Skip to main content

Properties of Mitochondria

  • Chapter
Antitumor Drug Resistance

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 72))

Abstract

Recently it has become evident that antitumor drug resistance is associated with some features of target enzymes and those enzyme systems which participate in drug transport, activation and catabolism (Brockman 1974; Belousova 1978; Belousova and Gerasimova 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belousova AK (1965) Biochemical approaches to chemotherapy of tumors (in Russian). Medicine, Leningrad, p 395

    Google Scholar 

  • Belousova AK (1977) The mechanisms of action of antitumor compounds. Cancer Inst Monogr 45:183–193

    CAS  Google Scholar 

  • Belousova AK (1978) Molecular mechanisms of the acquirement of tumor drug resistance and some to overcome it (in Russian). Vopr Onkol 24:92–104

    PubMed  CAS  Google Scholar 

  • Belousova AK, Gerasimova GK (1980) Search for biochemical paramters of tumor cell sensitivity and resistance to antimetabolites. In: Mihich E, Eckhardt S (eds) Design of cancer chemotherapy. Experimental and clinical approaches. Antibiot Chemother 28:48–52

    Google Scholar 

  • Belousova AK, Romanova IN (1971) The effects of alkylating agents on the structure and functions of mitochondrial membranes (in Russian). In: Blokhin NN (ed) Proceedings of the 7th annual conference of institute of experimental and clinical oncology. Institute of Experimental and Clinical Oncology, AMS USSR, pp 29–37

    Google Scholar 

  • Belousova AK, Romanova IN, Kuzmina ZV (1964) The selectivity of alkylating agents action on the oxidative phosphorylation in tumor cells related to some features of cell structure (in Russian). In: 1st all-union biochemical congress, Leningrad, vol 1, pp 47–48

    Google Scholar 

  • Belousova AK, Romanova IN, Kuzmina ZV, Zeflrova LI (1966) On the mechanism of cytotoxic action of alkylating agents (in Russian). Biokhimia 31:13–20

    CAS  Google Scholar 

  • Birk RV (1967) Study on the energetics of tumors with different sensitivity to alkylating agents (in Russian). Vopr Med Khim 13:307–313

    PubMed  CAS  Google Scholar 

  • Boyer PD (1975) Energy transformation and protein translocation by adenosine triphosphate. FEBS Lett 50:91–94

    Article  PubMed  CAS  Google Scholar 

  • Brockman RW (1974) Mechanisms of resistance. In: Sartorelli AC, Johns DG (eds) Antineoplastic and immunosuppressive agents, 1st edn, part 1. Springer, Berlin Heidelberg New York, p 352–410

    Google Scholar 

  • Carter SK, Slavik M (1977) Current investigational drugs of interest in the chemotherapy program of the national cancer institute. Cancer Inst Monogr 45:102–121

    Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  • Feo F, Garcea R (1973) Acceptor-control ratio of mitochondria. Factors affecting it in Morris hepatoma 5123 and Yoshida hepatoma AG 130. Eur J Cancer 9:203–214

    Article  PubMed  CAS  Google Scholar 

  • Gilman A, Philips FS (1946) The biological actions and therapeutic applications of the ß- chloroethylamines and sulfides. Science 103:409–415

    Article  CAS  Google Scholar 

  • Glaser E, Norling B, Ernster L (1980) Reconstitution of mitochondrial oligomycin and dicyclohexylcarbodiimide sensitive ATPase. Eur J Biochem 225:225–235

    Article  Google Scholar 

  • Gomez-Puyou TM, Gavilani M, Delaisse JM, Gomez-Puyou A (1978) Conformational change of soluble mitochondrial ATPase as controlled by hyrodrophobic interaction within the enzyme. Biochem Biophys Res Commun 82:1028–1033

    Article  PubMed  Google Scholar 

  • Green D (1974) The electrochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346:27–78

    PubMed  CAS  Google Scholar 

  • Gudz TI, Yaguzhinsky LS, Skulatchev VP (1974) Alkylating compounds as inhibitors of ATP synthetase of mitochondria. Biochemistry (USSR) 40:72–76

    Google Scholar 

  • Hanstein WG (1976) Uncoupling of oxidative phosphorylation. Biochim Biophys Acta 456:129–148

    PubMed  CAS  Google Scholar 

  • Kaschnitz RM, Hatefi RM, Morris HP (1976) Oxidative phosphorylation properties of mitochondria isolated from transplanted hepatoma. Biochim Biophys Acta 449:224–238

    Article  PubMed  CAS  Google Scholar 

  • Klamerth DL (1973) Abnormal base-pairing under the influence of nitrogen mustards. FEBS Lett 24:35–37

    Article  Google Scholar 

  • Kolarov J, Kuzela S, Krempasky V (1973) Some properties of coupled mitochondria exhibiting uncoupler insensitive ATPase activity. Biochem Biophys Res Commun 55:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Kozlov IA (1975) Oligomycin-sensitive ATPase (in Russian). Bioorg Chem 1:1545–1568

    CAS  Google Scholar 

  • Kozlov I A, Milgrom IM (1980) The non-catalytic nucleotide-binding site of mitochondrial ATPase is localized on the α-subunits of factor F1. Eur J Biochem 106:457–462

    Article  PubMed  CAS  Google Scholar 

  • Lawley PD, Brookes P (1967) Interstrand cross-linking of DNA by difunctional alkylating agents. J Mol Biol 25:143–150

    Article  PubMed  CAS  Google Scholar 

  • Loveless A (1966) Genetic and allied effects of alkylating agents. Butterworths, London, p 225

    Google Scholar 

  • Mitchell P (1977) A commentary on alternative hypothesis of proton coupling in the membrane system catalysing oxidative phosphorylation. FEBS Lett 79:1–20

    Article  Google Scholar 

  • Mitskevitsh LG, Roset EG, Kukushkina GV, Gorbatsheva LB (1972) The study of the RNA polymerase activity in nuclei of Ehrlich ascites carcinoma in relation to the mechanism of action of N-alkyl-N-nitroseureas. Biochemistry (USSR) 37:711–714

    Google Scholar 

  • Pedersen PL (1975) Adenosine triphosphatase from rat liver mitochondria: separate sites involved in ATP hydrolysis and in the reversible high affinity binding of ATP. Biochem Biophys Res Commun 64:610–616

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL, Morris HP (1974) Uncoupler-stimulated adenosine triphosphatase activity deficiency in intact mitochondria from hepatoma and ascites tumor cells. J Biol Chem 249:3327–3334

    PubMed  CAS  Google Scholar 

  • Pedersen PL, Eska T, Morris HP, Catterall A (1971) Deficiency of uncoupler-stimulated adenosine triphosphatase activity in tightly coupled hepatoma mitochondria. Proc Natl Acad Sci USA 68:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Racker E (1976) A new look at mechanisms in bioenergetics. Academic, New York, p 216

    Google Scholar 

  • Recktenwald D, Hess B (1980) Classification of nucleotide-binding sites on mitochondria F1-ATPase from yeast. Biochim Biophys Acta 592:377–384

    Article  PubMed  CAS  Google Scholar 

  • Roberts J J (1980) DNA repair mechanisms and cytotoxicity of antitumor alkylating agents and neutral platinum compounds. Antibiot Chemother 28:109–114

    PubMed  CAS  Google Scholar 

  • Romanova IN (1971) On the site of the uncoupling effects of alkylating agents in energy-transforming reactions (in Russian). Biokhimia 36:1119–1129

    CAS  Google Scholar 

  • Romanova IN (1972) Effects of alkylating agents on ATPase activity of liver mitochondria. Biochemistry (USSR) 37:707–710

    Google Scholar 

  • Romanova IN, Soflna ZP (1969) The effects of sarcolysine and of two stereoisomeres of asaphane on oxidative phosphorylation in mitochondria of liver and sarcoma 45 (in Russian). Vopr Med Khim 15:47–55

    PubMed  CAS  Google Scholar 

  • Romanova IN, Lebedeva MV, Filippova NA (1979) Characteristics of ATPase from tumor mitochondria. Biochemistry (USSR), v 43, N 12, p 2:1781–1789

    Google Scholar 

  • Ross WC (1962) Biological alkylating agents. Fundamental chemistry and the design of compounds for selective toxicity. Academic, London, p 260

    Google Scholar 

  • Ross WC, Ewig RA, Kohn KW (1978) Differences between melphalan and nitrogen mustard in the formation und removal of DNA cross-links. Cancer Res 38:1502–1506

    PubMed  CAS  Google Scholar 

  • Senior AE, McGowan EC, Hilf P (1975) A comparative study of inner membrane enzymes and transport system in mitochondria from R3230 AC mammary tumors and normal rat mammary glands. Cancer Res 35:2001–2007

    Google Scholar 

  • Slater EC (1966) Oxidative phosphorylation. Compr Biochem 14:327–350

    CAS  Google Scholar 

  • Sordhal LA, Schwartz A (1971) Tumor mitochondria. Methods Cancer Res 6:158–186

    Google Scholar 

  • Spasskaja IG, Gratsheva NK, Belousova AK (1968) Some experimental data about the protective effect of cystaphos against lethal doses of sarcolysine and cyclophosphane. In: 1st all-union conference on the chemotherapy of malignant tumors (in Russian). Riga, pp 381–382

    Google Scholar 

  • Tsagaloff A (1971) Structure and biosynthesis of the membrane adenosine triphosphatase of mitochondria. Curr Top Membr Transp 2:157–205

    Google Scholar 

  • Verovsky VN, Gorbatsheva LB (1979) Use of models of the template RNA synthesis in the study of mechanisms of TV-nitrosourea antitumor action (in Russian). Chimikopharmaceut J 10:24–29

    Google Scholar 

  • Wilson DF, Fairs K (1974) A novel property of mitochondrial oxidative phosphorylation. Biochem Biophys Res Commun 56:635–640

    Article  PubMed  CAS  Google Scholar 

  • Yaguzhinsky LS, Volkov AG, Boguslavsky LI (1976) Investigation of the mechanism of the action of a specific inhibitor of respiration and phosphorylation in the mitochondria - p-(N, Af-DL-2-chloroethyl)aminophenyl acetic acid. Biochemistry (USSR) 41:983–986

    Google Scholar 

  • Zubrod CG (1972) Chemical control of cancer. Proc Natl Acad Sci USA 69:1042–1045

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belousova, A.K. (1984). Properties of Mitochondria. In: Fox, B.W., Fox, M. (eds) Antitumor Drug Resistance. Handbook of Experimental Pharmacology, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69490-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69490-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69492-9

  • Online ISBN: 978-3-642-69490-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics