Skip to main content

Intestinal Permeability of Water-Soluble Nonelectrolytes: Sugars, Amino Acids, Peptides

  • Chapter
Book cover Pharmacology of Intestinal Permeation I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 70 / 1))

Abstract

The epithelial barrier is a layer of cells separating the lumen (the external environment) from the internal milieu of the organism. Most of these cells are columnar absorbing cells, also named enterocytes. Their main function is to absorb and/or secrete solutes and water selectively. Many of these solutes are water-soluble nonelectrolyte molecules such as nutrients, e.g., sugars and amino acids. In order to be transported from the lumen to the subepithelial spaces and then to the bloodstream or the lymph, these molecules must cross two in-series plasma membranes: the brush border and the basolateral membrane. However, these substances have dimensions that hinder their movement through water pores of plasma membranes or even through junctional complexes between cells; therefore, specific transport mechanisms have developed to allow the transepithelial movement of these solutes. In order to achieve a net transport, these mechanisms must be asymmetrically distributed in the two opposite plasma membranes: the luminal and the contraluminal (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamič Š, Bihler I (1967) Inhibition of intestinal sugar transport by Phenolphthalein. Mol Pharmacol 3:188–194

    PubMed  Google Scholar 

  • Addison JM, Burston D, Matthews DM (1972) Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin Sci 43:907–911

    PubMed  CAS  Google Scholar 

  • Adibi SA (1970) Leucine absorption rate and net movements of sodium and water in human jejunum. J Apl Physiol 28:753–757

    CAS  Google Scholar 

  • Adibi SA (1971) Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50:2266–2275

    PubMed  CAS  Google Scholar 

  • Adibi SA, Morse EL (1977) The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum. J Clin Invest 60:1008–1016

    PubMed  CAS  Google Scholar 

  • Adibi SA, Phillips E (1968) Evidence for greater absorption of amino acid from peptides than from free form by human intestine. Clin Res 16:446

    Google Scholar 

  • Agar WT, Hird FJR, Sidhu GS (1953) The active absorption of amino acids by the intestine. J Physiol (Lond) 121:255–263

    CAS  Google Scholar 

  • Agar WT, Hird FJR, Sidhu GS (1954) The uptake of amino acids by the intestine. Biochim Biophys Acta 14:80–84

    PubMed  CAS  Google Scholar 

  • Alvarado F (1966) Transport of sugars and amino acids in the intestine: evidence for a common carrier. Science 151:1010–1013

    PubMed  CAS  Google Scholar 

  • Alvarado F (1967) Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars. Biochim Biophys Acta 135:483–495

    PubMed  CAS  Google Scholar 

  • Alvarez O, Goldner AM, Curran PF (1969) Alanine transport in rabbit jejunum. Am J Physiol 217:946–950

    PubMed  CAS  Google Scholar 

  • Annegers JH (1966) Some effects of hexoses on the absorption of amino acids. Am J Physiol 210:701–704

    PubMed  CAS  Google Scholar 

  • Armstrong WMcD (1975) Electrophysiology of sodium transport by epithelial cells of the small intestine. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 45–65

    Google Scholar 

  • Armstrong WMcD, Musselman DL, Reitzug HC (1970) Sodium, potassium, and water content of isolated bullfrog small intestinal epithelia. Am J Physiol 219:1023–1026

    PubMed  CAS  Google Scholar 

  • Armstrong WMcD, Byrd BJ, Hamang PM (1973) The Na+ gradient and D-galactose accumulation in epithelial cells of bullfrog small intestine. Biochim Biophys Acta 330:237–241

    PubMed  CAS  Google Scholar 

  • Aronson PS, Sacktor B (1975) The Na+-gradient dependent transport of D-glucose in renal brush border membranes. J Biol Chem 250:6032–6039

    PubMed  CAS  Google Scholar 

  • Arvanitakis C, Lorenzsonn V, Olson W (1972) Effect of phenformin on glucose and water absorption in man. Gastroenterology 62:837

    Google Scholar 

  • Auselbrook KA (1965 a) Intestinal transport of glucose and sodium: changes in alloxan diabetes and effects of insulin. Experientia 21:346–347

    Google Scholar 

  • Auselbrook KA (1965 b) Intestinal transport of glucose and sodium: stimulation by reserpine and the humoral mechanism involved. Proc Soc Exp Biol Med 119:387–389

    Google Scholar 

  • Auselbrook KA (1965 c) Intestinal absorption of glucose and sodium: effects of epinephrine and norepinephrine. Biochem Biophys Res Commun 18:165–169

    Google Scholar 

  • Axelrad AD, Lawrence AL, Hazelwood RL (1970) Fasting and alloxan diabetes effects on intestinal transport of monosaccharides. Am J Physiol 219:860–864

    PubMed  CAS  Google Scholar 

  • Axon ATR (1971) Sugar absorption studied by an exorption technique. Gut 12:856

    PubMed  CAS  Google Scholar 

  • Baker RD, Lo CS, Nunn AS (1974) Galactose fluxes across brush border of hamster jejunal epithelium: effects of mucosal anaerobiosis. J Membr Biol 19:55–78

    PubMed  CAS  Google Scholar 

  • Ballien M, Schoffeniels E (1962) Action des acid aminée sur la différence de potential électrique et sur la courrant de court-circuitage au niveau de l’épithélium isolé de l’intestin grêle de la tortue grecque. Arch Int Physiol Biochim 70:140–142

    Google Scholar 

  • Berteloot A, Khan AH, Ramaswany K (1981) Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycylphenylalanine. Biochim Biophys Acta 649:179–188

    PubMed  CAS  Google Scholar 

  • Berteloot A, Khan AH, Ramaswamy K (1982) Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. II. Uptake of glycyl-L-leucine. Biochim Biophys Acta 686:47–54

    PubMed  CAS  Google Scholar 

  • Bihler I (1977) Sugar transport at the basolateral membrane of the mucosal cell. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 85–92

    Google Scholar 

  • Bihler I, Cybulsky R (1973) Sugar transport of the basal and lateral aspects of the small intestinal cell. Biochim Biophys Acta 298:429–437

    PubMed  CAS  Google Scholar 

  • Bihler I, Sawh PC (1973) The role of energy metabolism in the interaction between amino acid and sugar transport in the small intestine. Can J Physiol Pharmacol 51:378–382

    PubMed  CAS  Google Scholar 

  • Bihler I, Kim ND, Sawh PC (1969) Active transport of L-glucose and D-xylose in hamster intestine, in vitro. Can J Physiol Pharmacol 47:525–532

    PubMed  CAS  Google Scholar 

  • Binder HJ, Katz LA, Spencer RP, Spiro HM (1966) The effect of inhibitors of renal transport on the small intestine. J Clin Invest 45:1854–1858

    PubMed  CAS  Google Scholar 

  • Bingham JK, Newey H, Smyth DH (1966) Interaction of sugars and amino acids in intestinal transfer. Biochim Biophys Acta 130:281–284

    CAS  Google Scholar 

  • Bolufer J, Anselmi E, Larralde J (1973) Efecto de algunos glucósidos cardiotonicos sobre el transporte activo de azúcares por intestino de hamster. Rev Esp Fisiol 29:267–272

    PubMed  CAS  Google Scholar 

  • Bottazzi F (1901) Chimica Fisiologica. Soc Ed Libraria, Milano, vol 1

    Google Scholar 

  • Boullin DJ, Crampton RF, Heading CE, Pelling D (1973) Intestinal absorption of dipeptides containing glycine, phenylalanine, proline, β-alanine or histidine in the rat. Clin Sci 45:849–858

    CAS  Google Scholar 

  • Boyd CAR (1979) Studies on amino acid inhibition of monosaccharide exit from anuran small intestinal epithelium. J Physiol (Lond) 294:195–210

    CAS  Google Scholar 

  • Boyd CAR, Parsons DS (1978) Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the small intestine. J Physiol (Lond) 274:17–36

    CAS  Google Scholar 

  • Boyd CAR, Perring VS (1980) Interactions between amino acids during exit from small intestinal epithelium. In: Proc XXVIII Congress Physiol Sciences, Budapest, p 335

    Google Scholar 

  • Boyd CAR, Cheeseman CI, Parsons DS (1975) Effects of sodium on solute transport between compartments in intestinal mucosal epithelium. Nature 256:747–749

    PubMed  CAS  Google Scholar 

  • Bronk JR, Leese HJ (1973) Changes in adenine nucleotide content of preparations of the rat small intestine in vitro. J Physiol (Lond) 235:183–196

    CAS  Google Scholar 

  • Bronk JR, Leese HJ (1974) Accumulation of amino acids and glucose by the mammalian small intestine. In: Sleigh MA, Jennings DH (eds) Transport at the cellular level. Symp Soc Exp Biol 28:283–304

    Google Scholar 

  • Bronk JR, Parsons DS (1965) Influence of the thyroid gland on the accumulation of sugars in rat intestinal mucosa during absorption. J Physiol (Lond) 179:323–332

    CAS  Google Scholar 

  • Brunner J, Hauser H, Braun H, Wilson KJ, Wacker H, O’Neill B, Semenza G (1979) The mode of association of the enzyme complex sucrase-isomaltase with the intestinal brush border membrane. J Biol Chem 254:1821–1828

    PubMed  CAS  Google Scholar 

  • Burston D, Taylor E, Matthews DM (1979) Intestinal handling of two tetrapeptides by rodent small intestine in vitro. Biochim Biophys Acta 553:175–178

    PubMed  CAS  Google Scholar 

  • Carter-Su C, Kimmich GA (1980) Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells. Am J Physiol 238:C37–C80

    Google Scholar 

  • Caspary WF, Crane RK (1968) Inclusion of L-glucose within the specificity limits of the active sugar transport system of hamster small intestine. Biochim Biophys Acta 163:395–400

    PubMed  CAS  Google Scholar 

  • Caspary WF, Creutzfeldt W (1971) Analysis of the inhibitory effect of biguanides on glucose absorption: inhibition of active sugar transport. Diabetologia 7:379–385

    PubMed  CAS  Google Scholar 

  • Chain EB, Mansford KRL, Pocchiari F (1960) The absorption of sucrose, maltose and higher oligosaccharides from the isolated rat small intestine. J Physiol (Lond) 154:39–51

    CAS  Google Scholar 

  • Charney AN, Gots RE, Giannella RA (1974) (Na+-K+)-stimulated adenosine triphosphatase in isolated intestinal villus tip and crypt cells. Biochim Biophys Acta 367:265–270

    PubMed  CAS  Google Scholar 

  • Cheeseman CI (1979) Factors affecting the movement of amino acids and small peptides across the vascularly perfused anuran small intestine. J Physiol (Lond) 293:457–468

    CAS  Google Scholar 

  • Cheeseman CI, Smyth DH (1973) Specific transfer process for intestinal absorption of peptides. J Physiol (Lond) 229:45P–46P

    CAS  Google Scholar 

  • Chez RA, Schultz SG, Curran PF (1966) Effect of sugars on transport of alanine in intestine. Science 153:1012–1013

    PubMed  CAS  Google Scholar 

  • Christensen HN, Feldman BH, Hastings AB (1963) Concentrative and reversible character of intestinal amino acid transport. Am J Physiol 205:255–260

    PubMed  CAS  Google Scholar 

  • Chung YC, Silk DBA, Kim YS (1979 a) Intestinal transport of a tetrapeptide, L-leucylglycylglycylglycine, in rat small intestine in vivo. Clin Sci 57:1–11

    PubMed  CAS  Google Scholar 

  • Chung YC, Kim YS, Shadchehr A, Garrido A, Macgregor IL, Sleisenger MH (1979 b) Protein digestion and absorption in human small intestine. Gastroenterology 76:1415–1421

    PubMed  CAS  Google Scholar 

  • Cori CF (1925) The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J Biol Chem 66:691–715

    CAS  Google Scholar 

  • Crane RK (1960) Intestinal absorption of sugars. Physiol Rev 40:789–825

    PubMed  CAS  Google Scholar 

  • Crane RK (1961) The effect of alloxan diabetes on the active transport of sugars by rat small intestine in vitro. Biochem Biophys Res Commun 4:436–440

    PubMed  CAS  Google Scholar 

  • Crane RK (1964) Uphill outflow of sugar from intestinal cells induced by reversal of the Na+ gradient: its significance for the mechanism of Na+-dependent active transport. Biochem Biophys Res Commun 17:481–485

    CAS  Google Scholar 

  • Crane RK (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24:1000–1005

    PubMed  CAS  Google Scholar 

  • Crane RK (1966) Structural and functional organization of an epithelial cell brush border. In: Warren KB (ed) Symp Int Soc Cell Biol 5:71–102

    Google Scholar 

  • Crane RK (1975) 15 years of struggle with the brush border. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 127–141

    Google Scholar 

  • Crane RK, Malathi P, Preiser H (1977) Reconstitution of Na+ gradient-coupled carrier functions of brush border membranes of intestine and kidney in sonicated liposomes. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport, FEBS-Symposium no 42. Springer, Berlin Heidelberg New York, pp 261–268

    Google Scholar 

  • Csáky TZ (1942) Über die Rolle der Struktur des Glucosemoleküls bei der Resorption aus dem Dünndarm. Hoppe-Seyler’s Z Physiol Chem 277:47–57

    Google Scholar 

  • Csáky TZ (1961) Significance of sodium ion in active intestinal transport of nonelectrolytes. Am J Physiol 201:999–1001

    PubMed  Google Scholar 

  • Csáky TZ (1963) A possible link between active transport of electrolytes and nonelectrolytes. Fed Proc 22:3–7

    Google Scholar 

  • Csáky TZ (1971) Physiological considerations of the relationship between intestinal absorption of electrolytes and nonelectrolytes. In: Armstrong WMcD, Nunn AS Jr (eds) Intestinal transport of electrolytes, amino acids and sugars. Charles C Thomas, Springfield Illinois, pp 188–207

    Google Scholar 

  • Csáky TZ, Autenrieth B (1975) Transcellular and intercellular intestinal transport. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 177–185

    Google Scholar 

  • Csáky TZ, Esposito G (1969) Osmotic swelling of intestinal epithelia cells during active sugar transport. Am J Physiol 217:753–755

    PubMed  Google Scholar 

  • Csáky TZ, Fischer E (1977) Induction of an intestinal epithelial sugar transport system by high blood sugar. Experientia 33:223–224

    PubMed  Google Scholar 

  • Csáky TZ, Ho PM (1966) Active transport of D-mannose in the small intestine. Life Sci 5:1025–1030

    PubMed  Google Scholar 

  • Csáky TZ, Lassen UV (1964) Active intestinal transport of D-xylose. Biochim Biophys Acta 82:215–217

    Google Scholar 

  • Csáky TZ, Thaïe M (1960) Effect of ionic environment on intestinal sugar transport. J Physiol (Lond) 151:59–65

    Google Scholar 

  • Csáky TZ, Zollicoffer L (1960) Ionic effect on intestinal transport of glucose in the rat. Am J Physiol 198:1056–1058

    PubMed  Google Scholar 

  • Csáky TZ, Esposito G, Faelli A, Capraro V (1971) Stimulation of the water transport in the jejunum of the rat by ethyl acetate. Proc Soc Exp Biol Med 136:242–244

    PubMed  Google Scholar 

  • Curran PF, Schultz SG, Chez RA, Fuisz RE (1967) Kinetic relations of the Na-amino acid interaction at the mucosal border of the intestine. J Gen Physiol 50:1261–1286

    PubMed  CAS  Google Scholar 

  • Curran PF, Hajjar JJ, Glynn IM (1970) The sodium-alanine interaction in rabbit ileum. Effect of alanine on sodium Fluxes. J Gen Physiol 55:297–308

    PubMed  CAS  Google Scholar 

  • Davidson RE, Leese HJ (1977) Sucrose absorption by the rat small intestine in vivo and in vitro. J Physiol (Lond) 267:237–248

    CAS  Google Scholar 

  • Debnam ES, Levin RJ (1975) An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo. J Physiol (Lond) 246:181–196

    CAS  Google Scholar 

  • Diedrich DF (1966) Competitive inhibition of intestinal glucose transport by phlorizin analogs. Arch Biochem Biophys 117:248–256

    PubMed  CAS  Google Scholar 

  • Diedrich DF, Hanke DW, Evans JO (1975) Relationship between glycosidase activity and sugar transport in the intestine. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 143–153

    Google Scholar 

  • Dinda PK, Beck M, Beck IT (1972) Effect of changes in the osmolality of the luminal fluid on water and glucose transport acorss the hamster jejunum. Can J Physiol Pharmacol 50:83–86

    PubMed  CAS  Google Scholar 

  • Dinda PK, Beck IT, Beck M, McElligott TF (1975) Effect of ethanol on sodium-dependent glucose transport in the small intestine of the hamster. Gastroenterology 68:1517–1526

    PubMed  CAS  Google Scholar 

  • Dubois RS, Roy CC (1969) Insulin stimulated transport of 3-O-methyl glucose across the rat jejunum. Proc Soc Exp Biol Med 130:931–934

    PubMed  CAS  Google Scholar 

  • Eichholz A, Howell K, Crane RK (1969) Studies on the organization of the brush border in intestinal epithelial cells. VI. Glucose binding to isolated intestinal brush borders and their subfractions. Biochim Biophys Acta 193:179–192

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Capraro V (1964 a) Influence of the transport of amino acids on glucose and sodium transport across the small intestine of the albino rat incubated in vitro. Experientia 20:122–124

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Capraro V (1964 b) Sul meccanismo del trasporto transepiteliale di amino acidi e suoi rapporti col trasporto contemporaneo di sodio e di glicoso in un pre-parato intestinale in vitro. Arch Sci Biol (Bologna) 48:341–356

    CAS  Google Scholar 

  • Esposito G, Faelli A, Garotta G, Parotelli R, Capraro V (1972) Relationship between permeability and active transport activity of the isolated rat intestine. Possible involved mechanisms. In: Bolis L, Keynes RD, Wilbrandt W (eds) Role of membranes in secretory processes. North-Holland, Amsterdam, pp 332–337

    Google Scholar 

  • Esposito G, Faelli A, Capraro V (1973) Sugar and electrolyte absorption in the rat intestinal perfused in vivo. Pflügers Arch 340:335–348

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Capraro V (1976) Effect of ethyl acetate on the transport of sodium and glucose in the hamster small intestine in vitro. Biochim Biophys Acta 426:489–498

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Caprano V (1977) A critical evaluation of the existence of an outward sugar pump in the basolateral membrane of the enterocyte. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 107–113

    Google Scholar 

  • Esposito G, Faelli A, Capraro V (1978) Intestinal sugar transport at the basolateral membrane of the enterocyte. In: Varró V, Balint GA (eds) Current views in gastroenterology. 10th International congress of gastroenterology, Budapest 1976, Hungarian Society of Gastroenterology Edition, Budapest, pp 105–114

    Google Scholar 

  • Esposito G, Faelli A, Tosco M, Burlini N, Capraro V (1979) Extracellular space determination in rat small intestine by using markers of different molecular weights. Pflügers Arch 382:67–71

    PubMed  CAS  Google Scholar 

  • Esposito G, Faelli A, Tosco M, Capraro V (1981) Hyperglycemia and net transintestinal glucose and sodium transport in the rat. Pflügers Arch 390:202–206

    PubMed  CAS  Google Scholar 

  • Faelli A, Esposito G, Capraro V (1976) Energy-rich phosphates and transintestinal transport in rat intestine incubated in vitro at different temperatures. Biochim Biophys Acta 455:759–766

    PubMed  CAS  Google Scholar 

  • Faelli A, Esposito G, Burlini N, Tosco M, Capraro V (1979) The rat and hamster jejunum during transintestinal transport in vitro. Arch Int Physiol Biochim 87:73–86

    PubMed  CAS  Google Scholar 

  • Faust RG (1975) The intestinal brush border as an organelle. In Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, p 155

    Google Scholar 

  • Faust RG, Wu SML (1965) The action of bile salts on fluid and glucose movement by rat and hamster jejunum in vitro. J Cell Physiol 65:435–448

    PubMed  CAS  Google Scholar 

  • Flores P, Schedl HP (1968) Intestinal transport of 3-O-methyl-D-glucose in the normal and alloxan-diabetic rat. Am J Physiol 214:725–729

    PubMed  CAS  Google Scholar 

  • Fordtran JS (1975) Intestinal absorption of sugars in the human in vivo. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 229–234

    Google Scholar 

  • Förster H, Hoos I (1972) The excretion of sodium during the active absorption of glucose from the perfused small intestine of rats. Hoppe-Seyler’s Z Physiol Chem 353:88–94

    PubMed  Google Scholar 

  • Forth W, Rummel W, Glasner H, Andres H (1966) Resorption-inhibiting action of bile acids. Arch Exp Pathol Pharmakol 254:364–380

    CAS  Google Scholar 

  • Fox JE, McElligott TF, Beck IT (1978) The correlation of ethanol-induced depression of glucose and water transport with morphological changes in the hamster jejunum in vivo. Can J Physiol Pharmacol 56:123–131

    PubMed  CAS  Google Scholar 

  • Frank G, Brunner J, Hauser H, Wacker H, Semenza G, Zuber H (1978) The hydrophobic anchor of small intestinal sucrase-isomaltase. N-terminal sequence of the isomaltase subunit. FEBS Lett 96:183–188

    PubMed  CAS  Google Scholar 

  • Frizzell RA, Nellans HN, Schultz SG (1973) Effects of sugars and amino acids on sodium and potassium influx in rabbit ileum. J Clin Invest 52:215–217

    PubMed  CAS  Google Scholar 

  • Fullerton PM, Parsons DS (1956) The absorption of sugars and water from rat intestine in vivo. Q J Exp Physiol 41:387–397

    CAS  Google Scholar 

  • Ganapathy V, Leibach FH (1982) Peptide transport in intestinal and renal brush border membrane vesicles. Life Sci 30:2137–2146

    PubMed  CAS  Google Scholar 

  • Gardner MLG (1975) Absorption of amino acids and peptides from a complex mixture in the isolated small intestine of the rat. J Physiol (Lond) 253:233–256

    CAS  Google Scholar 

  • Gerencser GA, Armstrong WMcD (1972) Sodium transport in bullfrog small intestine. Stimulation by exogenous ATP. Biochim Biophys Acta 255:663–674

    PubMed  CAS  Google Scholar 

  • Gibson QH, Wiseman G (1951) Selective absorption of stereo-isomers of amino acids from loops of the small intestine of the rat. Biochem J 48:426–429

    PubMed  CAS  Google Scholar 

  • Gilles-Ballien M, Schoffeniels E (1965) Site of action of L-alanine and D-glucose on the potential difference across the intestine. Arch Int Physiol Biochim 73:355–357

    Google Scholar 

  • Gilles-Ballien M, Schoffeniels E (1966) Metabolic fate of L-alanine actively transported across the tortoise intestine. Life Sci 5:2253–2255

    Google Scholar 

  • Goldner AM, Hajjar JJ, Curran PF (1969 a) 2-Deoxyglucose transfer in rabbit intestine. Biochim Biophys Acta 173:572–574

    PubMed  CAS  Google Scholar 

  • Goldner AM, Schultz SG, Curran PF (1969 b) Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol 53:362–383

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Oshin A (1971) Reversible inhibition of intestinal active sugar transport by deconjugated bile salt in vitro. Biochim Biophys Acta 225:308–314

    PubMed  CAS  Google Scholar 

  • Gracey M, Burke V, Oshin A (1972) Intestinal transport of fructose. Biochim Biophys Acta 266:397–406

    PubMed  CAS  Google Scholar 

  • Gray GM, Ingelfinger FJ (1965) Intestinal absorption of sucrose in man: the site of hydrolysis and absorption. J Clin Invest 44:390–398

    PubMed  CAS  Google Scholar 

  • Gray GM, Ingelfinger FJ (1966) Intestinal absorption of sucrose in man: Interrelation of hydrolysis and monosaccharide product absorption. J Clin Invest 45:388–398

    PubMed  CAS  Google Scholar 

  • Guiraldes E, Lamabadusuriya SP, Oyesiku JEJ, Whitfield AE, Harries JT (1975) A comparative study on the effects of different bile salts on mucosal ATPase and transport in the rat jejunum in vivo. Biochim Biophys Acta 389:495–505

    PubMed  CAS  Google Scholar 

  • Gwee MCE, Yeoh TS (1969) Serosal transfer of glucose during peristalsis. J Pharm Pharmacol 21:131

    PubMed  CAS  Google Scholar 

  • Hagihira H, Lin ECC, Wilson TH (1961) Active transport of lysine, ornithine, arginine, and cystine by the intestine. Biochem Biophys Res Commun 4:478–481

    PubMed  CAS  Google Scholar 

  • Hajjar JJ, Lamont AS, Curran PF (1970) The sodium-alanine interaction in rabbit ileum. Effect of sodium on alanine fluxes. J Gen Physiol 55:277–296

    PubMed  CAS  Google Scholar 

  • Hajjar JJ, Khuri RN, Curran PF (1972) Alanine efflux across the serosal border of turtle intestine. J Gen Physiol 60:720–734

    PubMed  CAS  Google Scholar 

  • Hardcastle PT (1974) The effect of ATP on the transport of hexoses and amino acids in everted sacs of rat small intestine. Biochim Biophys Acta 332:114–121

    CAS  Google Scholar 

  • Harries JT, Sladen GE (1972) The effect of different bile salts on the absorption of fluid, electrolytes and monosaccharides in the small intestine of the rat in vivo. Gut 13:596–603

    PubMed  CAS  Google Scholar 

  • Hellier MD, Holdsworth CD, McColl I, Perrett D (1972) Dipeptide absorption in man. Gut 13:965–969

    PubMed  CAS  Google Scholar 

  • Hellier MD, Thirumalai C, Holdsworth CD (1973) The effect of amino acids and dipeptides on sodium and water absorption in man. Gut 14:41–45

    PubMed  CAS  Google Scholar 

  • Hendrix TR, Bayless TM (1970) Digestion: Intestinal secretion. Ann Rev Physiol 32:139–164

    CAS  Google Scholar 

  • Himukai M, Suzuki Y, Hoshi T (1978) Differences in characteristics between glycine and glcylglycine transport in guinea pig small intestine. Jpn J Physiol 28:499–510

    PubMed  CAS  Google Scholar 

  • Höber R, Höber J (1937) Experiments on the absorption of organic solutes in the small intestine of rats. J Cell Physiol 10:401–422

    Google Scholar 

  • Holdsworth CD, Dawson AM (1964) The absorption of monosaccharides in man. Clin Sci 27:371–379

    PubMed  CAS  Google Scholar 

  • Holdsworth CD, Dawson AM (1965) Absorption of fructose in man. Proc Soc Exp Biol Med 118:142–145

    PubMed  CAS  Google Scholar 

  • Holman GD, Naftalin RJ (1976) Transport of 3-O-methylglucose and β-methyl-D-glucoside by rabbit ileum. Biochim Biophys Acta 433:597–614

    PubMed  CAS  Google Scholar 

  • Hopfer U, Groseclose R (1980) The mechanism of Na+-dependent D-glucose transport. J Biol Chem 255:4453–4462

    PubMed  CAS  Google Scholar 

  • Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32

    PubMed  CAS  Google Scholar 

  • Hopfer U, Sigrist-Nelson K, Murer H (1975) Intestinal sugar transport: studies with isolated plasma membranes. Ann NY Acad Sci 264:414–427

    PubMed  CAS  Google Scholar 

  • Hopfer U, Sigrist-Nelson K, Amman E, Murer H (1976) Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells. J Cell Physiol 89:805–810

    PubMed  CAS  Google Scholar 

  • Hülsmann WC (1977) Energy metabolism in different preparations of rat small intestinal epithelium. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 229–238

    Google Scholar 

  • Lida H, Moore EW, Broitman SA, Zamcheck N (1968) Effect of pH on active transport of D-glucose in the small intestine of hamsters. Proc Soc Exp Biol Med 127:730–732

    Google Scholar 

  • Im WB, Misch DW, Powell DW, Faust RG (1980) Phenolphtalein- and harmaline-induced disturbances in the transport functions of isolated brush border and basolateral membrane vesicles from rat jejunum and kidney cortex. Biochem Pharmacol 29:2307–2317

    PubMed  CAS  Google Scholar 

  • Jacobs FA, Tarnasky WG (1963) Primary and secondary transport systems for amino acids in the intact intestine. J Am Med Assoc 183:765–768

    CAS  Google Scholar 

  • Jervis EL, Smyth DH (1959) Competition between enantiomorphs of amino acids during intestinal absorption. J Physiol (Lond) 145:57–65

    CAS  Google Scholar 

  • Jordana R, Ponz F (1969) Effects of the X-irradiation in vitro on the O2 uptake and on the utilization of glucose by the intestine. Rev Esp Fisiol 25:129–136

    PubMed  CAS  Google Scholar 

  • Keljo DJ, Kleinzeller A, Murer H, Kinne R (1978) Is hexokinase present in the basal lateral membranes of rat kidney proximal tubular epithelial cells? Biochim Biophys Acta 508:500–512

    PubMed  CAS  Google Scholar 

  • Kessler M, Semenza G (1983) The small-intestinal Na+, D-glucose cotransporter: an asymmetric gateal channel (or pore) responsive to Δψ J Membr Biol 76:27–56

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1970) Active sugar accumulation by isolated intestinal epithelial cells, a new model for sodium dependent metabolite transport. Biochemistry 9:3669–3677

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1973) Coupling between Na+ and sugar transport in small intestine. Biochim Biophys Acta 300:31–78

    PubMed  CAS  Google Scholar 

  • Kimmich GA (1981) Gradient coupling in isolated intestinal cells. Fed Proc 40:2474–2479

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1975) A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. J Membr Biol 23:57–76

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1976) 2-deoxyglucose transport by intestinal epithelial cells isolated from chick. J Membr Biol 27:363–379

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1977) A Na+-independent transport system for sugars in intestinal epithelial cells: specificity, kinetics and interaction with inhibitors. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 94–106

    Google Scholar 

  • Kimmich GA, Randies J (1979) Energetics of sugar transport by isolated intestinal epithelial cells: Effects of cytochalasin B. Am J Physiol 237:C56–C63

    PubMed  CAS  Google Scholar 

  • Kimmich GA, Randies J (1980) Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim Biophys Acta 596:439–444

    PubMed  CAS  Google Scholar 

  • Kinter WB (1961) Autoradiographic study of intestinal transport. In: Metcoff J (ed) Proceedings of the 12th annual conference of the nephrotic syndrome. National Kidney Disease Foundation, New York, pp 59–68

    Google Scholar 

  • Kleinzeller A (1970) The specificity of the active sugar transport in kidney cortex cells. Biochim Biophys Acta 211:264–276

    CAS  Google Scholar 

  • Klip A, Grinstein S, Semenza G (1980) The small-intestinal sodium, D-glucose cotransporter is inserted in the brush border membrane asymmetrically. Ann NY Acad Sci 358:374–377

    PubMed  CAS  Google Scholar 

  • Kohn PG, Newey H, Smyth DH (1970) The effect of adenosine triphosphate on the transmural potential in rat small intestine. J Physiol (Lond) 208:203–220

    CAS  Google Scholar 

  • Kuo YJ, Shanbour LL (1978) Effects of ethanol on sodium, 3-O-methyl-glucose, and Traíanme transport in the jejunum. Am J Dig Dis 23:51–56

    PubMed  CAS  Google Scholar 

  • Lamers JMJ, Hülsmann WC (1973) The effect of fructose on the stores of energy-rich phosphate in rat jejunum in vivo. Biochim Biophys Acta 313:1–8

    PubMed  CAS  Google Scholar 

  • Larralde J, Fernandez-Otero P, Gonzales M (1966) Increased active transport of glucose through the intestine during pregnancy. Nature 209:1356–1357

    PubMed  CAS  Google Scholar 

  • Laszt L, Vogel H (1946) Resorption of glucose from the small intestine of alloxan-diabetic rats. Nature 157:551–552

    PubMed  CAS  Google Scholar 

  • Levin RJ (1969) The effects of hormones on the absorptive, metabolic and digestive functions of the small intestine. J Endocrinol 45:315–348

    PubMed  CAS  Google Scholar 

  • Ling KY, Faust RG (1982) Effect of caffeine, theophylline and nicotine on D-glucose and folate transport in rat jejunal brush border membrane vesicles. Int J Biochem 14:1047–1050

    PubMed  CAS  Google Scholar 

  • Lluch M, Ponz F (1966) Immediate effects of X irradiation on the intestinal absorption of glucose and radioprotection by cysteamine. Rev Esp Fisiol 22:109–114

    PubMed  CAS  Google Scholar 

  • Loehry CA, Axon ATR, Hilton PJ, Hider RC, Creamer B (1970) Permeability of the small intestine to substances of different molecular weight. Gut 11466–470

    Google Scholar 

  • Love AH, Mitchell TG, Neptune EM Jr (1965) Transport of sodium and water by rabbit ileum in vitro and in vivo. Nature 206:1158

    PubMed  CAS  Google Scholar 

  • Love AHG (1969) The effect of biguanides on intestinal absorption. Diabetologia 5:422

    Google Scholar 

  • Lücke H, Haase W, Murer H (1977) Amino acid transport in brush-border-membrane vesicles isolated from human small intestine. Biochem J 168:529–532

    PubMed  Google Scholar 

  • Lücke H, Berner W, Menge H, Murer H (1978) Sugar transport by brush border membrane vesicles isolated from human small intestine. Pflügers Arch 373:243–248

    PubMed  Google Scholar 

  • Luisier AL, Robinson JWL (1973) Inhibition of intestinal sugar and amino acid transport by N-butyl-biguanide. In: Bolis L, Schmidt-Nielsen K, Maddrell Shp (eds) Comparative physiology. North Holland, Amsterdam, pp 465–475

    Google Scholar 

  • Mainoya JR (1975) Effect of prolactin on sugar and amino acid transport by the rat jejunum. J Exp Zool 192:149–154

    PubMed  CAS  Google Scholar 

  • Malathi P, Preiser H, Crane RK (1980) Protease-resistent integral brush border membrane proteins and their relationship to sodium-dependent transport of D-glucose and l-alanine. Ann NY Acad Sci 358:253–266

    PubMed  CAS  Google Scholar 

  • Maroux S, Louvard D, Semeriva M, Desnuelle P (1979) Hydrolases bound to the intestinal brush border: an example of transmembrane protein. Ann Biol Anim Biochim Biophys 19:787–790

    CAS  Google Scholar 

  • Matthews DM (1975 a) Intestinal absorption of peptides. Physiol Rev 55:537–608

    PubMed  CAS  Google Scholar 

  • Matthews DM (1975 b) Absorption of peptides by mammalian intestine. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. North Holland, Amsterdam, pp 61–146

    Google Scholar 

  • Matthews DM, Burston D (1977) Intestinal transport of peptides. In: Martin K, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 136–143

    Google Scholar 

  • Matthews DM, Laster L (1965) The kinetics of intestinal active transport of five neutral amino acids. Am J Physiol 208:593–600

    PubMed  CAS  Google Scholar 

  • Matthews DM, Craft IL, Geddes DM, Wise IJ, Hyde CW (1968) Absorption of glycine and glycine peptides from the small intestine of the rat. Clin Sci 35:415–424

    PubMed  CAS  Google Scholar 

  • Matthews DM, Addison JM, Burston D (1974) Evidence for active transport of the dipeptide carnosine (β-alanyl-L-hystidine) by hamster jejunum in vitro. Clin Sci 46:693–705

    CAS  Google Scholar 

  • McDougal DB Jr, Little KD, Crane RK (1960) Studies on the mechanism of intestinal absorption of sugars. IV. Localization of galactose concentrations within the intestinal wall during active transport in vitro. Biochim Biophys Acta 45:483–489

    PubMed  CAS  Google Scholar 

  • McHardy GJR, Parsons DS (1957) The absorption of water and salt from the small intestine of the rat. Q J Exp Physiol 42:33–48

    CAS  Google Scholar 

  • Mepham TB, Smith MW (1966) Amino acid transport in the goldfish intestine. J Physiol (Lond) 184:673–684

    CAS  Google Scholar 

  • Milne MD, Asatoor AM (1975) Peptide absorption in disorders of amino acid transport. In: Matthews DM, Payne JW (eds) Peptide transport in protein nutrition. North Holland, Amsterdam, pp 167–182

    Google Scholar 

  • Mircheff AK, Van Os CH, Wright EM (1980) Pathways for alanine transport in intestinal basal lateral membrane vesicles. J Membr Biol 52:83–92

    PubMed  CAS  Google Scholar 

  • Modigliani R, Bernier JJ (1971) Absorption of glucose, sodium, and water by the human jejunum studied by intestinal perfusion with a proximal occluding balloon and at variable flow rates. Gut 12:184–193

    PubMed  CAS  Google Scholar 

  • Modigliani R, Bernier JJ (1972) Effects of glucose on net and unidirectional movements of water and electrolytes in the human small intestine. Biol Gastro-Enterol 5:165–174

    CAS  Google Scholar 

  • Munck BG (1980) Lysine transport across isolated rabbit ileum. J Gen Physiol 53:157–182

    Google Scholar 

  • Munck BG, Schultz SG (1969) Lysine across the small intestine. Stimulating and inhibitory effects of neutral amino acids. J Membr Biol 53:45–53

    Google Scholar 

  • Murer H, Hopfer U (1974) Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci USA 71:484–488

    PubMed  CAS  Google Scholar 

  • Murer H, Hopfer U (1977) The functional polarity of the intestinal epithelial cell: studies with isolated plasma membrane vesicles. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 294–311

    Google Scholar 

  • Murer H, Kinne R (1980) The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol 55:81–95

    PubMed  CAS  Google Scholar 

  • Murer H, Hopfer U, Kinne-Saffran E, Kinne R (1974) Glucose transport in isolated brush-border and lateral-basal plasma membrane vesicles from intestinal epithelial cells. Biochim Biophys Acta 345:170–179

    PubMed  CAS  Google Scholar 

  • Murer H, Sigrist-Nelson K, Hopfer U (1975) On the mechanism of sugar and amino acid interaction in intestinal transport. J Biol Chem 250:7392–7396

    PubMed  CAS  Google Scholar 

  • Nadal J, Ponz F (1965) Inhibición del transporte activo de azucares por el intestino de rata in vitro. II. Accion de la atebrina, atractiloside y selenito. Rev Esp Fisiol 21:81–84

    PubMed  CAS  Google Scholar 

  • Nadal J, Ponz F (1966) Inhibition of the active transport of sugars by X irradiation in vitro of intestinal sacs. Rev Esp Fisiol 22:105–108

    PubMed  CAS  Google Scholar 

  • Naftalin RJ, Curran PF (1974) Galactose transport in rabbit ileum. J Membr Biol 16:257–278

    PubMed  CAS  Google Scholar 

  • Naftalin RJ, Holman GD (1976) The effects of removal of sodium ions from the mucosal solution on sugar absorption by rabbit ileum. Biochim Biophys Acta 419:385–390

    PubMed  CAS  Google Scholar 

  • Neale RJ, Wiseman G (1968) Active intestinal absorption of L-glucose. Nature 218:473 – 474

    Google Scholar 

  • Neame KD, Wiseman G (1957) The transamination of glutamic and aspartic acids during absorption by the small intestine of the dog, in vivo. J Physiol (Lond) 135:442–450

    CAS  Google Scholar 

  • Newey H, Smyth DH (1959) The intestinal absorption of some dipeptides. J Physiol (Lond) 145:48–56

    CAS  Google Scholar 

  • Newey H, Smyth DH (1960) Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol (Lond) 152:367–380

    CAS  Google Scholar 

  • Newey H, Smyth DH (1962) Cellular mechanisms in intestinal transfer of amino acids. J Physiol (Lond) 164:527–551

    CAS  Google Scholar 

  • Newey H, Smyth DH (1964) The transfer system for neutral amino acids in the rat small intestine. J Physiol (Lond) 170:328–343

    CAS  Google Scholar 

  • Newey H, Rampone AJ, Smyth DH (1964) The relation between L-methionine uptake and sodium in rat small intestine in vitro. J Physiol (Lond) 211:539–549

    Google Scholar 

  • Newey H, Sanford PA, Smyth DH (1966) The effect of uranyl nitrate on intestinal transfer of hexoses. J Physiol (Lond) 186:403–502

    Google Scholar 

  • Newey H, Rampone AJ, Smyth DH (1970) The relation between L-methionine uptake and sodium in rat small intestine in vitro. J Physiol (Lond) 211:539–549

    CAS  Google Scholar 

  • Nixon SE, Mawer GE (1970) The digestion and absorption of protein in man. 2. The form in which digested protein is absorbed. Br J Nutr 24:241–258

    PubMed  CAS  Google Scholar 

  • Nordlie RC, Jorgenson RA (1976) Glucose-6-phosphatase. In: Martonosi A (ed) The enzymes of biological membranes, vol 2. Biosynthesis of cell components. Wiley, New York, pp 465–491

    Google Scholar 

  • Nordstrom C, Dahlqvist A (1973) Quantitative distribution of some enzymes along the villi and crypts of human small intestine. Scand J Gastroenterol 8:407–413

    Google Scholar 

  • Olsen WA, Ingelfinger FJ (1968) The role of sodium in intestinal absorption in man. J Clin Invest 47:1133–1142

    PubMed  CAS  Google Scholar 

  • Olsen WA, Rogers L (1971) Glucose binding by intestinal brush borders of rats. Comp Biochem Physiol 39B:617–625

    Google Scholar 

  • Okada Y (1979) Solute transport process in intestinal epithelial cells. Membr Biochem 2:339–365

    PubMed  CAS  Google Scholar 

  • Parsons DS (1967) Salt and water absorption by the intestinal tract. Br Med Bull 23:252–257

    PubMed  CAS  Google Scholar 

  • Parsons DS (1972) Summary. In: Burland WL, Samuel PD (eds) Transport across the intestine. Livingstone, Edinburgh, pp 253–275

    Google Scholar 

  • Parsons DS (1975) Energetics of intestinal transport. In: Csáky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 9–36

    Google Scholar 

  • Parsons DS, Prichard JS (1965) Hydrolysis of disaccharides during absorption by the perfused small intestine of amphibia. Nature 208:1097–1098

    PubMed  CAS  Google Scholar 

  • Parsons DS, Prichard JS (1968) A preparation of perfused small intestine for the study of absorption in amphibia. J Physiol (Lond) 198:405–434

    CAS  Google Scholar 

  • Parsons DS, Prichard JS (1971) Relationships between disaccharide hydrolysis and sugar transport in amphibia small intestine. J Physiol (Lond) 212:299–319

    Google Scholar 

  • Paterson JYF, Sepulveda FV, Smith MW (1979) Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J Physiol (Lond) 292:339–350

    CAS  Google Scholar 

  • Paterson JYF, Sepulveda FV, Smith MW (1980) A sodium-independent low affinity transport system for neutral amino acids in rabbit ileal mucosa. J Physiol (Lond) 298:333–346

    CAS  Google Scholar 

  • Peters TJ, MacMahon MT (1970) The absorption of glycine and glycine dipeptides by the rat. Clin Sci 39:811–821

    PubMed  CAS  Google Scholar 

  • Ponz F, Lluch M (1958) The effect of cytochrome c and uranyl on the active trnsport of sugars by the intestine. Rev Esp Fisiol 14:217–224

    PubMed  CAS  Google Scholar 

  • Ponz F, Lluch M (1967) Effect of X irradiation on the active transport of glucose through the intestine of the rat in vivo. Rev Esp Fisiol 23:117–126

    PubMed  CAS  Google Scholar 

  • Ramaswamy K, Malathi P, Caspary WF, Crane RK (1974) Studies on the transport of glucose from disaccharides by hamster small intestine. II. Characteristics of the disacchari-dase-related transport system. Biochim Biophys Acta 345:39–48

    PubMed  CAS  Google Scholar 

  • Randies J, Kimmich GA (1978) Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells. Am J Physiol 234:C64–C72

    Google Scholar 

  • Read CP (1967) Studies on membrane transport. I. A common transport system for sugars and amino acids. Biol Bull 133:630–642

    PubMed  CAS  Google Scholar 

  • Reid EW (1900) On intestinal absorption, especially on the absorption of serum, peptone and glucose. Philos Trans R Soc Lond [Biol] 192:211–297

    Google Scholar 

  • Reiser S, Christiansen PA (1967) Intestinal transport of valine as affected by ionic environment. Am J Physiol 212:1297–1302

    PubMed  CAS  Google Scholar 

  • Reiser S, Christiansen PA (1969) Intestinal transport of amino acids as affected by sugars. Am J Physiol 216:915–924

    PubMed  CAS  Google Scholar 

  • Reiser S, Christiansen PA (1973 a) The properties of Na+-dependent and Na+-independent lysine uptake by isolated intestinal epithelial cells. Biochim Biophys Acta 307:212–222

    PubMed  CAS  Google Scholar 

  • Reiser S, Christiansen PA (1973 b) Exchange transport and amino acid charge as the basis for Na+-independent lysine uptake by isolated intestinal epithelial cells. Biochim Biophys Acta 307:223–233

    PubMed  CAS  Google Scholar 

  • Riklis E, Quastel JH (1958) Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36:347–362

    PubMed  CAS  Google Scholar 

  • Rinaldo JE, Jennings BL, Frizzell RA, Schultz SG (1975) Effects of unilateral sodium replacement on sugar transport across in vitro rabbit ileum. Am J Physiol 228:854–860

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Alvarado F (1971) Interaction between the sugar and amino-acid transport at the small intestinal brush border: A comparative study. Pflügers Arch 326:48–75

    PubMed  CAS  Google Scholar 

  • Robinson JWL, Alvarado F (1977) Comparative aspects of the interactions between sugar and amino acid transport systems. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 145–162

    Google Scholar 

  • Rose RC, Schultz SG (1971) Studies on the electrical potential profile across rabbit ileum. Effect of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol 57:639–663

    PubMed  CAS  Google Scholar 

  • Rosenberg IA, Coleman A, Rosenberg L (1965) The role of sodium ion in the transport of amino acids by the intestine. Biochim Biophys Acta 102:161–171

    PubMed  CAS  Google Scholar 

  • Roy CC, Dubois RS, Philippon F (1970) Inhibition by bile salts of the jejunal transport of 3-O-methylglucose. Nature 225:1055–1056

    PubMed  CAS  Google Scholar 

  • Rubino A, Field M, Shwachman H (1971) Intestinal transport of amino acid residues of dipeptides. 1. Influx of the glycine residue of glycyl-L-proline across mucosal border. J Biol Chem 246:3542–3548

    PubMed  CAS  Google Scholar 

  • Rummel W, Stupp HF (1962) The influence of diuretics on the absorption of salt, glucose and water from the isolated small intestine of the rat. Experientia 18:303–309

    PubMed  CAS  Google Scholar 

  • Saltzman DA, Rector FC Jr, Fordtran JS (1972) The role of intraluminal sodium in glucose absorption in vivo. J Clin Invest 51:876–885

    PubMed  CAS  Google Scholar 

  • Saunders SJ, Isselbacher KJ (1965 a) Inhibition of intestinal amino acid transport by hex-oses. Biochim Biophys Acta 102:397–409

    PubMed  CAS  Google Scholar 

  • Saunders SJ, Isselbacher KJ (1965 b) Inhibition of intestinal amino acid transport by sugars. Nature 205:700–701

    PubMed  CAS  Google Scholar 

  • Schedl HP, Burston D, Taylor E, Matthews DM (1979) Kinetics of uptake of an amino acid and a dipeptide into hamster jejunum and ileum: the effect of semistarvation and starvation. Clin Sci 56:487–492

    PubMed  CAS  Google Scholar 

  • Schneider R, Burdett K, Pover WFR (1969) Intestinal motility and the absorption of glucose and fatty acid. Life Sci 8:123–130

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    PubMed  CAS  Google Scholar 

  • Schultz SG, Strechter CK (1970) Fructose influx across the brush border of rabbit ileum. Biochim Biophys Acta 211:586–588

    PubMed  CAS  Google Scholar 

  • Schultz SG, Yu-Tu L (1970) D-Arabinose influx across the brush border of rabbit ileum. Biochim Biophys Acta 196:351–353

    PubMed  CAS  Google Scholar 

  • Schultz SG, Zalusky R (1964) Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport. J Gen Physiol 47:1043–1059

    PubMed  CAS  Google Scholar 

  • Schultz SG, Zalusky R (1965) Interactions between active sodium transport and active amino-acid transport in isolated rabbit ileum. Nature 204:292–294

    Google Scholar 

  • Schultz SG, Fuisz RE, Curran PF (1966) Amino acid and sugar transport in rabbit ileum. J Gen Physiol 49:849–866

    PubMed  CAS  Google Scholar 

  • Schultz SG, Curran PF, Chez RA, Fuisz RE (1967) Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol 50:1241–1260

    PubMed  CAS  Google Scholar 

  • Schultz SG, YU-TU L, Alvarez OO, Curran PF (1970) Dicarboxylic amino acid influx across brush border of rabbit ileum. Effects of amino acid charge on the sodium-amino acid interaction. J Gen Physiol 56:621–639

    PubMed  CAS  Google Scholar 

  • Semenza G (1969) Studies on intestinal sucrase and sugar transport. VII.A method for measuring intestinal uptake. The absorption of the anomeric forms of some monosaccharides. Biochim Biophys Acta 173:104–112

    PubMed  CAS  Google Scholar 

  • Semenza G (1971) On the mechanism of mutual inhibition among sodium-dependent transport systems in the small intestine. A hypothesis. Biochim Biophys Acta 241:637–649

    PubMed  CAS  Google Scholar 

  • Semenza G (1976) Small intestinal disaccharidases: their properties and role as sugar trans-locators across natural and artificial membranes. In: Martonosi A (ed) The enzymes of biological membranes. Plenum, New York, pp 349–382

    Google Scholar 

  • Semenza G (1982) Asymmetric and kinetic properties of the small intestinal Na+-D-glucose cotransporter. A plausible model. In: Gilles-Baillen M (ed) Intestinal transport. Fundamental and comparative aspects. Fourth conference, Bielefeld, FRG. ESCPB, Liège, p72

    Google Scholar 

  • Serebro HA, Iber FL, Yardley JH, Hendrix TR (1969) The inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology 56:506–511

    PubMed  CAS  Google Scholar 

  • Shore LE (1890) On the fate of peptone in the lymphatic system. J Physiol (Lond) 11:528–565

    Google Scholar 

  • Sigrist-Nelson K (1975) Dipeptide transport in isolated intestinal brush border membrane. Biochim Biophys Acta 394:220–226

    PubMed  CAS  Google Scholar 

  • Sigrist-Nelson K, Hopfer U (1974) A distinct D-fructose transport system in isolated brush border membrane. Biochim Biophys Acta 367:247–254

    PubMed  CAS  Google Scholar 

  • Sigrist-Nelson K, Murer H, Hopfer U (1975) Active alanine transport in isolated brush border membrane. J Biol Chem 250:5674–5680

    PubMed  CAS  Google Scholar 

  • Silk DBA, Perrett D, Clark ML (1973) Intestinal transport of two dipeptides containing the same two neutral amino acids in man. Clin Sci 45:291–299

    CAS  Google Scholar 

  • Silk DBA, Fairclough PD, Park NJ, Lane AE, Webb JPW, Clark ML, Dawson AM (1975) A study of relations between the absorption of amino acids, dipeptides, water and electrolytes in the normal human jejunum. Clin Sci 49:401–408

    CAS  Google Scholar 

  • Sladen GE, Dawson AM (1969) Interrelationship between the absorptions of glucose, sodium and water by the normal human jejunum. Clin Sci 36:119–132

    PubMed  CAS  Google Scholar 

  • Sleisenger MH, Burston D, Dalrymple JA, Wilkinson S, Matthews DM (1976) Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology 71:76–81

    PubMed  CAS  Google Scholar 

  • Smirnova LF, Ugolev AM (1974) Transport and accumulation of glucose in the mucosa of the small intestine. Dokl Akad Nauk SSSR 215:230–233

    PubMed  CAS  Google Scholar 

  • Smulders AP, Wright EM (1971) Galactose transport across the hamster small intestine. The effect of sodium electrochemical potential gradients. J Physiol (Lond) 212:277–286

    CAS  Google Scholar 

  • Smith MW, Sepulveda FV (1979) Sodium dependence of neutral amino acid uptake into rabbit ileum. Biochim Biophys Acta 555:374–378

    PubMed  CAS  Google Scholar 

  • Smithson KW, Gray GM (1977) Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush border aminopeptidase. J Clin Invest 60:665–674

    PubMed  CAS  Google Scholar 

  • Smyth DH (1971) Energetics of intestinal transfer. In: Armstrong WMcD, Nunn AS Jr (eds) Intestinal transport of electrolytes, amino acids and sugars. Charles C Thomas, Springfield, Illinois, pp 52–75

    Google Scholar 

  • Smyth DH (1972) Peptide transport by mammalian gut. In: Elliott K, O’Connor M (eds) Peptide transport in bacteria and mammalian gut. Ciba Found Symp 37:59–66

    Google Scholar 

  • Spencer RP, Samiy AH (1960) Intestinal transport of L-triptophan in vitro. Inhibition by high concentrations. Am J Physiol 199:1033–1036

    CAS  Google Scholar 

  • Storelli C, Vögeli H, Semenza G (1972) Reconstitution of a sucrase-mediated sugar transport system in lipid membranes. FEBS Lett 24:287–292

    PubMed  CAS  Google Scholar 

  • Swaminathan N, Eichholz A (1973) Studies on the mechanism of active intestinal transport of glucose. Biochim Biophys Acta 298:724–731

    PubMed  CAS  Google Scholar 

  • Teem MV, Phillips SF (1972) Perfusion of the hamster jejunum with conjugated and unconjugated bile acids: Inhibition of water absorption and effects on morphology. Gastroenterology 62:261–267

    PubMed  CAS  Google Scholar 

  • Tilney LG, Mooseker M (1971) Actin in the brush border of epithelial cells of the chicken intestine. Proc Natl Acad Sci USA 68:2611–2615

    PubMed  CAS  Google Scholar 

  • Toggenburger G, Kessler M, Rothstein A, Semenza G, Tannenbaum C (1978) Similarly in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush border of rabbit intestinal mucosal cells. J Membr Biol 40:269–290

    PubMed  CAS  Google Scholar 

  • Toggenburger G, Kessler M, Semenza G (1982) Phlorizin as a probe of the small intestinal Na+, D-glucose cotransporter. A model. Biochim Biophys Acta 688:557–571

    PubMed  CAS  Google Scholar 

  • Ugolev AM (1974) Membrane (contact) digestion. In: Smyth DH (ed) Biomembranes. Intestinal absorption, vol 4A. Plenum, London, pp 285–362

    Google Scholar 

  • Ugolev AM, Kushak RI (1966) Hydrolysis of dipeptides in cells of the small intestine. Nature 212:859–860

    CAS  Google Scholar 

  • Ugolev AM, Iesuitova NN, Timofeeva NM, Fediushina IN (1964) Location of hydrolysis of certain disaccharides and peptides in the small intestine. Nature 202:807–809

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1974) Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney. Pflügers Arch 351:35–48

    PubMed  CAS  Google Scholar 

  • Van Slike DD, Meyer GM (1912) The amino-acid nitrogen of the blood. Preliminary experiments on protein assimilation. J Biol Chem 12:399–410

    Google Scholar 

  • Varró V, Jung I, Szarvas F, Csernay L (1965) Glucose absorption in relation to ATP content of the small-intestine mucosa in the dog. Am J Dig Dis 10:178–182

    PubMed  Google Scholar 

  • Verzar F (1935) Die Rolle von Diffusion und Schleimhautaktivität bei der Resorption von verschiedenen Zuckern aus dem Darm. Biochem Z 276:17–27

    CAS  Google Scholar 

  • Watford M, Lund P, Krebs HA (1979) Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J 178:589–596

    PubMed  CAS  Google Scholar 

  • White JF, Armstrong WMcD (1971) Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol 221:194–201

    PubMed  CAS  Google Scholar 

  • Will PC, Hopfer U (1979) Apparent inhibition of active non-electrolyte transport by an increased sodium permeability of the plasma membrane. J Biol Chem 254:3806–3811

    PubMed  CAS  Google Scholar 

  • Wilson TH (1962) Intestinal absorption. Saunders, Philadelphia

    Google Scholar 

  • Wilson TH, Vincent TN (1955) Absorption of sugars in vitro by the intestine of golden hamster. J Biol Chem 216:851–866

    PubMed  CAS  Google Scholar 

  • Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol (Lond) 123:116–125

    CAS  Google Scholar 

  • Wilson TH, Lin ECC, Landau BR, Jorgensen CR (1960) Intestinal transport of sugars and amino acids. Fed Proc 19:870–875

    PubMed  CAS  Google Scholar 

  • Winne D (1973) Unstirred layers, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta 298:27–31

    CAS  Google Scholar 

  • Winne D (1979) Influence of blood flow on intestinal absorption of drugs and nutrients. Farmac Ther, vol 6. Pergamon, Oxford, pp 333–393

    Google Scholar 

  • Wiseman G (1951) Active stereochemically selective absorption of amino-acids from rat small intestine. J Physiol (Lond) 114:7P–8P

    Google Scholar 

  • Wiseman G (1955) Preferential transference of amino-acids from amino-acid mixtures by sacs of everted small intestine of the golden hamster (Mesocricetus auratus). J Physiol (Lond) 127:414–422

    CAS  Google Scholar 

  • Wiseman G (1974) Absorption of protein digestion products. In: Smyth DH (ed) Intestinal absorption. Biomembranes 4A:363–481

    Google Scholar 

  • Wrights EM, Van Os CH, Mircheff AK (1980) Sugar uptake by intestinal basolateral membrane vesicles. Biochim Biophys Acta 597:112–124

    Google Scholar 

  • Wright EM, Harms V, Mircheff AK, Van Os CH (1981) Transport properties of intestinal basolateral membranes. Ann NY Acad Sci 372:626–635

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Esposito, G. (1984). Intestinal Permeability of Water-Soluble Nonelectrolytes: Sugars, Amino Acids, Peptides. In: Csáky, T.Z. (eds) Pharmacology of Intestinal Permeation I. Handbook of Experimental Pharmacology, vol 70 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69505-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69505-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69507-0

  • Online ISBN: 978-3-642-69505-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics