Skip to main content

The Molecular Basis of Genetically Acquired Resistance to Purine Analogues in Cultured Mammalian Cells

  • Chapter
Antitumor Drug Resistance

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 72))

Abstract

The gene coding for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; inosine monophosphate: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) has been the focus of considerable attention in somatic-cell mutation studies for a number of reasons. Seegmiller et al. (1967) demonstrated that the absence of, or deficiency in, HPRT within mammalian cells was the primary biochemical lesion in cells of patients suffering from Lesch-Nyhan syndrome (Lesch and Nyhan.1964) This disease is an inborn error of purine metabolism and is characterized by patients who are mentally retarded and prone to self-mutilation, spasticity and severe neurological dysfunction. These authors also proved that this disease is heritable in an X-linked recessive manner. Further studies have conclusively assigned this gene to the X chromosome of human (Pai et al. 1980), hamster (Westerveldt et al. 1972) and mouse (Franke and Taggart1980). The gene for HPRT is therefore hemizygous in male cells and functionally hemizygous in female cells, rendering the locus particularly amenable to the study of recessive mutation. Furthermore, in mammalian cells growing in culture HPRT is a non-essential enzyme (Sect. C); thus, there are few limitations on the types of mutation which can occur in this gene and permit the cell to survive. Well-defined selection systems have been developed which can select for growth of cells containing the enzyme while eliminating cells that do not, and vice versa (Sect. C). Thus, over the past 15 years there has been a considerable amount of analysis of the HPRT gene as a model system for investigating the mechanisms of mutation and drug resistance in mammalian cells. This chapter describes the HPRT selection system in detail and reviews the evidence that changes in the sequence and organisation of DNA within the HPRT gene lead to drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adetugbo E, Milstein C, Secher DS (1977) Molecular analysis of spontaneous somatic mutants. Nature 265:299–304

    Article  PubMed  CAS  Google Scholar 

  • Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253:1357–1370

    PubMed  CAS  Google Scholar 

  • Arnold WJ, Kelly WN (1971) Human hypoxanthine guanine phosphoribosyltransferase. J Biol Chem 246:7398–7404

    PubMed  CAS  Google Scholar 

  • Beaudet AL, Roufa DJ, Caskey CT (1973) Mutation affecting the structure of hypoxanthine guanine phosphoribosyltransferase in cultured Chinese hamster cells. Proc Natl Acad Sci USA 70:320–324

    Article  PubMed  CAS  Google Scholar 

  • Berman J J, Tong C, Williams GM (1980) Differences between rat liver epithelial cells and fibroblast cells in sensitivity to 8-azaguanine. In Vitro 16:661–668

    Google Scholar 

  • Brennand J, Chinault AC, Konecki DS, Melton DW, Caskey CT (1982) Cloned cDNA sequences of the hypoxanthine-guanine phosphoribosyltransferase gene from a mouse neuroblastoma cell line found to have amplifield genomic sequences. Proc Natl Acad Sci USA 79:1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR, Vonder-Haar RA, Capecchi NE, Sveda MM (1977) The isolation of suppressive nonsense mutants in mammalian cells. Cell 12:371–381

    Article  PubMed  CAS  Google Scholar 

  • Carson MP, Vernick D, Morrow J (1974) Clones of Chinese hamster cells not permanently resistant to azaguanine. Mutat Res 24:47–54

    Article  PubMed  CAS  Google Scholar 

  • Caskey CT, Kruh GD (1979) The HPRT locus. Cell 16:1–9

    CAS  Google Scholar 

  • Chapman VM, Shows TB (1976) Somatic cell genetics. Evidence for X chromosome linkage of 3 enzymes in the mouse. Nature 259:665–667

    Article  PubMed  CAS  Google Scholar 

  • Chasin LA, Urlab G (1975) Chromosome-wide event accompanies the expression of recessive mutation in tetraploid cells. Science 187:1091–1093

    Article  PubMed  CAS  Google Scholar 

  • Chasin LA, Urlab G (1976) Mutant alleles for HPRT codominant expression, complementation and segregation in hybrids. Somatic Cell Genet 2:453–457

    Article  PubMed  CAS  Google Scholar 

  • Chu EHY, Mailing HV (1968) Mammalian cell genetics II. Chemical induction of specific locus mutation in Chinese hamster cells in vitro. Proc Natl Acad Sci USA 61:1306–1312

    Article  PubMed  CAS  Google Scholar 

  • Chu EHY, Brimer P, Jacobson KB, Merriam EV (1969) Mammalian cell genetics I. Selection and characterisation of mutations auxotrophic for L-glutamine or resistant to 8-azaguanine in Chinese hamster cells in vitro. Genetics 62:359–377

    PubMed  CAS  Google Scholar 

  • Cox R, Masson WE (1978) Do radiation-induced thioguanine-resistant mutants of cultured mammalian cells arise by HGPRT gene mutation or X-chromosome rearrangement? Nature 276:629–630

    Article  PubMed  CAS  Google Scholar 

  • Croce CM, Bakey B, Nyhan WL, Kuprowsky H (1973) Re-expression of the rat hypoxanthine phosphoribosyltransferase gene in rat-human hybrids. Proc Natl Acad Sci USA 70:2590–2594

    Article  PubMed  CAS  Google Scholar 

  • Farrel SA, Worton RG (1977) Chromosome loss is responsible for segregation at the HPRT locus in Chinese hamster cell hybrids. Somatic Cell Genet 3:539–551

    Article  Google Scholar 

  • Fen wick RG (1980) Reversion of a mutation affecting the molecular weight of HGPRT: Intragenic suppression and localization of X linked genes. Somati Cell Genet 6:477–194

    Article  CAS  Google Scholar 

  • Fenwick RG, Sawyer TH, Kruh GD, Astrin KH, Caskey CT (1977 a) Forward and reverse mutations affecting the kinetics and apparent molecular weigh of mammalian HPRT. Cell 12:383–391

    Article  CAS  Google Scholar 

  • Fenwick RG, Wasmuth J J, Caskey CT (1977 b) Mutations affecting the antigenic properties of hypoxanthine guanine phosphoribosyltransferase in cultured Chinese hamster cells. Somatic Cell Genet 3:207–216

    Article  PubMed  CAS  Google Scholar 

  • Fox M, Radacic M (1978) Adaptional origin of some purine analogue resistant phenotypes in cultured mammalian cells. Mutat Res 49:275–296

    Article  PubMed  CAS  Google Scholar 

  • Fox M, Radacic M (1982) Variations in chromosome numbers and their possible relationship to the development of 8-azaguanine resistance in Chinese hamster cells. Cell Biol Int Rep 6:39–48

    Article  PubMed  CAS  Google Scholar 

  • Franke U, Taggart RT (1980) Comparative gene mapping: order of loci on the X-chromosome is different in mice and humans. Proc Natl Acad Sci USA 77:3595–3599

    Article  Google Scholar 

  • Fuscoe JC, Fenwick RG Jr, Ledbetter DH, Caskey CT (1983) Deletion and amplification of the HGPRT locus in Chinese hamster cells. Mol Cell Biol 3:1086–1096

    PubMed  CAS  Google Scholar 

  • Ghangas GS, Milman G (1975) Radioimmune determination of HGPRT cross-reacting material in erythrocytes of Lesch-Nyhan patients. Proc Natl Sci USA 72:4147–4150

    Article  CAS  Google Scholar 

  • Giacomello A, Salerno C (1974) Human hypoxanthine guanine phosphoribosyltransferase. J Biol Chem 253:6038–6044

    Google Scholar 

  • Harris M (1971) Mutation rates in cells of different ploidy levels. J Cell Physiol 78:177–184

    Article  PubMed  CAS  Google Scholar 

  • Harris M, Collier K (1981) Phenotypic evolution of cells resistant to bromodeoxyuridine. Proc Natl Acad Sci USA 77:4206–4210

    Article  Google Scholar 

  • Holden J A, Kelly WN (1978) Human hypoxanthine guanine phosphoribosyltransferase. J Biol Chem 250:120–126

    Google Scholar 

  • Hughes SH, Wahl GM, Capecchi MR (1975) Purification and characterization of mouse hypoxanthine guanine phosphoribosyltransferase. J Biol Chem 250:120–126

    PubMed  CAS  Google Scholar 

  • Kaufman RJ, Brown PC, Schimke RT (1979) Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci USA 76:5669–5673

    Article  PubMed  CAS  Google Scholar 

  • Konecki DS, Brennand J, Fuscoe JC, Caskey CT, Chinault AC (1982) Sequence analysis of cDNA recombinants of the mouse and Chinese hamster hypoxanthine-guanine phosphoribosyltransferase genes. Nucleic Acids Res 10:6763–6775

    Article  PubMed  CAS  Google Scholar 

  • Kong CM, Parks RE (1974) Human erythrocytic hypoxanthine guanine phosphoribosyltransferase: effect of pH on the enzymatic reaction. Mol Pharmacol 10:648–656

    CAS  Google Scholar 

  • Kruh GD, Fenwick RG Jr, Caskey CT (1981) Structural analysis of mutant and revertant forms of Chinese hamster hypoxanthine guanine phosphoribosyltransferase. J Biol Chem 256:2878–2886

    PubMed  CAS  Google Scholar 

  • Lee SH, Shansky CW, Sartorelli AC (1980) Evidence for the external localization of alkaline phosphatase activity on the surface of sarcoma 180 cells resistant to 6 thioguanine. Biochem Pharmacol 29:1859–1861

    Article  PubMed  CAS  Google Scholar 

  • LePage GA, Jones M (1961) Further studies on the mechanism of action of 6-thioguanine. Cancer Res 21:1590–1594

    PubMed  CAS  Google Scholar 

  • Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and nervous system disorder. Am J Med 36:561–570

    Article  PubMed  CAS  Google Scholar 

  • McBurney MW, Whitmore GF (1975) Mechanism of growth inhibition by methotrexate. Cancer Res 35:586–590

    PubMed  CAS  Google Scholar 

  • Melton DW (1981) Cell fusion-induced mouse neuroblastoma HPRT revertants with variant enzyme and elevated HPRT protein levels. Somatic Cell Genet 7:331–344

    Article  PubMed  CAS  Google Scholar 

  • Melton DW, Konecki DS, Ledbetter DH, Hejtmancik JF, Caskey CT (1981) In vitro translation of hypoxanthine guanine phosphoribosyltransferase mRNA; characterization of a mouse neuroblastoma cell line that has elevated levels of hypoxanthine guanine phosphoribosyltransferase protein. Proc Natl Acad Sci USA 78:6977–6980

    Article  PubMed  CAS  Google Scholar 

  • Milman G, Krauss SW, Olsen AS (1977) Tryptic peptide analysis of normal and mutant forms of HGPRT from HeLa cells. Proc Natl Acad Sci USA 74:926–930

    Article  PubMed  CAS  Google Scholar 

  • Morrow J (1977) Gene inactivation as a mechanism for the generation of variability in somatic cell cultivated in vitro. Mutat Res 44:391–100

    Article  PubMed  CAS  Google Scholar 

  • Nelson JA, Carpenter JW, Rose LM, Adamson DJ (1975) Mechanisms of action of 6-thioguanine and 8-azaguanine in selecting resistant mutants from 2 V79 Chinese hamster cells in vitro. Mutat Res 35:279–288

    Google Scholar 

  • Nussbaum RL, Caskey CT, Gilbert F, Nyhan W (1982) Southern analysis of the Lesch-Nyhan locus in man. In: deBruyn CHMM (ed) Proceedings of the international symposium on human purine and pyrimidine metabolism. Plenum, New York

    Google Scholar 

  • Olsen AS, Milman G (1974) Chinese hamster hypoxanthine guanine phosphoribosyltrans-ferase. J Biol Chem 249:4030–4037

    PubMed  CAS  Google Scholar 

  • Pai GS, Sprenkle JA, Do TT, Mareni CE, Migeon BR (1980) Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of non-random X chromosome expression from studies of a human X-autosome translocation. Proc Natl Acad Sci USA 77:2810–2813

    Article  PubMed  CAS  Google Scholar 

  • Ricciuti F, Ruddle FH (1973) Assignment of nucleoside phosphorylase to D-14 and localization of X linked loci in man by somatic cell genetics. Nature (New Biol) 241:180–182

    Article  CAS  Google Scholar 

  • Sartorelli AC, Lee MH, Rosman M, Agrawal KC (1974) In: Pharmacological basis of cancer chemotherapy. Williams and Wilkins, Baltimore, p 643

    Google Scholar 

  • Schimke R (1982) Gene amplification. Cold Spring Harbor, New York

    Google Scholar 

  • Seegmiller JE, Rosenbloom FN, Kelly WN (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155:1682–1684

    Article  PubMed  CAS  Google Scholar 

  • Siminovich L (1976) On the nature of hereditable variation in cultured somatic cells. Cell 7:1–11

    Article  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments generated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Thacker J (1981) The chromosomes of a V79 Chinese hamster line and a mutant subline HPRT activity. Cytogenet Cell Genet 29:16–25

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, Baker RM (1974) Isolation of mutants of cultured mammalian cells. In: Prescott DH (ed) Methods in cell biology, vol 6. Academic, London, pp 209–281

    Google Scholar 

  • Van Diggelen OP, Donahue TF, Shin SJ (1979) Basis for differential cellular sensitivity to 8-azaguanine and 6-thioguanine. J Cell Physiol 98:59–72

    Article  PubMed  Google Scholar 

  • Van Zeeland AA, DeRuijter YCEM, Simons JWIM (1974) The role of 8-azaguanine in the selection from human diploid cells of mutants deficient in hypoxanthine guanine phosphoribosyltransferase (HGPRT). Mutat Res 24:55–68

    Article  PubMed  Google Scholar 

  • Wahl GM, Hughes SH, Capecchi MR (1974) Immunological characterization of HPRT mutants of mouse L cells. Evidence for mutation at different loci in the HPRT gene. J Cell Physiol 85:307–320

    Article  Google Scholar 

  • Way JL, Parkes RE (1958) Enzymatic synthesis of 5′-phosphate nucleotides of purine analogues. J Biol Chem 231:467–480

    PubMed  CAS  Google Scholar 

  • Westerveldt A, Visser RPLS, Freeke MA, Bootsma D (1972) Evidence for linkage of 3-phosphoglycerate kinase, hypoxanthine guanine phosphoribosyltransferase and glucose 6-phosphate dehydrogenase loci in Chinese hamster cells studied by using a relationship between gene multiplicity and enzyme activity. Biochem Genet 7:33–40

    Article  Google Scholar 

  • Williams GM, Tong C, Berman JJ (1978) Characterisation of analogue resistance and purine metabolism of adult rat liver epithelial cell 8-azaguanine resistant mutants. Mutat Res 49:103–115

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Baugher BW, Landa L, Kelley WN (1981) Human hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem 256:10306–10312

    PubMed  CAS  Google Scholar 

  • Wolpert MD, Damle SP, Brown JE, Sznycer E, Agrawal KC, Sartorelli AC (1971) The role of phosphohydrolates in the mechanism of resistance of neoplastic cells to 6-thiopurines. Cancer Res 31:1620–1626

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brennand, J., Caskey, C.T. (1984). The Molecular Basis of Genetically Acquired Resistance to Purine Analogues in Cultured Mammalian Cells. In: Fox, B.W., Fox, M. (eds) Antitumor Drug Resistance. Handbook of Experimental Pharmacology, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69490-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69490-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69492-9

  • Online ISBN: 978-3-642-69490-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics