Skip to main content

Antibodies to Synthetic Peptides Targeted to the Transforming Genes of Human Adenoviruses: An Approach to Understanding Early Viral Gene Function

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 109))

Abstract

Adenoviruses (Ads) are DNA tumor viruses which contain double–stranded linear DNA genomes of molecular weight 20–25 million (GREEN et al. 1967). There are 31 well–defined human adenoviruses, many of which are ubiquitous in the human population. Adenoviruses commonly cause latent infections of lymphoid tissue and are mainly associated with respiratory disease, which can reach epidemic proportions in closed populations. By DNA homology measurements, human Ads 1–31 are classified into five groups, A through E, containing homologous transforming gene sequences (GREEN et al. 1979 a; MACKEY et al. 1979 a). Although probably all human Ads can transform cells and many can induce tumors in laboratory animals, there is no evidence that they play a significant role in human carcinogenesis. An extensive search was made for the presence of DNA sequences representing each of the five human Ad groups in human tumors representing about 90% of the cancer incidence in the United States. Significant Ad genetic information was not detected under conditions that would have detected less than one transforming gene per tumor cell in most cases (Mackey et al. 1976; Green and Mackey 1977; Green et al 1979b; Mackey et al. 1979b; Wold et al. 1979; Green, unpublished data). Thus, although the human Ads are widespread and have oncogenic potential, their oncogenic potential does not appear to be manifested in their native human host species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akusjarvi G, Zabielski J, Perricaudet M, Pettersson U (1981) The sequence of the 3’ non-coding region of the hexon mRNA discloses a novel adenovirus gene. Nucleic Acids Res 9: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Alestrom P, Akusjarvi G, Pettersson M, Pettersson U (1982) DNA sequence analysis of the region encoding the terminal protein and the hypothetical N-gene product of adenovirus type 2. J Biol Chem 257: 13492–13498

    PubMed  CAS  Google Scholar 

  • Anderson CW, Lewis JB (1980) Amino-terminal sequence of adenovirus type 2 proteins: hexon, fiber, component IX, and early protein 1B–15K. Virology 104: 27–41

    Article  PubMed  CAS  Google Scholar 

  • Baron MH, Baltimore D (1982 a) Antibodies against the chemically synthesized genome-linked protein of poliovirus react with native virus-specific proteins. Cell 28: 395–404

    Google Scholar 

  • Baron MH, Baltimore D (1982 b) Antibodies against a synthetic peptide of the poliovirus replicase protein: reaction with native, virus-encoded proteins and inhibition of virus-specific polymerase activities in vitro. J Virol 43: 969–978

    Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Bittle JL, Houghten RA, Alexander H, Shinnick TM, Sutcliffe JG, Lerner RA (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298: 30–33

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Polder LJ, Bernards R, Schrier PI, van den Elsen PJ, van der Eb AJ, van Ormondt J (1981) The 2.2 kb E1B mRNA of human Adl2 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell 27: 121–131

    Article  PubMed  CAS  Google Scholar 

  • Brackmann KH, Green M, Wold WSM, Cartas M, Matsuo T, Hashimoto S (1980) Identification and peptide mapping of human adenovirus type 2–induced early polypeptides isolated by two-dimensional gel electrophoresis and immunoprecipitation. J Biol Chem 255: 6772–6779

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ Jr (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51: 901–934

    Article  PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ Jr (1980) Adenovirus DNA replication in vitro: Characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109

    Google Scholar 

  • Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotide and the 80-kilodalton terminal protein. J Virol 41: 265–270

    PubMed  CAS  Google Scholar 

  • Chinnadurai G (1983) Adenovirus 2 lp+ locus codes for a 19K tumor antigen that plays an essential role in cell transformation. Cell 33: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus 2. J Mol Biol 134: 265–303

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Raskas HJ (1976) Nuclear transcripts larger than the cytoplasmic mRNAs are specified by segments of the adenovirus genome coding for early functions. Cell 8:205– 213

    Google Scholar 

  • Deppert W, Walter G (1982) Domains of simian virus 40 large T-antigen exposed on the cell surface. Virology 122: 56–70

    Article  PubMed  CAS  Google Scholar 

  • Dijkema R, Dekker BMM, van der Feltz MJM, van der Eb AJ (1979) Transformation of primary rat kidney cells by DNA fragments of weakly oncogenic adenoviruses. J Virol 32: 943–950

    PubMed  CAS  Google Scholar 

  • Dijkema R, Dekker BMM, van Ormondt, H. (1982) Gene organization of the transforming region of adenovirus type 7 DNA. Gene 18: 143–156

    Article  PubMed  CAS  Google Scholar 

  • Dreesman GR, Sanchez Y, Ionescu-Matiu I, Sparrow JT, Six HR, Peterson DL, Hollinger FB, Melnick JL (1982) Antibody to hepatitis B surface antigen after a single inoculation of uncoupled synthetic HBsAg peptides. Nature 295: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Esche H, Mathews MB, Lewis JB (1980) Proteins and messenger RNAs of the transforming region of wild-type and mutant adenoviruses. J Mol Biol 142: 399–417

    Article  PubMed  CAS  Google Scholar 

  • Feldman LT, Nevins JR (1983) Localization of the adenovirus ElAa protein, a positive-acting transcriptional factor, in infected cells. Mol Cell Biol 3: 829–838

    PubMed  CAS  Google Scholar 

  • Flint SJ (1977) Two early mRNA species in adenovirus type 2-transformed rat cells. J Virol 23: 44 — 52

    PubMed  CAS  Google Scholar 

  • Flint SJ, Sambrook J, Williams JF, Sharp PA (1976) Viral nucleic acid sequences in transformed cells. IV. A study of the sequences of adenovirus 5 DNA and RNA in four lines of adenovirus 5-transformed rodent cells using specific fragments of the viral genome. Virology 72: 456–470

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes DM, Lord ST, Linnem T, Pettersson U, Phillipson L (1979) Interaction between the adenovirus DNA-binding protein and double-stranded DNA. J Mol Biol 132: 163–180

    Article  PubMed  CAS  Google Scholar 

  • Frost E, Williams J (1978) Mapping temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Galos R, Williams J, Shenk T, Jones N (1980) Physical location of host–range mutants of adenovirus type 5; deletion and marker-rescue mapping. Virology 104: 510–513

    Article  PubMed  CAS  Google Scholar 

  • Gilead Z, Jeng Y-H, Wold WSM, Sugawara K, Rho KM, Harter ML, and Green M (1976) Immunological identification of two adenovirus 2-induced early proteins possibly involved in cell transformation. Nature (London) 264: 263–266

    Article  CAS  Google Scholar 

  • Gingeras TR, Sciaky D, Gelinas RE, Bing-Dong J, Yen CE, Kelly MM, Bullock PA, Parsons BL, O’Neill KE, Roberts RJ (1982) Nucleotide sequences from the adenovirus 2 genome. J Biol Chem 257: 13475–13491

    PubMed  CAS  Google Scholar 

  • Graham FL, Anderson PJ, Mulder C, Heijneker HL, Warnaar SO, de Vries FAJ, Fiers W, van der Eb AJ (1974) Studies on in vitro transformation by DNA and RNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symp Quant Biol 39: 637–650

    Google Scholar 

  • Graham FL, Harrison T, Williams J (1978) Defective transforming capacity of adenovirus type 5 host-range mutants. Virology 86: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Green M (1978) Adenoviruses: Model systems of virus replication, human cell molecular biology, and neoplastic transformation. Perspect Biol Med 21: 373–397

    PubMed  CAS  Google Scholar 

  • Green M, Mackey JK (1977) Are oncogenic human adenoviruses associated with human cancer? Analysis of human tumors for adenovirus transforming gene sequences. Cold Spring Harbor Conf Cell Prolif 4: 1027–1042

    CAS  Google Scholar 

  • Green M, Pina M, Kimes RC, Wensink PC, MacHattie LA, Thomas CA (1967) Adenovirus DNA. I. Molecular weight and conformation. Proc Natl Acad Sci USA 57: 1302–1309

    Google Scholar 

  • Green M, Parsons JT, Pina M, Fujinaga K, Caffler H, Landgraf-Leurs I (1970) Transcription of adenovirus genes in productively infected and in transformed cells. Cold Spring Harbor Symp Quant Biol 35: 803–818

    CAS  Google Scholar 

  • Green M, Mackey JK, Wold WSM, Rigden P ( 1979 a) Thirty-one human adenovirus serotypes (Ad 1–31) form five groups ( A–E) based upon DNA genome homologies. Virology 93: 481–492

    Google Scholar 

  • Green M, Wold WSM, Mackey JK, Rigden P (1979 b) Analysis of human tonsil and cancer DNAs and RNAs for DNA sequences of group C (serotypes 1, 2, 5, 6) human adenoviruses. Proc Natl Acad Sci USA 76: 6606–6610

    Google Scholar 

  • Green M, Wold WSM, Brackmann KH, Cartas MA (1979c) Identification of families of overlapping polypeptides coded by early transforming gene region 1 of human adenovirus type 2. Virology 97: 275–286

    Article  PubMed  CAS  Google Scholar 

  • Green M, Wold WSM, Biittner W (1981) Integration and transcription of group C human adenovirus sequences in the DNA of five lines of transformed rat cells. J Mol Biol 151: 337–366

    Article  PubMed  CAS  Google Scholar 

  • Green M, Brackmann KH, Cartas MA, Matsuo T (1982) Identification and purification of a protein encoded by the human adenovirus type 2 transforming region. J Virol 42: 30–41

    PubMed  CAS  Google Scholar 

  • Green M, Brackmann KH, Lucher LA, Symington JS, Kramer TA (to be published) Human adenovirus 2 E1B-19K and E1B-53K tumor antigens: Antipeptide antibodies targeted to the NH2 and COOH termini. J Virol

    Google Scholar 

  • Green MR, Treisman R, Maniatis T (to be published) Transcription activation of cloned human ß-globin genes by viral immediate-early gene products. Cell

    Google Scholar 

  • Green N, Shinnick TM, Witte O, Ponticelli A, Sutcliffe JG, Lerner RA (1981) Sequence-specific antibodies show that maturation of Moloney leukemia virus envelope polyprotein involves remival of a COOH-terminal peptide. Proc Natl Acad Sci USA 78: 6023–6027

    Article  PubMed  CAS  Google Scholar 

  • Green N, Alexander H, Olson A, Alexander S, Shinnick TM, Sutcliffe JG, Lerner RA (1982) Immunogenic structure of the influenza virus hemagglutinin. Cell 28: 477–487

    Article  PubMed  CAS  Google Scholar 

  • Halbert DN, Spector DJ, Raskas HJ (1979) In vitro translation products specified by the transforming region of adenovirus type 2. J Virol 31: 621–629

    PubMed  CAS  Google Scholar 

  • Handa H, Kingston RE, Sharp PA (1982) Inhibition of adenovirus early region IV transcription in vitro by a purified viral DNA binding protein. Nature 302: 545–547

    Article  Google Scholar 

  • Harrison T, Graham F, Williams J (1977) Host–range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Harter ML, Lewis JB (1978) Adenovirus type 2 early proteins synthesized in vitro and in vivo: Identification in infected cells of 38000 to 50000-molecular-weight protein encoded by the left end of the adenovirus type 2 genome. J Virol 26: 736–749

    PubMed  CAS  Google Scholar 

  • Harter ML, Shanmugam G, Wold WSM, Green M (1976) Detection of adenovirus type 2-induced early polypeptides using cycloheximide pre-treatment to enhance viral protein synthesis. J Virol 19: 232–242

    PubMed  CAS  Google Scholar 

  • Hassel JA, Weber J (1978) Genetic analysis of adenovirus type 2. VIII. Physical locations of temperature-sensitive mutations. J Virol 28: 671–678

    Google Scholar 

  • Herisse J, Galibert F (1981) Nucleotide sequence of the IfcoRI E fragment of adenovirus 2 genome. Nucleic Acids Res 9: 1229–1240

    CAS  Google Scholar 

  • Herisse J, Courtois G, Galibert F (1980) Nucleotide sequence of the EcoRl D fragment of adenovirus 2 genome. Nucleic Acids Res 8: 2173–2192

    Article  PubMed  CAS  Google Scholar 

  • Ho Y-S, Galos R, Williams J (1982) Isolation of type 5 adenovirus mutants with a cold-sensitive host-range phenotype: genetic evidence of an adenovirus transformation maintenance function. Virology 122: 109–124

    Article  PubMed  CAS  Google Scholar 

  • Houweling A, van den Elsen PJ, van der Eb AJ (1980) Partial transformation of primary rat cells by the left-most 4.5% of adenovirus 5 DNA. Virology 105: 537–550

    Article  PubMed  CAS  Google Scholar 

  • Jay G, Nomura S, Anderson CW, Khoury G (1981) Identification of the SV40 agnogene product: A DNA binding protein. Nature 291: 346–349

    Google Scholar 

  • Jeng Y-H, Wold WSM, Green M (1978) Evidence for an adenovirus type 2-coded early glycoprotein. J Virol 28: 314–323

    PubMed  CAS  Google Scholar 

  • Johansson K, Persson H, Lewis AM, Pettersson U, Tibbetts C, Philipson L (1978) Viral DNA sequences and gene products in hamster cells transformed by adenovirus type 2. J Virol 27: 628–639

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979 a) An adenovirus type 5 early gene function regulates expression of other early genes. Proc Natl Acad Sci USA 76: 3665–3669

    Google Scholar 

  • Jones N, Shenk T (1979 b) Isolation of adenovirus type 5 host range deletion mutants defective 1 for transformation of rat embryo cells. Cell 17: 683–689

    Google Scholar 

  • Kagan A, Glick SM (1974) In: Jaffe and Behrman (eds) Methods of Hormone Radioimmunoassay. Oxytocin. Academic Press, New York. First Edition, pp 173–185

    Google Scholar 

  • Katze MG, Persson H, Philipson L (1981) Control of adenovirus early gene expression: Post-transcriptional control mediated by both viral and cellular gene products. Mol Cell Biol 1: 807–813

    Google Scholar 

  • Katze MG, Persson H, Johansson B-M, Philipson L (1983) Control of adenovirus gene expression: cellular gene products restrict expression of adenovirus host range mutants in non-permissive cells. J Virol 46: 50–59

    PubMed  CAS  Google Scholar 

  • Kimura T, Sawada Y, Shinawawa M, Shimizu Y, Shiroki K, Shimojo H, Sugisaki H, Takanami M, Uemizu Y, Fujinaga K (1981) Nucleotide sequence of the transforming early region E1B of adenovirus type 12 DNA: structure and gene organization, and comparison with those of adenovirus type 5 DNA. Nucleic Acids Res 9: 6571–6589

    Article  PubMed  CAS  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137: 23–48

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Wold WSM (1981) Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2. J Virol 40: 440–449

    PubMed  CAS  Google Scholar 

  • Lerner RA (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299: 592–596

    Article  CAS  Google Scholar 

  • Lerner RA, Green N, Alexander H, Liu F-T, Sutcliffe JG, Shinnick TM (1981) Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc Natl Acad Sci USA 78: 3403–3407

    Article  PubMed  CAS  Google Scholar 

  • Levinson A, Levine AJ (1977) The isolation and identification of the adenovirus group C tumor antigens. Virology 76: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Lewis JB, Atkins JF, Baum PR, Solem R, Gesteland RF, Anderson CW (1976) Location and identification of the genes for adenovirus type 2 early polypeptides. Cell 7: 141–151

    Article  PubMed  CAS  Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Separation of the adenovirus terminal protein precursor from its associated DNA polymerase: Role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79: 5225–5229

    Google Scholar 

  • Linne T, Jornvall H, Philipson L (1977) Purification and characterization of the phosphorylated DNA-binding protein from adenovirus type 2–infected cells. Eur J Biochem 76: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Lucher LA, Brackmann KH, Symington JS, Green M (to be published) Antibody directed to a synthetic peptide encoding the NH2 terminal 16 amino acids of the adenovirus type 2 E1B-53K tumor antigen recognizes the E1B–20K tumor antigen. Virology

    Google Scholar 

  • Mackey JK, Rigden PM, Green M (1976) Do highly oncogenic group A human adenoviruses cause human cancer? Analysis of human tumors for adenovirus 12 transforming DNA sequences. Proc Natl Acad Sci USA 73: 4657–4661

    Article  PubMed  CAS  Google Scholar 

  • Mackey JK, Wold WSM, Rigden P, Green M ( 1979 a) Transforming regions of group A, B, and C adenoviruses: DNA homology studies with twenty–nine human adenovirus serotypes. J Virol 29: 1056–1064

    Google Scholar 

  • Mackey JK, Green M, Wold WSM, Rigden P (1979b) Analysis of human cancer DNA for DNA sequences of human adenovirus type 4. J Natl Cancer Inst 62: 23–26

    PubMed  CAS  Google Scholar 

  • Matsuo T, Wold WSM, Hashimoto S, Rankin AR, Symington J, Green M (1982) Polypeptides encoded by early transforming region E1B of human adenovirus 2: immunoprecipitation from transformed and infected cells and cell free translation of El B-specific mRNA. Virology 118: 456–465

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442

    Article  PubMed  CAS  Google Scholar 

  • Neurath AR, Kent SBH, Strick N (1982) Specificity of antibodies elicited by a synthetic peptide having a sequence in common with a fragment of a virus protein, the hepatitis B surface antigen. Proc Natl Acad Sci USA 79: 7871–7875

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus El A gene product. Cell 26: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Winkler J J (1980) Regulation of early adenovirus transcription: A protein product of early region 2 specifically represses region 4 transcription. Proc Natl Acad Sci USA 77: 1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard J-M, Wilson MC, Darnell JE Jr (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32: 727–733

    PubMed  CAS  Google Scholar 

  • Nigg EA, Sefton BM, Hunter T, Walter G, Singer SJ (1982) Immunofluorescent localization of the transforming protein of Rous sarcoma virus with antibodies against a synthetic src peptide. Proc Natl Acad Sci USA 79: 5322–5326

    Article  PubMed  CAS  Google Scholar 

  • Ostrove JM, Rosenfeld P, Williams J, Kelly TJ Jr (1983) In vitro complementation as an assay for purification of adenovirus DNA replication proteins. Proc Natl Acad Sci USA 80: 935–939

    Article  PubMed  CAS  Google Scholar 

  • Papkoff J, Hunter T (1983) Detection of an 85000-dalton phosphoprotein in tellO murine sarcoma virus-infected cells with antiserum against a v-mos peptide. J Virol 45: 1177–1182

    PubMed  CAS  Google Scholar 

  • Persson H, Oberg B, Philipson L (1978) Purification and characterization of an early protein (E14K) from adenovirus type 2–infected cells. J Virol 28: 67–79

    Google Scholar 

  • Persson H, Signas C, Philipson L (1979) Purification and characterization of an early glycoprotein from adenovirus type 2–infected cells. J Virol 29: 938–948

    PubMed  CAS  Google Scholar 

  • Persson H, Katze MG, and Philipson L (1981) Control of adenovirus early gene expression: accumulation of viral mRNA after infection of transformed cells. J Virol 40: 358–366

    PubMed  CAS  Google Scholar 

  • Ross SR, Flint SJ, Levine AJ (1980) Identification of the adenovirus early proteins and their genomic map positions. Virology 100: 419–432

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Greene R, Stringer J, Mitchison T, Hu S-L, Botchan M (1979) Analysis of the sites of integration of viral DNA sequences in rat cells transformed by adenovirus 2 or SV40. Cold Spring Harbor Symp Quant Biol 44: 569–584

    Google Scholar 

  • Sarnow P, Hearing P, Anderson CW, Reich N, Levine AJ (1982) Identification and characterization of an immunologically conserved adenovirus early region 11000 Mr protein and its association with the nuclear matrix. J Mol Biol 162: 565–583

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Fujinaga K (1980) Mapping of adenovirus 12 mRNAs transcribed from the transforming region. J Virol 36: 639–651

    PubMed  CAS  Google Scholar 

  • Schaffhausen B, Benjamin TL, Pike L, Casnellie J, Krebs E (1982) Antibody to the nonapeptide Glu-Glu-Glu-Glu-Tyr-Met-Pro-Met-Glu is specific for polyoma middle T antigen and inhibits in vitro kinase activity. J Biol Chem 257: 12467–12470

    PubMed  CAS  Google Scholar 

  • Schrier PI, van den Elsen PJ, Hertoghs JJL, van der Eb AJ (1979) Characterization of tumor antigens in cells transformed by fragments of adenovirus type 5 DNA. Virology 99: 372–385

    Article  PubMed  CAS  Google Scholar 

  • Sefton BM, Walter G (1982) Antiserum specific for the carboxy terminus of the transforming protein of Rous sarcoma virus. J Virol 44: 467–474

    PubMed  CAS  Google Scholar 

  • Sekikawa K, Shiroki K, Shimojo H, Ojima S, Fujinaga K (1978) Transformation of a rat cell line by an adenovirus 7 DNA fragment. Virology 88: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Semler BL, Anderson CW, Hanecak R, Dorner LF, Wimmer E (1982) A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic hepapeptide. Cell 28: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Houghten RA, Sherr CJ, Sen A (1983) Antibodies of predetermined specificity detect two retroviral oncogene products and inhibit their kinase activities. Proc Natl Acad Sci USA 80: 1246–1250

    Article  PubMed  CAS  Google Scholar 

  • Shiroki K, Handa H, Shimojo H, Yano S, Ojima S, Fujinaga K (1977) Establishment and characterization of rat cell lines transformed by restriction endonuclease fragments of adenovirus 12 DNA. Virology 82: 462–471

    Article  PubMed  CAS  Google Scholar 

  • Shiroki K, Shimojo H, Sawada Y, Uemizu K, Fujinaga K (1979) Incomplete transformation of rat cells by a small fragment of adenovirus 12 DNA. Virology 95: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Smart JE, Stillman BW (1982) Adenovirus terminal protein precursor. J Biol Chem 257: 13499–13506

    PubMed  CAS  Google Scholar 

  • Solnick D, Anderson MA (1982) Transformation-deficient adenovirus mutant defective in expression of region 1A but not region 1B. J Virol 42: 106–113

    PubMed  CAS  Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW, Tamanoi F, Mathews MB (1982) Purification of an adenovirus–coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K, Gilead Z, Green M (1977) Purification and molecular characterization of adenovirus type 2 DNA-binding protein. J Virol 21: 338–346

    PubMed  CAS  Google Scholar 

  • Sugisaki H, Sugimoto K, Takanami M, Shiroki K, Saito I, Shimojo H, Sawada Y, Uemizu Y, Uesugi S-I, and Fujinaga K (1980) Structure and gene organization in the transforming Hindlll-G fragment of Adl2. Cell 20: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Thomas GP, Mathews MB (1980) DNA replication and the early to late transition in adenovirus infection. Cell 22: 523–533

    Article  PubMed  CAS  Google Scholar 

  • Tigges MA, Raskas HJ (1982) Expression of adenovirus 2 early region E4: assignment of the early region 4 polypeptides to their respective mRNAs, using in vitro translation. J Virol 44: 907–921

    PubMed  CAS  Google Scholar 

  • Van der Eb AJ, Mulder C, Graham FL, Houweling A (1977) Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115–132

    Article  PubMed  Google Scholar 

  • Van der Vliet PC, Levine AJ (1973) DNA–binding proteins specific for cells infected by adenovirus. Nature New Biol 246: 170–174

    PubMed  Google Scholar 

  • Van Ormondt H, Maat J, de Ward A, van der Eb A (1978) The nucleotide sequence of the transforming Hpal-E fragment of adenovirus type 5 DNA. Gene 4: 309–328

    Google Scholar 

  • Virtanen A, Alestrom P, Persson H, Katze MG, Pettersson U (1982) An adenovirus agnogene. Nucleic Acids Res 10: 2539–2548

    Article  PubMed  CAS  Google Scholar 

  • Walter G, Scheidtmann K-H, Carbone A, Laudano AP, Doolittle RF (1980) Antibodies specific for the carboxy and amino-terminal regions of simian virus 40 large tumor antigen. Proc Natl Acad Sci USA 77: 5197–5200

    Article  PubMed  CAS  Google Scholar 

  • Walter G, Hutchinson MA, Hunter T, Eckhart W (1981) Antibodies specific for the polyoma virus middle-size tumor antigen. Proc Natl Acad Sci USA 78: 4882–4886

    Article  PubMed  CAS  Google Scholar 

  • Walter G, Hutchinson MA, Hunter T, Eckhart W (1982) Purification of polyoma virus medium-size tumor antigen by immunoaffinity chromatography. Proc Natl Acad Sci USA 79: 4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Wold WSM, Green M (1979) Adenovirus type 2 early polypeptides immunoprecipitated by antisera to five lines of adenovirus-transformed rat cells. J Virol 30: 297–310

    PubMed  CAS  Google Scholar 

  • Wold WSM, Mackey JK, Rigden P, Green M (1979) Analysis of human cancer DNAs for DNA sequences of human adenovirus serotypes 3, 7, 11, 14, 16, and 21 in group B. Cancer Res 39: 3479–3484

    CAS  Google Scholar 

  • Wong TW, Goldberg AR (1981) Synthetic peptide fragment of src gene product inhibits the src protein kinase and crossreacts immunologically with avian one kinases and cellular phosphoproteins. Proc Natl Acad Sci USA 78: 7412–7416

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Fujinaga K (1980) Unique species of mRNA from adenovirus type 7 early region 1 in cells transformed by adenovirus type 7 DNA fragment. J Virol 36: 337–352

    PubMed  CAS  Google Scholar 

  • Yoshida K, Sekikawa K, Fujinaga K (1979) Mappings of adenovirus type 7 cytoplasmic RNA species synthesized early in lytically infected cells and synthesized in transformed cells. J Virol 32: 339–344

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Green, M., Brackmann, K.H., Lucher, L.A., Symington, J.S. (1983). Antibodies to Synthetic Peptides Targeted to the Transforming Genes of Human Adenoviruses: An Approach to Understanding Early Viral Gene Function. In: Doerfler, W. (eds) The Molecular Biology of Adenoviruses 1. Current Topics in Microbiology and Immunology, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69460-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69460-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69462-2

  • Online ISBN: 978-3-642-69460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics