Permeability and Related Phenomena: Basic Concepts

  • V. Capraro
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 70 / 1)


The overall permeability of the intestinal wall is a complex phenomenon in which simple diffusion, across the cellular layer and the intercellular space, and carrier-facilitated transport are involved. The carrier mediation results in facilitated diffusion or in an energy-requiring transport (active transport). Furthermore, the intestinal permeability of water is clearly distinguishable from the permeability to solutes.


Brush Border Membrane Passive Transport Frog Skin Osmotic Gradient Streaming Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayliss LE (1959) Principles of general physiology, vol I. Longmans, London, pp 105–108, 138–142, 443–449, 453–460Google Scholar
  2. Capraro V, Bernini G (1952) Mechanism of action of extracts of the posthypophysis on water transport through the skin of the frog (Rana Esculenta). Nature 169:454–455PubMedCrossRefGoogle Scholar
  3. Capraro V, Cresseri A (1964) Absorption, distribution and excretion of vitamin B12. In: Santamaria L (ed) Research progress in organic, biological, and medicinal chemistry, vol I. Soc Ed. Farmaceutica, Milano, p 109Google Scholar
  4. Charnock JS, Opit LJ (1968) Membrane metabolism and ion transport. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol I. Academic, London, pp 69–103Google Scholar
  5. Crane RT (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24:1000–1006PubMedGoogle Scholar
  6. Curran PF (1960) Na, Cl and water transport by rat ileum “in vitro”. J Gen Physiol 43:1137–148PubMedCrossRefGoogle Scholar
  7. Curran PF, Macintosh JR (1962) A model system for biological water transport. Nature 193:347–348PubMedCrossRefGoogle Scholar
  8. Diamond JM (1966) Non linear osmosis. J Physiol (Lond) 183:58–100Google Scholar
  9. Diamond JM, Tormey J McD (1966) Role of long extracellular channels in fluid transport across epithelia. Nature 210:817–820PubMedCrossRefGoogle Scholar
  10. Diedrich DF (1966) Competitive inhibition of intestinal glucose transport by phlorizin analogs. Arch Biochem Biophys 117:248–256PubMedCrossRefGoogle Scholar
  11. Esposito G, Faelli A, Capraro V (1966) Metabolism and sodium transport in the isolated rat intestine. Nature 210:307–308PubMedCrossRefGoogle Scholar
  12. Hanozet G, Giordana B, Sacchi V (1979) Metabolite transport by membrane vesicles isolated from the midgut of Philosamia cynthia larvae. Rend Fisici Acc Naz Lincei fasc 5:455–460Google Scholar
  13. Henin S, Cremaschi D (1975) Transcellular ion route in rabbit gallbladder. Pflugers Arch 355:125–139PubMedCrossRefGoogle Scholar
  14. Kaye GJ, Wheeler HO, Whitlock RT, Lane N (1966) Fluid transport in the rabbit gallbladder. J Cell Biol 30:237–268PubMedCrossRefGoogle Scholar
  15. Kedem O, Katchalsky A (1968) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. BBA 27:229–245Google Scholar
  16. Kessler M, Acuto O, Storelli C, Murer H, Müller M, Semenza G (1978) A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. BBA 506:136–154PubMedCrossRefGoogle Scholar
  17. Klinkenberg M (1981) Membrane protein oligomeric structure and transport function. Nature 290:449–454CrossRefGoogle Scholar
  18. Koefoed-Johnsen V, Ussing HH (1952) The contribution of diffusion and flow to the passage of D2O through living membranes. Acta Physiol Scand 28:60–76CrossRefGoogle Scholar
  19. Malhotra SK, Van Harreveld A (1968) Molecular organisation of the membranes of cells and cellular organelles. In: Bittar EE, Bittar N (eds) The biological basis of medicine, vol I. Academic, London, pp 3–68Google Scholar
  20. Overton E (1899) Über die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung für die Physiologie. Vierteljahresschr Naturforsch Ges 44:88Google Scholar
  21. Renkin EM (1955) Filtration, diffusion and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243Google Scholar
  22. Salomon LL, Allums JA, Smith DE (1961) Possible carrier mechanism for the intestinal transport of D-xylose. Biochem Biophys Res Commun 4:123–126PubMedCrossRefGoogle Scholar
  23. Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK (1973) Purification of the human intestinal brush border membranes. BBA 323:98–112PubMedCrossRefGoogle Scholar
  24. Skou JC (1957) The influence of some cations on an adenosintriphosphatase from peripheral nerves. BBA 23:394–401PubMedCrossRefGoogle Scholar
  25. Staverman AJ (1951) The theory of measurement of osmotic pressure. Recl Trav Chim Pays-Bas 70:344–352CrossRefGoogle Scholar
  26. Stein WD (1967) The movement of molecules across cell membranes. Academic, New York, pp 66–69Google Scholar
  27. Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19:43–56CrossRefGoogle Scholar
  28. Wilbrandt W, Rosenberg TH (1961) The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev 13:109–183PubMedGoogle Scholar
  29. Wright EM, Diamond JM (1969) An electrical method of measuring non-electrolyte permeability. Proc R Soc Lond [Biol] 172:203–225CrossRefGoogle Scholar
  30. Zerahn K (1956) Oxygen consumption and active sodium transport in the isolated and short circuited frog skin. Acta Physiol Scand 36:300–318PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • V. Capraro

There are no affiliations available

Personalised recommendations