A Temporary Ventricular Assist Device for Patients Exhibiting Intractable Postcardiotomy Shock

  • W. F. Bernhard
  • F. J. Schoen
  • V. Poirier
  • J. Carr


The goal of temporary ventricular assist device (VAD) implantation in man is to permit prompt termination of cardiopulmonary bypass (CPB), while maintaining adequate tissue perfusion and reducing left atrial pressure (LAP). To accomplish this, maximum blood flows are employed to maintain mean systemic pressure above 70 mm Hg and LAP in the range of 10–18 mm Hg.


Circulatory Support Ventricular Assist Device Leave Atrial Pressure Left Ventricular Apex Pump Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernhard WF, LaFarge CG, Robinson T, Yun I, Shirahige K (1968) An improved blood-pump interface for left ventricular bypass. Ann Surg 168: 750–764Google Scholar
  2. 2.
    Bernhard WF, Husain M, Robinson TC, Button L (1969) An appraisal of blood trauma and the blood-material interface following prolonged assisted circulation. J Thorac Cardiovasc Surg 58: 801–810PubMedGoogle Scholar
  3. 3.
    Bernhard WF, Poirier V, LaFarge CG, Carr JG (1975) A new method for temporary left ventricular bypass: preclinical appraisal. J Thorac Cardiovasc Surg 70 (5): 880–895Google Scholar
  4. 4.
    Bernhard WF, LaFarge CG, Liss RH, Szycher M, et al. (1978) An appraisal of blood trauma and the prosthetic interface during left ventricular bypass in the calf and humans. Ann Thorac Surg 26: 427Google Scholar
  5. 5.
    Bernhard WF, Stetz J, Carr J, Colo N, McCormic J (1979) Temporary left ventricular bypass: Factors affecting survival. Circulation 60: 131–141PubMedGoogle Scholar
  6. 6.
    Bernhard WF (1982) Temporary left ventricular bypass: Factors affecting patient survival. Acta Cardiol [Suppl] 28: 129–135Google Scholar
  7. 7.
    Bick RL (1976) Alterations of hemostasis associated with cardiopulmonary bypass: Pathophysiology, prevention, diagnosis, and management. Semin Thromb Hemostas 3: 2Google Scholar
  8. 8.
    Bernhard WF, Carr JG, Poirier VL (1980) A paracorporeal left ventricular assist device. Encyclopedia of thoracic surgery, modern technics in surgery. Cardiac/Thoracic Surg 28:28–1 — 28–14Google Scholar
  9. 9.
    Bernhard WF, Schoen FJ, Barsamian EM, Valeri CR (1981) Perioperative myocardial infarction and shock: Successful management with a left ventricular assist device. In: Mason DT, Collins JJ Jr (eds) Myocardial revascularization: medical and surgical advances in coronary disease. Yorke Medical Books, New York, pp 264–300Google Scholar
  10. 10.
    Schoen FJ, Bernhard WF, Khuri SF, Koster JK Jr, van Devanter SJ, Weintraub RM (1982) Pathologic findings in postcardiotomy patients managed with a temporary left ventricular assist pump. Am J Surg 143: 508–513PubMedCrossRefGoogle Scholar
  11. 11.
    Grossman W, Barry WH (1980) Diastolic pressure-volume relations in the diseased heart. Fed Proc 39: 148–155PubMedGoogle Scholar
  12. 12.
    Katz AM (1973) Effects of ischemia on the contractile processes of heart muscle. Am J Cardiol 32: 456–460PubMedCrossRefGoogle Scholar
  13. 13.
    Hillis LD, Braunwald E (1977) Myocardial ischemia. N Engl J Med 296:971–978, 1034–1041, 1093–1096Google Scholar
  14. 14.
    Dennis C, Hall DP, Moreno JR, Senning A (1962) Reduction of the oxygen utilization of the heart by left heart bypass. Circ Res 10: 298–305PubMedGoogle Scholar
  15. 15.
    Pennock J, Pierce WS, Waldhausen JA (1976) Quantitative evaluation of left ventricular bypass in reducing myocardial ischemia. Surg 79: 523–533Google Scholar
  16. 16.
    Takanashi Y, Campbell CD, Laas J, Pick RL, Meus P, Replogle RL (1981) Reduction of myocardial infarct size in swine: A comparative study of intra-aortic balloon pumping and transapical left ventricular bypass. Ann Thorac Surg 32: 475–485PubMedCrossRefGoogle Scholar
  17. 17.
    Puri PS (1975) Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Am J Cardiol 36: 244–251PubMedCrossRefGoogle Scholar
  18. 18.
    Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13: 229–239PubMedCrossRefGoogle Scholar
  19. 19.
    Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985PubMedCrossRefGoogle Scholar
  20. 20.
    Theroux P, Ross J Jr, Franklin D, Kemper WS, Sasayama S (1976) Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol 38: 599–606PubMedCrossRefGoogle Scholar
  21. 21.
    Braunwald E, Kloner RA (1982) Stunned myocardium-prolonged, postischemic ventricular dysfunction. Circulation 66: 1146–1149PubMedCrossRefGoogle Scholar
  22. 22.
    Leaf A (1973) Cell swelling. A factor in ischemic tissue injury. Circulation 48: 455–458PubMedGoogle Scholar
  23. 23.
    Jennings RB (1976) Cell volume regulation in acute myocardial ischemic injury. ACTA Med Scand 587: 83–93Google Scholar
  24. 24.
    Whalen DA Jr, Hamilton DG, Ganóte CE, Jenning RB (1974) Effect of a transient period of ischemia on myocardial cells. I. Effects on cell volume regulation. Am J Pathol 74: 381–398PubMedGoogle Scholar
  25. 25.
    Ferrans VJ (1975) Morphological methods for evaluation of myocardial protection. Ann Thorac Surg 20: 11–20PubMedCrossRefGoogle Scholar
  26. 26.
    Willerson JT, Scales F, Mukherjee A, Piatt M, Templeton GH, Fink GS, Buja LM (1977) Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol 87: 159–188PubMedGoogle Scholar
  27. 27.
    Schaper J, Schwarz F, Kittstein H, Stammler G, Winkler B, Scheld H, Hehrlein F (1982) The effects of global ischemia and reperfusion on human myocardium: Quantitative evaluation by electron microscopic morphometry. Ann Thorac Surg 33: 116–122PubMedCrossRefGoogle Scholar
  28. 28.
    Bethencourt DM, Laks H (1981) Importance of edema and compliance changes during 24 hours of preservation of the dog heart. J Thorac Cardiovasc Surg 81: 440–449PubMedGoogle Scholar
  29. 29.
    Powers ER, DiBona DR, Powell WJ Jr (1978) The development of a perfusion deficit and myocardial cell swelling during low-flow ischemia. Circulation [Suppl 2] 58: 11–175Google Scholar
  30. 30.
    Jacobs HS, Craddock PR, Hammerschmidt DE, Moldow CF (1980) Complement-induced granulocyte aggregation. An unsuspected mechanism of disease. N Engl J Med 302: 789–794CrossRefGoogle Scholar
  31. 31.
    O’Flaherty JT (1982) Lipid mediators of inflammation and allergy. Lab Invest 47: 314–329PubMedGoogle Scholar
  32. 32.
    Hammerschmidt DE, Stroncek DF, Bowers TK, Lammi-Keefe CJ, Kurth DM, Ozalins A, Nicoloff DM, Lillehei RC, Craddock PR, Jacob HS (1981) Complement activation and neutropenia occurring during cardiopulmonary bypass. J Thorac Cardiovasc Surg 81: 370–377PubMedGoogle Scholar
  33. 33.
    Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Kirklin JW (1981) Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med 304: 497–703PubMedCrossRefGoogle Scholar
  34. 34.
    Laks H, Berger RL, Parr CVS, Pennington DG (1982) Acute cardiac failure: The importance of the right ventricle. Trans Am Soc Artif Inter Organs 28: 678–680Google Scholar
  35. 35.
    Miyamoto AT, Tanaka S, Matloff JM (1983) Right ventricular function during left heart bypass. J Thorac Cardiovasc Surg 85: 49–53PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • W. F. Bernhard
  • F. J. Schoen
  • V. Poirier
  • J. Carr

There are no affiliations available

Personalised recommendations