Scholar 

  • Florey HW, Wright RD, Jennings MA (1941) The secretion of the intestine. Physiol Rev 21:36–69

    CAS  Google Scholar 

  • Fogel MR, Gray GM (1973) Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. J Appl Physiol 35:263–267

    PubMed  CAS  Google Scholar 

  • Forstner G, Wherrett JR (1973) Plasma membrane and mucosal glycosphingolipids in the rat intestine. Biochim Biophys Acta 306:446–459

    PubMed  CAS  Google Scholar 

  • Fosset M, Chappelet-Tordo D, Lazdunski M (1974) Intestinal alkaline phosphatase. Physical properties and quaternary structure. Biochemistry 13:1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Frank G, Brunner J, Hauser H, Wacker H, Semenza G, Zuber H (1978) The hydrophobic anchor of small-intestinal sucrase-isomaltase. N-terminal sequence of the isomaltase subunit. FEBS Letters 96:183–188

    Article  PubMed  CAS  Google Scholar 

  • Frye CD, Edidin M (1970) The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci 7:319–335

    PubMed  CAS  Google Scholar 

  • Fujita M, Parsons DS, Wojnarowska F (1972) Oligopeptidases of brush border membranes of rat small intestinal mucosal cells. J Physiol (London) 227:377–394

    CAS  Google Scholar 

  • Gallo LL, Treadwell CR (1963) Localization of cholesterol esterase and cholesterol in mucosal fractions of rat small intestine. Proc Soc Exp Biol Med 114:69–72

    PubMed  CAS  Google Scholar 

  • Garrido J (1975) Ultrastructural labeling of cell surface lectin receptors during the cell cycle. Exp Cell Res 94:159–175

    Article  PubMed  CAS  Google Scholar 

  • Gennis RB, Jonas A (1977) Protein-lipid interactions. Annu Rev Biophys Bioeng 6:195–238

    Article  PubMed  CAS  Google Scholar 

  • Gilvarg C (1972) Peptide transport in bacteria. In: Peptide transport in bacteria and mammalian gut. Ciba Found Symp 4:11–16

    Google Scholar 

  • Gitzelmann R, Davidson EA, Osinchak J (1964) Disaccharidase of rabbit small intestine: intracellular distribution, solubilization, purification and specificity. Biochim Biophys Acta 85:69–81

    PubMed  CAS  Google Scholar 

  • Götze H, Rothman SS (1978) Amylase transport across ileal epithelium in vitro. Biochim Biophys Acta 512:214–220

    Article  PubMed  Google Scholar 

  • Goldberg DM, Campbell R, Roy D (1968) Binding of trypsin and chymotrypsin by human intestinal mucosa. Biochim Biophys Acta 167:613–615

    PubMed  CAS  Google Scholar 

  • Goldberg DM, Campbell R, Roy D (1971) The interaction of trypsin and chymotrypsin with intestinal cells in man and several animal species. Comp Biochem Physiol 38:697–706

    Article  CAS  Google Scholar 

  • Gomori G (1941) The distribution of phosphatase in normal organs and tissue. J Cell Comp Physiol 17:71–83

    Article  CAS  Google Scholar 

  • Gozitte IK, Koltushkina GG, Egorova VV, Ugolev AM (1976) Comparative kinetic characterization of some brush border enzymes solubilized from the membranes by means of detergents and proteases (in Russian). In: Digestive enzymes. Comm of 1st bilateral symposium USSR-Czechoslovakia, Uzhgorod, pp 31–35

    Google Scholar 

  • Gray GM (1975) Carbohydrate digestion and absorption. Role of the small intestine. N Engl J Med 292:1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Gray GM, Santiago NA (1969) Intestinal β-galactosidases. 1. Separation and characterization of three enzymes in normal human intestine. J Clin Invest 48:716–729

    Article  PubMed  CAS  Google Scholar 

  • Green JR (1972) Membrane structure and its biological application. Ann N Y Acad Sci 195

    Google Scholar 

  • Green JR, Hadorn B (1977) Glycosidases of the guinea pig brush border membrane. Biochim Biophys Acta 467:86–90

    Article  PubMed  CAS  Google Scholar 

  • Gruzdkov AA, Egorova VV, Jezuitova NN, Timofeeva NM, Tulyaganova EKh, Chernyakhovskaya MYu, Ugolev AM (1970) Distribution of some enzymatic activities of the small intestine of white rats on ultracentrifugation (in Russian). In: Physiology and pathology of the small intestine. Proc of the All-Union congr gastroenterol. Riga, pp 53–56

    Google Scholar 

  • Guidotti G, Borghetti AF, Gazzola GC (1978) The regulations of amino acid transport in animal cells. Biochim Biophys Acta 515:329–366

    PubMed  CAS  Google Scholar 

  • Gulik-Krzywicki T (1975) Structural studies of the association between biological membrane components. Biochim Biophys Acta 415:1–28

    PubMed  CAS  Google Scholar 

  • Harrison R, Lunt GG (1975) Biological membranes: their structure and function, vol VIII. Blackie, Glasgow, p 253

    Google Scholar 

  • Heading RC, Schedl HP, Stegink LD, Miller DL (1977) Intestinal absorption of glycine and glycyl-L-proline in the rat. Clin Sci Mol Med 52:607–614

    PubMed  CAS  Google Scholar 

  • Heaton JW (1970) Intestinal maltase-sucrase: unique alpha-glucosidase. Gastroenterology 58:1044

    Google Scholar 

  • Heizer WD, Isselbacher KJ (1970) Intestinal peptide hydrolases: differences between brush border and cytoplasmic enzymes. Clin Res 18:382

    Google Scholar 

  • Heizer WD, Kerley RL, Isselbacher KJ (1972) Intestinal peptide hydrolases. Difference between brush border and cytoplasmic enzymes. Biochim Biophys Acta 264:450–461

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  CAS  Google Scholar 

  • Hemmings WA, Williams EW (1978) Transport of large breakdown products of dietary protein through the gut wall. Gut 19:715–723

    Article  PubMed  CAS  Google Scholar 

  • Hendler RW (1971) Biological membrane ultrastructure. Physiol Rev 51:66–97

    PubMed  CAS  Google Scholar 

  • Himukai M, Suzuki Y, Hoshi T (1978) Differences in characteristics between glycine and glycylglycine transport in guinea pig small intestine. Jpn J Physiol 28:499–510

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. Saunders, Philadelphia

    Google Scholar 

  • Hoffman JF (ed) (1978) Membrane transport processes, vol 1. Raven, New York

    Google Scholar 

  • Holdsworth CD, Dawson AM (1964) The absorption of monosaccharides in man. Clin Sci 27:371–377

    PubMed  CAS  Google Scholar 

  • Holdsworth CD, Sladen GE (1979) Absorption from stomach and small intestine. In: Duthie HL, Wormsley KG (eds) Scientific basis of gastroenterology. Levingstone, Edinburgh, pp 338–397

    Google Scholar 

  • Hübscher G, West GR, Brindley DN (1965) Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J 97:629–642

    PubMed  Google Scholar 

  • Hueckel HJ, Rogers QR (1972) Prolylhydroxyproline absorption in hamster. Can J Biochem 50:782–790

    PubMed  CAS  Google Scholar 

  • Iezuitova NN, Nadirova TYa, Toropova NW, Ugolev AM (1965) The characterization of the entry of hexoses into the blood after the administration of poly-, oligo-, and monosaccharides into the gastrointestinal tract (in Russian). In: Skljarov JaP (ed) Conference on physiology and pathology of digestion. Lvov, pp 102–105

    Google Scholar 

  • Iezuitova NN, Timofeeva NM, Chernyakhovskaya MYu, Zabelinsky EK, Ugolev AM (1967) Distribution of some enzymes (amylase, invertase, dipeptidase, lipase and monoglyceride lipase) between the small intestinal contents and mucosa in dogs and rats during digestion (in Russian). Dokl Akad Nauk SSSR 173:475–478

    PubMed  CAS  Google Scholar 

  • Immunology of the gut (1977) Ciba Found Symp 46.

    Google Scholar 

  • Isselbacher KJ (1974) The intestinal cell surface: properties of normal, undifferentiated, and malignant cells. Harvey Lect 69:197–221

    Google Scholar 

  • Isselbacher KJ, Senior JR (1964) The intestinal absorption of carbohydrate and fat. Gastroenterology 46:287–298

    PubMed  CAS  Google Scholar 

  • Ito S (1965) The enteric surface coat on cat intestinal microvilli. J Cell Biol 27:475–491

    Article  PubMed  CAS  Google Scholar 

  • Ito S (1969) Structure and function of the glycocalyx. Fed Proc 28:12–25

    PubMed  CAS  Google Scholar 

  • Jesuitova NN, De Laey P, Ugolev AM (1964) Digestion of starch in vivo and in vitro in a rat intestine. Biochim Biophys Acta 86:205–210

    Article  PubMed  CAS  Google Scholar 

  • Jodl J, Lindberg T (1979) In vitro release of intestinal dipeptidases from everted rings of rat jejunum. Acta Physiol Scand 105:248–250

    Article  PubMed  CAS  Google Scholar 

  • Jos J, Frezal J, Rey J, Lamy M (1967) Histochemical localization of intestinal disaccharidases: application to peroral biopsy specimens. Nature 213:516–518

    Article  PubMed  CAS  Google Scholar 

  • Josefsson L, Sjöström H (1966) Intestinal dipeptidases. IV. Studies on the release and subcellular distribution of intestinal dipeptidases of the mucosa cells of the pig. Acta Physiol Scand 67:27–33

    Article  PubMed  CAS  Google Scholar 

  • Josefsson L, Sjöström H, Noren O (1977) Intracellular hydrolysis of peptides. In: Peptide transport and hydrolysis. Ciba Found Symp 50:199–207

    Google Scholar 

  • Kaiser MH (1964) Physiology of the small intestine. In: Bockus HL (ed) Gastroenterology, vol II, Saunders, Philadelphia, pp 10–30

    Google Scholar 

  • Katz M, Cooper BA (1974) Solubilized receptor for intrinsic factor-vitamin B12 complex from guinea pig intestinal mucosa. J Clin Invest 54:733–739

    Article  PubMed  CAS  Google Scholar 

  • Kelly JJ, Alpers DH (1973) Properties of human intestinal glucoamylase. Biochim Biophys Acta 315:113–122

    PubMed  CAS  Google Scholar 

  • Kennedy SJ (1978) Structures of membrane protein. J Membr Biol 42:265–279

    Article  PubMed  CAS  Google Scholar 

  • Kenny AJ (1977) Endopeptidase in the brush border of the kidney proximal tubule. In: Peptide transport and hydrolysis. Ciba Found Symp 50:209–215

    Google Scholar 

  • Kim YS (1977) Intestinal mucosal hydrolysis of proteins and peptides. In: Peptide transport and hydrolysis. Ciba Found Symp 50:151–171

    Google Scholar 

  • Kim YS, Brophy EJ (1976) Rat intestinal brush border peptidases. I. Solubilization, purification and physicochemical properties of two different forms of the enzyme. J Biol Chem 251:3199–3205

    PubMed  CAS  Google Scholar 

  • Kim YS, Birtwhistle W, Kim YW (1972) Peptide hydrolases in the brush border and soluble fractions of small intestine mucosa of rat and man. J Clin Invest 51:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kim YW, Sleisenger MH (1974) Studies on the properties of peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. Biochim Biophys Acta 370:283–296

    PubMed  CAS  Google Scholar 

  • Kim YS, Brophy EJ, Nicholson JA (1976) Rat intestinal brush border membrane peptidases. II. Enzymatic properties, immunochemistry and interactions with lectins of two different forms of the enzyme. J Biol Chem 251:3206–3212

    PubMed  CAS  Google Scholar 

  • Kinne R, Murer H (1976) Polarity of epithelial cells in relation to transepithelial transport in kidney and intestine. In: Intestinal ion transport. Proc Int Symp, Baltimore, pp 79–95

    Google Scholar 

  • Kirtley ME, Koshland DE (1968) Models for cooperative effects in proteins containing subunits. J Biol Chem 242:4192–4205

    Google Scholar 

  • Klip A, Grinstein S, Semenza G (1979) Transmembrane disposition of the phlorizin binding protein of intestinal brush border. FEBS Letters 99:91–96

    Article  PubMed  CAS  Google Scholar 

  • Kojezky Z, Matlocha Z (1973) Možnosti studia poruch membránového traveni v klinice. Cesk Gastroenterol Vyz 27:507–513

    Google Scholar 

  • Kolinska J, Kraml J (1972) Separation and characterization of sucrase-isomaltase and of glucoamylase of rat intestine. Biochim Biophys Acta 284:235–247

    PubMed  CAS  Google Scholar 

  • Konder H, Haberich FJ, Stöckert HG (1977) pH-values in the small intestine of rats and their possible role in the absorption of bile acids. Pflügers Arch 368 [Suppl]: R 20

    Google Scholar 

  • Kornberg RD, McConnell HM (1971) Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE (1969) Conformational aspects of enzyme regulation. In: Curr Top Cell Regul 1:1–27

    Google Scholar 

  • Koshland DE (1970) The molecular basis of enzyme regulation. In: Boyer PD (ed) The enzymes, vol 1. Structure and control, 3rd edn. Academic, New York, pp 342–397

    Google Scholar 

  • Koshland DE, Neet KE (1968) The catalytic and regulatory properties of enzymes. Annu Rev Biochem 37:359–410

    Article  PubMed  CAS  Google Scholar 

  • Koshland DE, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  PubMed  CAS  Google Scholar 

  • Koskowski W (1926) The influence of histamine on the intestinal secretion of the dog. J Pharmacol 26:413–419

    CAS  Google Scholar 

  • Kowarski S, Blair-Stanek CS, Schachter D (1974) Active transport of zinc and identification of zinc binding protein in rat jejunal mucosa. Am J Physiol 226:401–407

    PubMed  CAS  Google Scholar 

  • Kraml J, Lojda Z (1977) Biochemistry and immunochemistry of membrane-bound enzymes. Acta Univ Carol [Med] (Praha), Monographia 77, Part 1, pp 83–94

    Google Scholar 

  • Kraml J, Koldovsky O, Heringova A, Jirsova V, Kacl K, Ledvina M, Pelichova H (1969) Characteristics of β -galactosidase in the mucosa of the small intestine of infant rats. Physicochemical properties. Biochem J 114:621–627

    PubMed  CAS  Google Scholar 

  • Kretchmer N, Latimer JS, Raul F, Berry K, Legum C, Sharp HL (1979) Sucrase and cellular development. In: Development of mammalian absorptive processes. Ciba Found Symp 70:117–130

    Google Scholar 

  • Kurganov BI (1978) Allosteric enzymes (in Russian). Nauka, Moskow

    Google Scholar 

  • Kushak RI, Zigure DR, Kopman EA (1973) Accumulation of glycine from dipeptides and equivalent amino acid mixtures in rats and chickens (in Russian). Izv Akad Nauk Latv SSR 5:97–104

    Google Scholar 

  • Lane AE, Silk BD A, Clark ML (1975) Absorption of two proline containing peptides by rat small intestine in vivo. J Physiol (London) 248:143–149

    CAS  Google Scholar 

  • Lauger P (1979) A channel mechanism for electrogenic ion pump. Biochim Biophys Acta 552:143–161

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (1975) Interaction within biological membranes. Endeavour 34:67–71

    Article  PubMed  CAS  Google Scholar 

  • Lee AG, Birdsall NJM, Metcalfe JC (1973) Measurement of fast laterial diffusion of lipids in vesicles and in biological membranes by 1H nuclear magnetic resonance. Biochemistry 12:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G (1974) Lipid-protein interactions in the structure of biological membranes. Sub-cell Biochem 3:167–248

    CAS  Google Scholar 

  • Leslie GI, Rowe PB (1972) Folate binding by the brush border membrane proteins of small intestinal epithelial cells. Biochemistry 11:1696–1703

    Article  PubMed  CAS  Google Scholar 

  • Leube W (1868) Über Verdauungsprodukte des Dünndarmsaftes. Centralbl Med Wiss 19:289–292

    Google Scholar 

  • Levin RJ (1979) Fundamental concepts of structure and function of the intestinal epithelium. In: Duthie HL, Wormsley KG (eds) Scientific basis of gastroenterology. Livingstone, Edinburgh, pp 308–337

    Google Scholar 

  • Lindberg T (1966) Studies on intestinal dipeptidases. Acta Physiol Scand 69 [Suppl 285]:1–38

    Google Scholar 

  • Lindberg T (1972) In: Peptide transport in bacteria and mammalian gut. Ciba Found Symp 4:91

    Google Scholar 

  • Lindberg T, Norén O, Sjöstrom H (1975) Peptidases in the intestinal mucosa. In: Matthews DH, Payne JW (eds) Peptide transport in protein nutrition. ASP, Amsterdam, pp 204–242

    Google Scholar 

  • Lindemann B, Solomon AK (1962) Permeability of luminal surface of intestinal mucosal cells. J Gen Physiol 45:801–810

    Article  PubMed  CAS  Google Scholar 

  • Lis MT, Crampton RF, Matthews DM (1971) Rates of absorption of a dipeptide and the equivalent free amino acid in various mammalian species. Biochim Biophys Acta 233:453–455

    Article  PubMed  CAS  Google Scholar 

  • Lojda Z (1974) Cytochemistry of enterocytes and other cells in the mucous membrane of the small intestine. In: Smyth DH (ed) Intestinal absorption. Plenum, London, pp 43–123

    Google Scholar 

  • Lojda Z (1976) The significance of histochemistry for the study of enzymes of the digestive tract (in Russian). In: Fucik M, Jablonska M et al. (eds) Digestive enzymes. Comm 1st bilateral symposium USSR-Czechoslovakia. Uzhgorod, pp 46–53

    Google Scholar 

  • Lojda Z, Frič P, Jodl J, Lojda L (1978) Progress in the peptidase hystochemistry of the gastrointestinal tract (in Russian). In: Kojecky Z (ed) Physiology and pathology of digestion. Comm 2nd bilateral symp CSSR-SSSR. Olomouci, pp 60–70

    Google Scholar 

  • London ES (1916) Physiology and pathology of digestion (in Russian). Practicheskaya Medizina, Petrograd

    Google Scholar 

  • Long JF, Brooks FP (1965) Relation between inhibition of gastric secretion and absorption of fatty acid. Am J Physiol 209:447–451

    PubMed  CAS  Google Scholar 

  • Louvard D, Maroux S, Baratti J, Desnuelle P, Mutaftschiev S (1973) On the preparation and some properties of closed membrane vesicles from hog duodenal and jejunal brush border. Biochim Biophys Acta 291:747–763

    Article  PubMed  CAS  Google Scholar 

  • Louvard D, Maroux S, Vannier Ch, Desnuelle P (1975 a) Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100. Biochim Biophys Acta 325:236–248

    Google Scholar 

  • Louvard D, Maroux S, Desnuelle P (1975 b) Topological studies on the hydrolases bound to the intestinal brush border membrane. II. Interactions of free and bound aminopeptidase with a specific antibody. Biochim Biophys Acta 389:389–400

    Article  PubMed  CAS  Google Scholar 

  • Louvard D, Semeriva M, Maroux S (1976) The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabelling. J Mol Biol 106:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Lucas ML, Blair JA (1978) The magnitude and distribution of the acid microclimate in proximal jejunum and its relation to luminal acidification. Proc R Soc (Lond) 200:27–41

    Article  CAS  Google Scholar 

  • Lucas ML, Schneider W, Haberich F J, Blair JA (1975) Direct measurement by pH-micro-electrode of the pH microclimate in rat proximal jejunum. Proc R Soc (Lond) 192:39–48

    Article  CAS  Google Scholar 

  • Lucas ML, Cooper BT, Lei FH, Johnson IT, Holmes GKT, Blair JA, Cooke WT (1978) Acid microclimate in coeliac and Crohn’s disease: a model for folate malabsorption. Gut 19:735–742

    Article  PubMed  CAS  Google Scholar 

  • MacDonald I, Turner LJ (1968) Serum-fructose levels after sucrose or its constituent monosaccharides. Lancet 1:841–843

    Article  PubMed  CAS  Google Scholar 

  • Maestracci D (1976) Enzymic solubilization of the human intestinal brush border membrane enzymes. Biochim Biophys Acta 433:449:481

    Google Scholar 

  • Maestracci D, Preiser H, Hedges T, Schmitz J, Crane RK (1975) Enzyme of the human intestinal brush border membrane. Identification after gel electrophoretic separation. Biochim Biophys Acta 382:147–156

    Article  PubMed  CAS  Google Scholar 

  • Malathi P, Ramaswamy K, Caspary WF, Crane RK (1973) Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. Biochim Biophys Acta 307:613–626

    Article  PubMed  CAS  Google Scholar 

  • Mali R (1886) Chemistry of digestive fluids and digestion (in Russian). In: Herman L (ed) Physiology manual, vol 5. St. Petersburg

    Google Scholar 

  • Marchesi VT, Furthmayr H, Tomita M (1976) The red cell membrane. Annu Rev Biochem 45:667–698

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Chizmadzhev YuA (1974) Induced ion transport (in Russian). Nauka, Moskow

    Google Scholar 

  • Maroux S, Louvard D (1976) On the hydrophobic part of aminopeptidase and maltase which bind the enzyme to the intestinal brush border membrane. Biochim Biophys Acta 419:189–195

    Article  PubMed  CAS  Google Scholar 

  • Maroux S, Baratti J, Desnuelle P (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246:5031–5039

    PubMed  CAS  Google Scholar 

  • Maroux S, Louvard D, Baratti J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta 321:282–295

    PubMed  CAS  Google Scholar 

  • Maroux S, Louvard D, Desnuelle P (1975) The intestinal brush border aminopeptidase (β-naphthyl amidase) as a model of enzyme bound to the surface of a membrane. Proceedings of the tenth FEBS meeting. Federation of European Biochemical Societies. Pergamon, Oxford, pp 55–69

    Google Scholar 

  • Marrs TC, Addison JM, Burston D, Matthews DM (1975) Changes in plasma amino acid concentrations in man after ingestion of an amino acid mixture simulating casein, and a tryptic hydrolysate of casein. Br J Nutr 34:259–265

    PubMed  CAS  Google Scholar 

  • Martin BF, Jacoby F (1949) Diffusion phenomenon complicating the histochemical reaction for alkaline phosphatase. J Anat 83:351–363

    PubMed  CAS  Google Scholar 

  • Masevich CH, Ugolev AM, Zabelinski EK, Kisily NP (1975) Lumenal and membrane hydrolysis of starch in some diseases of the small intestine. Am J Gastroenterol 63:299–306

    Google Scholar 

  • Mathan VI, Babior BM, Donaldson RM (1974) Kinetics of the attachment of intrinsic factor-bound cobamides to ileal receptors. J Clin Invest 54:598–608

    Article  PubMed  CAS  Google Scholar 

  • Matlocha Z, Kojezky Z (1976) Amylase adsorption of small intestinal mucosa in prenatal time (in Russian). In: Fucik M, Jablonska M (eds) Digestive enzymes. Comm 1st bilateral symp USSR-Czechoslovakia. Uzghorod, pp 101–103

    Google Scholar 

  • Matthews DM (1972) Rates of peptide uptake by small intestine. In: Peptide transport in bacteria and mammalian gut. Ciba Found Symp 4:71–88

    Google Scholar 

  • Matthews DM (1975 a) Intestinal transport of peptides. In: Csâky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 95–111

    Google Scholar 

  • Matthews DM (1975 b) Absorption of peptides by mammalian intestine. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. ASP, Amsterdam, pp 61–146

    Google Scholar 

  • Matthews DM (1977) Introduction. In: Peptide transport and hydrolysis. Ciba Found Symp 50:5–14

    Google Scholar 

  • Matthews DM, Payne JW (1975) Peptides in the nutrition of microorganisms and peptides in relation to animal nutrition. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. ASP, Amsterdam, pp 1–60

    Google Scholar 

  • Matthews DM, Adibi SA (1976) Peptide absorption. Gastroenterology 71:151–161

    CAS  Google Scholar 

  • Matthews DM, Craft LL, Crampton RF (1968 a) Intestinal absorption of saccharides and peptides. Lancet 2:49

    Article  PubMed  CAS  Google Scholar 

  • Matthews DM, Craft LL, Geddes DM, Wise SJ, Hyde CW (1968b) Absorption of glycine and glycine peptides from the small intestine of the rat. Clin Sci 35:415–424

    PubMed  CAS  Google Scholar 

  • Matthews DM, Lis MT, Cheng B, Crampton RF (1969) Observations on the intestinal absorption of some oligopeptides of methionine and glycine in the rat. Clin Sci 37:751–764

    PubMed  CAS  Google Scholar 

  • Matthews DM, Crampton RF, Lis MT (1971) Sites of maximal intestinal absorptive capacity for amino acids and peptides: evidence for an independent peptide uptake system or systems. J Clin Pathol 24:882–883

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh TJ, Waldbilling RC, Robertson JD (1977) The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim Biophys Acta 466:209–230

    Article  PubMed  CAS  Google Scholar 

  • McMichael HB, Webb J, Dawson AM (1966) The absorption of maltose and lactose in man. Clin Sci 33:135–145

    Google Scholar 

  • McNurlan MA, Garlick PJ (1980) Contribution of rat liver and gastrointestinal tract to whole body protein synthesis in the rat. Biochem J 186:381–383

    PubMed  CAS  Google Scholar 

  • Meister A (1973) On the enzymology of amino acid transport. Science 180:33–39

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Tate SS, Ross LL (1976) Membrane bound γ-glutamyl transpeptidase. In: Martinosi A (ed) The Enzymes of biological membranes, vol 3. Plenum, New York, pp 315–347

    Google Scholar 

  • Meister A, Tate SS, Thompson GA (1977) The function of the γ-glutamyl cycle in the transport of amino acids and peptides. In: Peptide transport and hydrolysis. Ciba Found Symp 50:123–138

    Google Scholar 

  • Miller D, Crane RK (1961 a) The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis. Biochim Biophys Acta 52:281–293

    Article  PubMed  CAS  Google Scholar 

  • Miller D, Crane RK (1961 b) The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of the intestinal epithelial cells. Biochim Biophys Acta 52:293–298

    Article  PubMed  CAS  Google Scholar 

  • Miller D, Crane RK (1963) The digestion of carbohydrates in the small intestine. Am J Clin Nutr 12:220–227

    CAS  Google Scholar 

  • Milne HD (1974) Hereditary disorders of intestinal transport. In: Smyth DH (ed) Intestinal absorption. Plenum, London, p 961

    Google Scholar 

  • Mityushova NM (1970) Some problems of the method of isolation of the brush border (in Russian). In: Ugolev AM (ed) Physiology and pathology of the small intestine. Proc All-Union congr gastroenterol. Riga, pp 18–20

    Google Scholar 

  • Monod J, Changeux J-P, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  PubMed  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions; a plausible model. J Mol Biol 12:88–118

    Article  PubMed  CAS  Google Scholar 

  • Moog F (1979) The differentiation and redifferentiation of the intestinal epithelium and its brush border membrane. In: Development of mammalian absorptive processes. Ciba Found Symp 70:31–44

    Google Scholar 

  • Moog F, Grey RD (1967) Spatial and temporal differentiation of alkaline phosphatase on the intestinal villi of the mouse. J Cell Biol 32:C1–C5

    Article  PubMed  CAS  Google Scholar 

  • Mooseker MS (1974) Brush border motility: microvillar contraction in isolated brush border membrane. J Cell Biol 63:231 a

    Google Scholar 

  • Mooseker MS, Tilney LG (1975) Organization of an actin filament-membrane complex: filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67:725–743

    Article  PubMed  CAS  Google Scholar 

  • Mooseker MS, Pollard TD, Fujiwara K (1978) Characterization and localization of myosin in the brush border of intestinal cells. J Cell Biol 79:444–453

    Article  PubMed  CAS  Google Scholar 

  • Mooz R, Noack R, Friedrich M, Roshchina GM, Smirnova LF, Timofeeva NM, Ugolev AM (1978) Localization of hydrolysis of dipeptides in the small intestine determined on the basis of anoxic criterion (in Russian). Izv Akad Nauk SSSR [Biol] 6:872–881

    Google Scholar 

  • Morris IG (1974) Immunological proteins. In: Smyth DH (ed) Intestinal absorption. Plenum, London, pp 483–540

    Google Scholar 

  • Mosimann H, Semenza G, Sund H (1973) Hydrodynamic properties of the sucrase-isomal-tase complex from rabbit small intestine. Eur J Biochem 36:489–494

    Article  PubMed  CAS  Google Scholar 

  • Mothes Th, Müller F (1979) On the Na+-dependence of 3–0-methyl-D-glucose transport in the isolated rabbit small intestine, perfused through the lumen and the vascular bed. In: Energetics and regulation of membrane transport, Symposium, Prague

    Google Scholar 

  • Müller F, Dettmer D, Remke H, Hartenstein H, Luppa D (1972) Intestinaler Monosac-charid-Transport. Wiss Z Karl Marx Univ Leipzig Math Naturwiss 21:536–543

    Google Scholar 

  • Murer H, Hopfer U, Kinne R (1978) Molecular evidence for the sodium gradient hypothesis. In: Varro V, Balint GA (eds) Current views in gastroenterology. Hung Soc Gastroenterol, Budapest, pp 77–91

    Google Scholar 

  • Nachlas MM, Monis B, Rosenblatt D, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7:261–264

    Article  PubMed  CAS  Google Scholar 

  • Newey H, Smyth DH (1957) Intestinal absorption of dipeptides. J Physiol (London) 135:43–44P

    CAS  Google Scholar 

  • Newey H, Smyth DH (1959) The intestinal absorption of some dipeptides. J Physiol (London) 145:48–56

    CAS  Google Scholar 

  • Newey H, Smyth DH (1960 a) Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol (London) 152:367–380

    CAS  Google Scholar 

  • Newey H, Smyth DH (1960 b) Absorption rates of glycine and glycyl-glycine. J Physiol (London) 152:70–71P

    Google Scholar 

  • Newey H, Smyth DH (1961) Two-stages transfer of glycine by the intestine in vitro. J Physiol (London) 157:15–16P

    Google Scholar 

  • Newey H, Smyth DH (1962) Cellular mechanisms in intestinal transfer of amino acids. J Physiol (London) 164:527–551

    CAS  Google Scholar 

  • Newey H, Smyth DH (1964) Effects of sugars on intestinal transfer of amino acids. Nature 202:400–401

    Article  PubMed  CAS  Google Scholar 

  • Nikitina AA, Zaripov BZ, Varro V, Ugolev AM (1979) Intestinal hormones and inhibition of enzyme and transport function of enterocytes membrane (in Russian). Dokl Akad Nauk SSSR 249:500–503

    PubMed  CAS  Google Scholar 

  • Nikolsky NN (1977) Absorption of sugars (in Russian). In: Physiology of absorption. Nauka, Leningrad, pp 249–284

    Google Scholar 

  • Nilsson O, Daliner G (1977) Transverse asymmetry of phospholipids in subcellular membranes of rat liver. Biochim Biophys Acta 464:453–458

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Takesue Y (1978 a) Localization of intestinal sucrase-isomaltase complex on the microvillous membrane by electron microscopy using nonlabelled antibodies. J Cell Biol 79:516–525

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Takesue Y (1978 b) Electron microscope studies on Triton-solubilized sucrase from rabbit small intestine. J Ultrastruct Res 62:1–12

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Takato O, Takesue Y (1968) Electron microscope studies on the structure of rabbit intestinal sucrase. J Mol Biol 37:441–444

    Article  PubMed  CAS  Google Scholar 

  • Noack R, Friedrich M, Proll J, Uhlig J (1975) Verdauung und Resorption von Proteinen. Nahrung 19:891–901

    Article  PubMed  CAS  Google Scholar 

  • Noim AG, Nurks EE, Ugolev AM (1970) Characterization of the digestive and transport functions of the intestinal epithelium in fed and fasting states (in Russian). In: Ugolev AM (ed) Physiology and pathology of the small intestine. Proc of the All-Union congr gastroenterol, Riga, pp 78–80

    Google Scholar 

  • Norén O, Sjöstrom H, Svensson B, Jeppesen L, Staun M, Josefsson L (1977) Intestinal brush border peptidases. In: Peptide transport and hydrolysis. Ciba Found Symp 50:177–191

    Google Scholar 

  • O’Cuinn G, Donlon J, Fottrell PF (1974) Similarities between one of the multiple forms of peptide hydrolase purified from brush border and cytosol fractions of guinea pig intestinal mucosa. FEBS Letters 39:225–228

    Article  PubMed  Google Scholar 

  • O’Cuinn G, Fottrell PF (1975) Purification and characterization of an aminoacyl proline hydrolase from guinea-pig intestinal mucosa. Biochim Biophys Acta 391:388–395

    PubMed  Google Scholar 

  • Ogston AG, Michel CC (1978) General description of passive transport of neural solute and solvent through membranes. Prog Biophys Mol Biol 34:197–217

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo A, Langerman N, Kaplan MM (1974) Rat liver alkaline phosphatase. Purification and properties. J Biol Chem 249:7174–7180

    CAS  Google Scholar 

  • Ostrovski DN (1977) Molecular organization of biological membranes (in Russian). In: Beker ME, Dubur Gja (eds) Biomembranes. Structure, functions and methods of investigation. Zinatne, Riga, pp 7–27

    Google Scholar 

  • Ovchinnikov YuA, Ivanov VT (1977) Recent development in the structure-functional studies of peptide ionofores. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport. FEBS symposium 42. Springer, Berlin Heidelberg New York, pp 123–146

    Chapter  Google Scholar 

  • Overton J, Eichholz A, Crane RK (1965) Studies on the organization of the brush border in intestinal epithelial cells. II. Fine structure of fractions of tris-disrupted hamster brush borders. J Cell Biol 26:693–706

    Article  PubMed  CAS  Google Scholar 

  • Padykula HA (1962) Recent functional interpretations of intestinal morphology. Fed Proc 21:873–879

    PubMed  CAS  Google Scholar 

  • Parsons DS (ed) (1975) Biological membranes. Twelve assays on their organization, properties, and functions. Clarendon, Oxford

    Google Scholar 

  • Parsons DS (1976) Closing summary (app 2, unstirred layer). In: Robinson JWL (ed) Intestinal ion transport. MTP Press, London, pp 429–430

    Google Scholar 

  • Parsons DS (1977) In: Peptide transport and hydrolysis. Ciba Found Symp 50:327

    Google Scholar 

  • Parsons DS, Prichard JS (1965) Hydrolysis of disaccharides during absorption by the perfused small intestine of amphibia. Nature 208:1097–1098

    Article  PubMed  CAS  Google Scholar 

  • Parsons DS, Prichard JS (1968) Disaccharide absorption by amphibian small intestine in vitro. J Physiol (London) 199:137–150

    CAS  Google Scholar 

  • Parsons DS, Prichard JS (1971) Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine. J Physiol (London) 212:299–319

    Google Scholar 

  • Pattus F, Verger R, Desnuelle P (1976) Comparative study of the interaction of the trypsin and detergent form of the intestinal aminopeptidase with liposomes. Biochem Biophys Res Commun 69:718–723

    Article  PubMed  CAS  Google Scholar 

  • Pavlov IP (1911–1912) Lectures for students of military-medical academy (in Russian). In: Airapetjants E Sh (ed) (1952) Complete works, vol 5, 2nd edn. Izd Akad Nauk SSSR, Moscow, pp 11–275

    Google Scholar 

  • Payne JW (1972) Mechanisms of bacterial peptide transport. In: Peptide transport in bacteria and mammalian gut. Ciba Found Symp 4:17–32

    Google Scholar 

  • Payne JW (1977) Transport and hydrolysis of peptides by microorganisms. In: Peptide transport and hydrolysis. Ciba Found Symp 50:305–325

    Google Scholar 

  • Peptide transport and hydrolysis (1977) Ciba Found Symp 50

    Google Scholar 

  • Peters TJ (1970) The subcellular localisation of di- and tri-peptide hydrolase activity in guinea pig small intestine. Biochem J 120:195–203

    PubMed  CAS  Google Scholar 

  • Peters TJ (1975) The subcellular localisation of intestinal peptide hydrolases. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. ASP, Amsterdam, pp 243–267

    Google Scholar 

  • Peters K, Richards FM (1977) Chemical across-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem 46:523–551

    Article  PubMed  CAS  Google Scholar 

  • Pierce HB, Nasset ES, Murlin JR (1935) Enzyme production in a transplanted loop of the upper jejunum. J Biol Chem 108:239–250

    CAS  Google Scholar 

  • Piggott CO, Fottrell PF (1975) Purification and characterization from guinea-pig intestinal mucosa of two peptide hydrolases which preferentially hydrolyse dipeptides. Biochim Biophys Acta 391:403–409

    PubMed  CAS  Google Scholar 

  • Pitot HC, Yatvin MB (1973) Interrelationships of mammalian hormones and enzymes levels in vivo. Physiol Rev 53:228–325

    PubMed  CAS  Google Scholar 

  • Plaut A (1972) A review of secretory immune mechanisms. Am J Clin Nutr 25:1344–1350

    PubMed  CAS  Google Scholar 

  • Pritchard PJ, Porteous JW (1977) Steady-state metabolism and transport of D-glucose by rat small intestine in vitro. Biochem J 164:1–14

    PubMed  CAS  Google Scholar 

  • Prusiner S, Doak CW, Kirk G (1976) A novel mechanism for group translocation: substrate-product reutilization by γ-glutamyl transpeptidase in peptide and amino acid transport. J Cell Physiol 89:853–863

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A, Semenza G (1976) Partial amino acid sequences around the essential carboxy-late in the active sites of intestinal sucrase and isomaltase. J Biol Chem 251:3250–3253

    PubMed  CAS  Google Scholar 

  • Quinn PJ (1976) The molecular biology of cell membranes, vol X. University Park Press, Baltimore, p 229

    Google Scholar 

  • Racker E (1976) A new look at mechanisms in bioenergetics. Academic, New York

    Google Scholar 

  • Rakhimov KR (1965) Amylolytic activity of the rat intestine depending on functional state of the digestive organs (in Russian). In: Problems of physiology of man and animals under the conditions of hot climate. Tashkent, pp 159–163

    Google Scholar 

  • Ramaswamy K, Malathi P, Caspary WF, Crane RK (1974) Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system. Biochim Biophys Acta 345:39–48

    Article  PubMed  CAS  Google Scholar 

  • Ramaswamy K, Malathi P, Crane RK (1976) Demonstration of hydrolase-related glucose transport in brush border membrane vesicles prepared from guinea pig small intestine. Biochem Biophys Res Comm 68:162–168

    Article  PubMed  CAS  Google Scholar 

  • Remke H, Schellenberger W, Mothes T, Müller F (1978) Zum Mechanismus der Na+-abhängigen Monosaccharidresorption: Kompartimentierung des resorbierten Na+ unter in vitro-Bedingungen. Acta Biol Med Ger 37:49–57

    PubMed  CAS  Google Scholar 

  • Rhodes B, Arvanitakis C, Folscroft J (1977) Intestinal hydrolysis of disaccharides and peptides: comparison of hydrolases and perfusion studies. In: Peptide transport and hydrolysis. Ciba Found Symp 50:245–263

    Google Scholar 

  • Riklis E, Quastel H (1958) Effect of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem 36:347–362

    Article  PubMed  CAS  Google Scholar 

  • Robinson GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic, New York

    Google Scholar 

  • Robinson JB (1975) Principles of membrane structure. In: Parsons DS (ed) Biological membranes. Twelve assays on their organization, properties, and functions. Clarendon, Oxford, pp 33–57

    Google Scholar 

  • Robinson JWL (1970) Comparative aspects of the response of the intestine to its ionic environment. Comp Biochem Physiol 34:641–655

    Article  PubMed  CAS  Google Scholar 

  • Robinson JWL (ed) (1976) Intestinal ion transport. MTP Press, London

    Google Scholar 

  • Rothfield LI (ed) (1971) Structure and functions of biological membranes. Academic, London

    Google Scholar 

  • Rothman JE, Lenard J (1977) Membrane asymmetry. The nature of membrane asymmetry provides clues to the puzzle of how membranes are assembled. Science 195:743–753

    Article  PubMed  CAS  Google Scholar 

  • Rubino A, Guandalini S (1977) Dipeptide transport in the intestinal mucosa of developing rabbits. In: Peptide transport and hydrolysis. Ciba Found Symp 50:61–70

    Google Scholar 

  • Rubino A, Field M, Shwachman H (1971) Intestinal transport of amino acid residues of peptides. 1. Influx of the glycine residue of glycyl-1-proline across mucosal border. J Biol Chem 246:3542–3548

    PubMed  CAS  Google Scholar 

  • Ruttloff H, Noack R, Friese R, Schenk G (1964) Zur Lokalisation von Carbohydrasen im Bürstensaum der Rattenmucosa. Biochem Zeitschr 341:15–22

    CAS  Google Scholar 

  • Rybakova GS, Zlatkina AR, Ugolev AM (1973) A new method for determination of reserve functional capacities of the small intestine (in Russian). Theraupeut Arch 45:44–47

    CAS  Google Scholar 

  • Sackmann E, Träuble H, Galla H-J, Overath P (1973) Lateral diffusion, protein mobility, and phase transitions in Escherichia coli membranes. A spin label study. Biochemistry 12:5360–5369

    Article  PubMed  CAS  Google Scholar 

  • Saidel LJ, Edelstein I (1974) Hydrolysis and absorption of proline dipeptides across the wall of sacs prepared from everted rat intestine. Biochim Biophys Acta 367:75–80

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (1978) Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515:209–237

    PubMed  CAS  Google Scholar 

  • Schedl HP, Clifton JA (1961) Kinetics of intestinal absorption in man: normal subjects and patients with sprue. J Clin Invest 40:1079–1080

    Google Scholar 

  • Schreier S (1978) Spin labels in membranes. Problems and practice. Biochim Biophys Acta 515:395–436

    PubMed  CAS  Google Scholar 

  • Schultz SG (1979) Transport across small intestine. In: Giebisch G (ed) Membrane transport in biology, vol IVB, Transport organs. Springer, Berlin Heidelberg New York, pp 749–780

    Google Scholar 

  • Segrest JP, Feldmann RJ (1974) Membrane proteins: amino acid sequence and membrane penetration. J Mol Biol 87:853–858

    Article  PubMed  CAS  Google Scholar 

  • Semenza G (1968) Intestinal oligosaccharidases and disaccharidases. In: Code CF (ed) Bile; digestion; ruminai physiology (Handbook of physiology, sec 6. Alimentary canal, vol V). American Physiological Society, Washington, pp 2543–2566

    Google Scholar 

  • Semenza G (1977 a) Glucosidases of small intestinal brush border. In: Farber E, Sigano H (eds) Pathophysiology of carcinogenesis in digestive organs. University Park Press, Baltimore, pp 207–220

    Google Scholar 

  • Semenza G (1977 b) Intestinal membrane-bound carbohydrase. In: Enzymology and its clinical use. Acta Universitatis Carolinae monographia 77, part I. University Karlova, Prague, pp 21–32

    Google Scholar 

  • Semenza G (1977 c) In: Peptide transport and hydrolysis. Ciba Found Symp 50:119

    Google Scholar 

  • Semenza G (1979 a) Mode of insertion of sucrase-isomaltase complex in the intestinal brush border membrane: implications for the biosynthesis of this stalked intrinsic membrane protein. In: Development of mammalian absorptive processes. Ciba Found Symp 70:133–144

    Google Scholar 

  • Semenza G (1979 b) The mode of anchoring of sucrase-isomaltase to the small intestinal brush-border membrane and its biosynthetic implication. In: Rapoport S (ed) Proceed 12th FEBS meeting, vol 53, Pergamon, Oxford, pp 21–28

    Google Scholar 

  • Semenza G (1979 c) Structure-function relationships in the small intestinal brush border membrane: a site of the merging of biochemistry, physiology and nutrition which Bottazzi indicated two thirds of a century ago. Bull Soc Ital Biol Sperimental 55:597–635

    CAS  Google Scholar 

  • Semenza G, Carafoli E (eds) (1977) Biochemistry of membrane transport. FEBS Symposium 42. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Semenza G, Kolinska J (1968) An “enzyme-substrate chromatography”: intestinal sucrase-isomaltase on sephadex G-200. In: Peeters H (ed) Protides of the biological fluids, Proc 15th coll. Elsevier, Amsterdam, pp 581–583

    Google Scholar 

  • Semenza G, Auricchio S, Rubino A (1965) Multiplicity of human intestinal disaccharidases. I. Chromatographic separation of maltases and two lactases. Biochim Biophys Acta 96:487–497

    PubMed  CAS  Google Scholar 

  • Shlygin GK (1952) Secretion of intestinal enzymes (in Russian). Adv Modern Biol 33:14–32

    CAS  Google Scholar 

  • Shlygin GK (1964) The fundamental characteristics of the enzymatic processes in the intestine (in Russian). Vestn Akad Med Nauk SSSR 5:21–31

    Google Scholar 

  • Shnol SE, Ermakova EA, Frank GM (1979) Diffusive limitations and evolutionary sense of the formation intracellular structures (in Russian). In: Ivanitsky GR (ed) Methodological and theoretical problems of biophysics. Nauka, Moscow, pp 90–99

    Google Scholar 

  • Sigrist H, Ronner P, Semenza G (1975) A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Biochim Biophys Acta 406:433–446

    Article  PubMed  CAS  Google Scholar 

  • Silk DBA (1977) Amino acid and peptide absorption in man. In: Peptide transport and hydrolysis. Ciba Found Symp 50:15–29

    Google Scholar 

  • Silk DBA, Clark ML, Marrs TC, Addison JM, Burston D, Matthews DM, Clegg KM (1975) Jejunal absorption of an amino acid mixture simulating casein and an enzymic hydrolysate of casein prepared for oral administration to normal adults. Br J Nutr 33:95–100

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 43:805–833

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ (1977) Thermodynamics, the structure of integral membrane proteins, and transport. J Supramol Struct 6:313–323

    Article  PubMed  CAS  Google Scholar 

  • Skillen AW, Rahbani-Nobar M (1979) ATPase and alkaline phosphatase activities of chick and rat small intestinal mucosa. Biochim Biophys Acta 571:86–93

    PubMed  CAS  Google Scholar 

  • Slaby J, Lojda Z, Kraml J, Kolinska J (1977) Immunohistochemical localization of intestinal glycosidases. Acta Univ Carol [Med] (Praha), Monographia 77, Part 1:105–112

    Google Scholar 

  • Smirnova LF (1978) On a decrease in competition in the processes of absorption between amino acids released from dipeptides (in Russian). In: Biological bases for a rational use of the animal and plant world. Zinatne, Riga, pp 55–57

    Google Scholar 

  • Smirnova LF, Ugolev AM (1972) Relationship between transport of some glycine-containing peptides and equivalent mixtures of constituent amino acids in the rat small intestine (in Russian). Dokl Akad Nauk SSSR 206:763–765

    PubMed  CAS  Google Scholar 

  • Smirnova LF, Timofeeva NM, Ugolev AM (1976) On the subcellular localization of dipeptide hydrolysis in small intestine (in Russian). Dokl Akad Nauk SSSR 228:992–994

    PubMed  CAS  Google Scholar 

  • Smithson KW, Gray GM (1977) Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush border aminopeptidase. J Clin Invest 60:665–674

    Article  PubMed  CAS  Google Scholar 

  • Smyth DH (1961) Intestinal absorption. Proc Soc Med 54: 769–773

    CAS  Google Scholar 

  • Smyth DH (1970) Mechanisms in intestinal transfer. J Clin Pathol 23:1–6

    Article  PubMed  CAS  Google Scholar 

  • Smyth DH (ed) (1974) Intestinal absorption. Plenum, London

    Google Scholar 

  • Smyth DH, Wright EM (1966) Streaming potentials in the rat small intestine. J Physiol (London) 182:591–602

    CAS  Google Scholar 

  • Solomon AK (1968) Characterization of biological membranes by equivalent pores. J Gen Physiol 51:335S–364S

    PubMed  CAS  Google Scholar 

  • Steck TL (1974) The organization of proteins in the human red blood cell membrane. J Cell Biol 62:1–20

    Article  PubMed  CAS  Google Scholar 

  • Storelli C, Vögeli H, Semenza G (1972) Reconstitution of a sucrase-mediated sugar transport system in lipid membranes. FEBS Letters 24:287–292

    Article  PubMed  CAS  Google Scholar 

  • Straub FB (1960) Biochemie. Hungarian Akademie of Siences, Budapest

    Google Scholar 

  • Sussman HM, Gottlieb AJ (1969) Human placental alkaline phosphatase. II. Molecular and subunits properties of the enzyme. Biochim Biophys Acta 194:170–179

    PubMed  CAS  Google Scholar 

  • Tagesson Ch, Sjödahl R, Thoren B (1978) Passage of molecules through the wall of the gastrointestinal tract. I. A simple experimental model. Scand J Gastroenterol 13:519–524

    Article  PubMed  CAS  Google Scholar 

  • Takagi R, Sasaki T (1979) Phospholipid-deacylating enzyme of rat small intestinal mucosa. J Biochem 85:29–39

    PubMed  CAS  Google Scholar 

  • Takesue Y (1975) Purification and properties of leucine β-naphthylamidase from rabbit small-intestinal mucosal cells. J Biochem 77:103–115

    PubMed  CAS  Google Scholar 

  • Takesue Y, Kashiwagi T (1969) Solubilization and behavior toward to sephadex of rabbit intestinal sucrase. J Biochem (Tokyo) 65:427–434

    CAS  Google Scholar 

  • Takesue Y, Nishi Y (1978) Topographical studies on intestinal microvillous leucine beta-naphthylamidase on the outer membrane surface. J Membr Biol 39:285–296

    Article  PubMed  CAS  Google Scholar 

  • Takesue Y, Kashiwagi T, Yoshida TO (1967) Purification and properties of invertase from rabbit small intestine. 7th Int congr biochemistry V:920 (abstr)

    Google Scholar 

  • Taylor AN, Wasserman RH (1970) Immunofluorescent localization of vitamin D-dependent calcium-binding protein. J Histochem Cytochem 18:107–115

    Article  PubMed  CAS  Google Scholar 

  • Thomson ABR, Dietschy JM (1977) Derivation of the equations that describe the effects of unstirred water layers on the kinetics parameters of active transport processes in the intestine. J Theor Biol 64:277–294

    Article  PubMed  CAS  Google Scholar 

  • Toskes PP, Deren JJ (1973) Vitamin B12 absorption and malabsorption. Gastroenterology 65:662–683

    PubMed  CAS  Google Scholar 

  • Troshin AS (ed) (1975) Structure and functions of biological membranes (in Russian). Nauka, Moscow

    Google Scholar 

  • Tsuboi KK, Schwarts SM, Burill PH, Kwong LK, Sunshine P (1979) Sugar hydrolases of the infant rat intestine and their arrangement on the brush border membrane. Biochim Biophys Acta 554:234–248

    Article  PubMed  CAS  Google Scholar 

  • Ugolev AM (1960a) On the existence of membrane (contact) digestion (in Russian). Bull Exp Biol Med 49(1):12–17

    Article  CAS  Google Scholar 

  • Ugolev AM (1960 b) Influence of the surface of the small intestine on enzymatic hydrolysis of starch by enzymes. Nature 188:588–589

    Article  PubMed  CAS  Google Scholar 

  • Ugolev AM (1963) Membrane (contact) digestion (in Russian). Izd Akad Nauk SSSR, Moscow

    Google Scholar 

  • Ugolev AM (1965) Membrane (contact) digestion. Physiol Rev 45:555–595

    PubMed  CAS  Google Scholar 

  • Ugolev AM (1968) Physiology and pathology of membrane digestion. Plenum, New York

    Google Scholar 

  • Ugolev AM (1972 a) Membrane digestion. Polysubstrate processes, organization and regulation (in Russian). Nauka, Leningrad

    Google Scholar 

  • Ugolev AM (1972 b) Membrane digestion and peptide transport. In: Peptide transport in bacteria and mammalian gut. Ciba Found Symp 4:123–143

    Google Scholar 

  • Ugolev AM (1974) Membrane (contact) digestion. In: Symth DH (ed) Intestinal absorption. Plenum, London, pp 285–362

    Google Scholar 

  • Ugolev AM (1975) Chemical and physiological problems of production and use of synthetic food. Carbohydrate nutrition (in Russian). Zinatne, Riga

    Google Scholar 

  • Ugolev AM (1976) Chemical and physiological problems of production and use of synthetic food:Protein nutrition (in Russian). Zinatne, Riga

    Google Scholar 

  • Ugolev AM (1977) Structural and functional integration of membrane hydrolysis and transport processes (hypothesis of “permeome”) (in Russian). Fiziol Zh SSSR 63: 181–190

    PubMed  CAS  Google Scholar 

  • Ugolev AM (1978) The integration of enzymic and transport processes at the brush border surface. In: Varro V, Balint GA (eds) Current views of gastroenterology. Hungarian Soc Gastroenterol, Budapest, pp 93–101

    Google Scholar 

  • Ugolev AM, De Laey P (1973) Membrane digestion. A concept of enzymic hydrolysis on cell membranes. Biochim Biophys Acta 300:105–128

    PubMed  CAS  Google Scholar 

  • Ugolev AM, Gozitte IK (1972) Digestive functions of the isolated intestinal cells and their regulation. In: Heinz E (ed) Na-linked transport of organic solutes, Int congr physiol sci, Munich. Springer, Berlin Heidelberg New York, p 573

    Google Scholar 

  • Ugolev AM, Koltushkina GG (1975) Membrane digestion and enzyme apparatus of microvilli (in Russian). In: Structure and functions of biological membranes. Nauka, Moscow, pp 276–306

    Google Scholar 

  • Ugolev AM, Marauska MK (1964) Data on the physiology of membrane digestion. Comparison of hydrolysis of starch in the intestine and in vitro spectrophotometry of iodine-starch complexes (in Russian). Bull Exp Biol Med 47:16–20

    Google Scholar 

  • Ugolev AM, Zigure DR, Nurks EE (1970) Accumulating preparation of mucosa — a new method of investigation on initial stages of the transport of substances through intestine cell (in Russian). Fiziol ZH SSSR 56:1638–1641

    PubMed  CAS  Google Scholar 

  • Ugolev AM, Gredin VG, Gruzdkov AA, De Laey P, Egorova VV, lezuitova NN, Koltushkina GG, Timofeeva NM, Tuljaganova ECh, Tsvetkova VA, Chernjakhovskaja MYu, Scherbakov GG (1975 a) Characterization of multisubstrate processes during digestion. (Data and hypothesis on the interaction and autoregulation of digestive and transport processes). Nahrung 4:299–318

    Google Scholar 

  • Ugolev AM, Gruzdkov AA, De Laey P, Egorova VV, lezuitova NN, Koltushkina GG, Timofeeva NM, Tulyaganova ECh, Tsvetkova VA, Chernyakhovskaya MYu, Shcherbakov GG (1975 b) Substrate interaction on the intestinal mucosa; a concept for the regulation of intestinal digestion. Br J Nutr 34:205–220

    PubMed  CAS  Google Scholar 

  • Ugolev AM, Gurman EG, Koltushkina GG (1976 a) The influence of the state of glucose transport system on some kinetic characteristics of membrane carbohydrases (γ-amylase and invertase) in the small intestinal mucosa (in Russian) Dokl Akad Nauk SSSR 213:1267–1269

    Google Scholar 

  • Ugolev AM, Loginov GI, Nurks EE, Smirnova LF (1976 b) Interaction of enzyme and transport systems in the digestive membrane. Wiss Z Humboldt Univ Berlin Math Naturwiss 25:45–49

    CAS  Google Scholar 

  • Ugolev AM, Nurks EE, Gurman EG (1976 c) Some features of kinetics of accumulation of the free glucose and glucose formed in the hydrolysis of disaccharides in accumulating preparations of rat small intestinal mucosa (in Russian). Dokl Akad Nauk SSSR 231:1018–1020

    PubMed  CAS  Google Scholar 

  • Ugolev AM, De Laey P, lezuitova NN (1977 a) Absorption of enzymes by cell membrane structure (on the example of enterocytes) under normal and pathological conditions. In: Horejsi J, Kraml J (eds) Enzymology and its clinical use. 19th Scient conf med fac Charles University. University Karlova, Praha, pp 5–19

    Google Scholar 

  • Ugolev AM, Mityushova NM, Egorova VV (1977 b) Regulatory properties of digestive enzymes and biology of polysubstrate digestive processes (in Russian). Zh Evol Biokhim Fiziol 13:589–599

    PubMed  CAS  Google Scholar 

  • Ugolev AM, Timofeeva NM, Smirnova LF, De Laey P, Gruzdkov AA, Iezuitova NN, Mityushova NM, Roshchina GM, Gurman EG, Gusev VM, Tsvetkova VA, Shcherbakov GG (1977 c) Membrane and intracellular hydrolysis of peptides: differentiation, role and interrelations with transport. In: Peptide transport and hydrolysis. Ciba Found Symp 50:221–243

    Google Scholar 

  • Ugolev AM, Parchkov EM, Egorova VV, Iezuitova NN, Mityushova NM, Smirnova LF, Timofeeva NM, Tsvetkova VA (1978) Distribution of some adsorbed and intrinsic intestinal enzymes between the mucosal cells of the small intestine and the apical glyco-calyx separated from them (in Russian). Dokl Akad Nauk SSSR 241:491–494

    PubMed  CAS  Google Scholar 

  • Ugolev AM, De Laey P, Iezuitova NN, Rakhimov KR, Timofeeva NM, Stepanova AT (1979 a) Membrane digestion and nutrient assimilation in early development. In: Development of mammalian absorptive processes. Ciba Found Symp 70:221–246

    Google Scholar 

  • Ugolev AM, Egorova VV, Iezuitova NN, Mityusova NM (1979b) Die regulatorischen Eigenschaften der Darmenzyme höherer und niederer Tiere als Adaptationsmechanismus der Verdauung und der Resorption. Nahrung 23:371–379

    Article  PubMed  CAS  Google Scholar 

  • Ugolev AM, Mityushova NM, Egorova VV, Gozite IK, Koltushkina GG (1979 c) Catalytic and regulatory properties of the triton and trypsin forms of the brush border hydrolases. Gut 20:737–742

    Article  PubMed  CAS  Google Scholar 

  • Ugolev AM, Smirnova LF, Iezuitova NN, Timofeeva NM, Mityushova NM, Egorova VV, Parshkov EM (1979d) Distribution of some adsorbed and intrinsic enzymes between the mucosal cells of the rat small intestine and the apical glycocalyx separated from them. FEBS Letters 104:35–38

    Article  PubMed  CAS  Google Scholar 

  • Ulshen MH, Grand RJ (1979) Site of substrate stimulation of jejunal sucrase in the rat. J Clin Invest 64:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Valenkevich LN (1973) Membrane hydrolysis of lipids in elderly and old age (in Russian). Clin Med 51:108–113

    CAS  Google Scholar 

  • Valenkevich LN, Morozov KA, Ugolev AM (1978) A relationship between cavital and membrane digestion in aging (in Russian). Fiziol Chel 4:77–85

    CAS  Google Scholar 

  • Vannier Ch, Louvard D, Maroux S, Desnuelle P (1976) Structural and topological homology between porcine intestinal and renal brush border aminopeptidase. Biochim Biophys Acta 455:185–199

    Article  PubMed  CAS  Google Scholar 

  • Vasseur M, Ferard G, Pousse A (1978) Rat intestinal brush border enzymes release by deoxycholate in vivo. Pflugers Arch 373:133–138

    Article  PubMed  CAS  Google Scholar 

  • Volkheimer G (1972) Persorption. Thieme, Stuttgart

    Google Scholar 

  • Volkheimer G (1974) Passage of particles through the wall of the gastrointestinal tract. Environ Health Perspect 9:215–225

    PubMed  CAS  Google Scholar 

  • Volkheimer G (1977) Persorption of particles; physiology and pharmacology. Adv Pharmacol Chemother 14:163–187

    Article  PubMed  CAS  Google Scholar 

  • Volkheimer G (1978) Persorption of carbohydrate particles. In: Varro V, Balint GA (eds) Current views in gastroenterology. Hung Soc Gastroenterol, Budapest, pp 77–91

    Google Scholar 

  • Wacker H, Semenza G (1977) A brush borderbound peptidase and amino acid transport. In: Peptide transport and hydrolysis. Ciba Found Symp 50:109–116

    Google Scholar 

  • Wahlqvist ML, Wilmshurst EG, Richardson EN (1978) The effect of chain length on glucose absorption and the related metabolic response. Am J Clin Nutr 31:1998–2001

    PubMed  CAS  Google Scholar 

  • Walker WA (1979) Gastrointestinal host defence: importance of gut closure in control of macromolecular transport. In: Development of mammalian absorptive processes. Ciba Found Symp 70:201–216

    Google Scholar 

  • Walker WA, Isselbacher KI (1974) Uptake and transport of macromolecules by the intestine: possible role in clinic disorders. Gastroenterology 67:531–550

    PubMed  CAS  Google Scholar 

  • Walker WA, Field M, Isselbacher KJ (1974) Specific binding of cholera toxin to isolated intestinal microvillous membranes. Proc Nat Acad Sci USA 71:320–324

    Article  PubMed  CAS  Google Scholar 

  • Wasserman RH (1974) Calcium absorption and calcium-binding protein synthesis: Solanum malacoxylon reverses strontium inhibition. Science 183:1092–1094

    Article  PubMed  CAS  Google Scholar 

  • Wasserman RH, Taylor AN (1971) Evidence for vitamin D induced calcium-binding protein in New World primates. Proc Soc Exp Biol Med 136:25–28

    PubMed  CAS  Google Scholar 

  • Wasserman RH, Taylor AN, Kallfelz FA (1966) Vitamin D and transfer of plasma calcium to intestinal lumen in chicks and rats. Am J Physiol 211:419–423

    PubMed  CAS  Google Scholar 

  • Wells GP, Nicholson JA, Peters TJ (1979) Subcellular localisation of di- and tripeptidases in guinea pig and rat enterocytes. Biochim Biophys Acta 569:82–88

    PubMed  CAS  Google Scholar 

  • Wilson DB (1978) Cellular transport mechanisms. Annu Rev Biochem 47:933–965

    Article  PubMed  CAS  Google Scholar 

  • Wilson PA, Dietschy JM (1974) The intestinal unstirred layer: its surface area and effect in active transport kinetics. Biochim Biophys Acta 363:112–126

    Article  PubMed  CAS  Google Scholar 

  • Wilson PA, Melmed KN, Hampe MMV, Holt S J (1978) Immunocytochemical study of the interaction of soubean trypsin inhibitor with rat intestinal mucosa. Gut 19:260–266

    Article  PubMed  CAS  Google Scholar 

  • Wilson TH (1962) Intestinal absorption. Saunders, Philadelphia

    Google Scholar 

  • Wilson TH, Wiseman G (1954) The use of sacs everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 123:116–125

    PubMed  CAS  Google Scholar 

  • Winne D (1976) Unstirred layer thickness in perfused rat jejunum in vivo. Experientia 32:1278–1279

    Article  PubMed  CAS  Google Scholar 

  • Winne D (1977) Correction of the apparent Michaelis constant, biased by an unstirred layer, if a passive transport component is present. Biochim Biophys Acta 464:118–126

    Article  PubMed  CAS  Google Scholar 

  • Winne D, Kopf S, Ulmer M-L (1979) Role of unstirred layer in intestinal absorption of phenylalanine in vivo. Biochim Biophys Acta 550:120–130

    Article  PubMed  CAS  Google Scholar 

  • Wiseman G (1964) Absorption from the intestine. Academic, London

    Google Scholar 

  • Wiseman G (1968) Absorption of amino acids. In: Intestinal absorption. American Physiological Society, Washington, pp 1277–1307 (Handbook of physiology, sec 6. Alimentary canal, vol III

    Google Scholar 

  • Wiseman G (1974) Absorption of protein digestion products. In: Intestinal absorption. Plenum, London, pp 363–481

    Google Scholar 

  • Wiseman G (1977) Site of intestinal dipeptide hydrolysis. J Physiol (London) 273:731–743

    CAS  Google Scholar 

  • Wojnarowska F, Gray GM (1975) Intestinal surface peptide hydrolases: identification and characterization of three enzymes from rat brush border. Biochim Biophys Acta 403:147–160

    PubMed  CAS  Google Scholar 

  • Woodley JF, Kenny AJ (1969) The presence of pancreatic proteases in particulate preparations of rat intestinal mucosa. Biochem J 115:18P

    Google Scholar 

  • Wright RD, Jennings MA, Florey HW, Lium R (1940) The influence of nerves and drugs on secretion by the small intestine and investigation of the enzymes in intestinal juice. Quart J Exp Physiol 30:73–120

    CAS  Google Scholar 

  • Yamashiro KM, Gray GM (1970) Separation and interrelationship of human intestinal sucrase and isomaltase. Gastroenterology 58:1056

    Google Scholar 

  • Zaripov BZ, Iezuitova NN, Ugolev AM (1978) Studies on the membrane digestion and transport of carbohydrates in Chronic experiments (in Russian). In: Physiology and pathology of digestion. Comm 2nd bilateral symposium CSSR-USSR. University Palackeho of Olomouci, Olomouc, pp 8–11

    Google Scholar 

  • Zetterqvist H, Hendrix TR (1960) A preliminary note on an ultrastructural abnormality of the intestinal epithelium in adult celiac disease (nontropical sprue) which is reversed by a gluten free diet. Bull Johns Hopkins Hosp 106:240–249

    PubMed  CAS  Google Scholar 

  • Zlatkina AR, Misautova AA, Makiyevskaya SE, Kutichkina OA, Lyubchenko PN (1973) Indeces of membrane digestion at gastrointestinal tract diseases (in Russian). In: Membrane digestion. Theoretical and applied aspects. Zinatne, Riga, pp 51–53

    Google Scholar 

  • Zlatkina AR, Galperin YuM, Makijevskaya SE, Bezzubik KV, Misautova AA, Rybakova GS (1976) Some mechanisms of compensation of membrane digestion disturbances (in Russian). In: Ugolev AM (ed) Digestive enzymes. Comm 1st bilateral symposium USSR-Czechoslovakia. Uzhgorod, pp 40–43

    Google Scholar 

  • Zwaal RFA (1978) Membrane and lipid involvement in blood coagulation. Biochim Biophys Acta 515:163–205

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ugolev, A.M., Iezuitova, N.N., Smirnova, L.F. (1984). Role of Digestive Enzymes in the Permeability of the Enterocyte. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation II. Handbook of Experimental Pharmacology, vol 70 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69508-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69508-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69510-0

  • Online ISBN: 978-3-642-69508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics