A New Mechanism for the Initiation of Replication of Φ29 and Adenovirus DNA:Priming by the Terminal Protein

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 109)


Bacteriophage Φ29 fromBacillus subtiliscontains a double-stranded DNA of molecular weight 11.8 x 106(SOGO et al. 1979) that can be isolated from the viral particles as a circular molecule closed noncovalently by protein (ORTÌN etal. 1971). In this review I will describe our present knowledge of the protein linked to 029 DNA. I will present first the structural aspects of the problem: characterization of the protein and the nature of the protein-DNA linkage and sequence at the terminals of Φ29 DNA and of the gene coding for the terminal protein. Next I will describe the mechanism of Φ29 DNA replication and how the terminal protein functions as a “primer” in the initiation of replication. Other requirements for the initiation reaction will be also described, as well as the production of specific mutations at the carboxyl end of the terminal protein. Finally, I will compare the Φ29 and adenovirus DNA-protein complexes and the novel mechanism used for the initiation of replication in the two systems.


Initiation Complex Initiation Reaction Covalent Complex Terminal Protein Bacillus Subtilis Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleström P, Akusjärvi G, Pettersson M, Pettersson U (1982) DNA sequence analysis of the region encoding the terminal protein and the hypothetical N-gene product of adenovirus type 2. J Biol Chem 257: 13492–13498PubMedGoogle Scholar
  2. Blanco L, García JA, Peñalva MA, Salas M (1983) Factors involved in the initiation of phage Φ29 DNA replication in vitro: requirement of the gene 2 product for the formation of the protein p3-dAMP complex. Nucleic Acids Res 11: 1309–1323PubMedCrossRefGoogle Scholar
  3. Brown DT, Westpahl M, Burlingham BT, Winterhoff U, Doerfler W (1975) Structure and composition of the adenovirus type 2 core. J Virol 16: 366–387PubMedGoogle Scholar
  4. Carrascosa JL, Camacho A, Moreno F, Jimenez F, Mellado RP, Viñuela E, Salas M (1976)Bacillus subtilisphage Φ 29: characterization of gene products and functions. Eur J Biochem 66: 229–241Google Scholar
  5. Carusi EA (1977) Evidence for blocked 5’ termini in human adenovirus DNA. Virology 76: 390–394CrossRefGoogle Scholar
  6. Cavalier-Smith T (1974) Palindromic base sequences and replication of eukaryote chromosome ends. Nature 250: 467–470PubMedCrossRefGoogle Scholar
  7. Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotide and the 80 kilodalton terminal protein. J Virol 41: 265–270PubMedGoogle Scholar
  8. De Jong PJ, Kwant MM, van Driel W, Jansz HS, van der Vliet PC (1982) The ATP requirements of adenovirus type 5 DNA replication and cellular DNA replication. Virology 124: 45–58CrossRefGoogle Scholar
  9. Desiderio SV, Kelly TJ Jr (1981) Structure of the linkage between adenovirus DNA and the 55000 molecular weight terminal protein. J Mol Biol 145: 319–337PubMedCrossRefGoogle Scholar
  10. Enomoto T, Lichy JH, Ikeda JE, Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78: 6779–6783PubMedCrossRefGoogle Scholar
  11. Escarmís C, Salas M (1981) Nucleotide sequence at the termini of the DNA ofBacillus subtilisphage Φ 29. Proc Natl Acad Sci USA 78: 1446–1450PubMedCrossRefGoogle Scholar
  12. Escarmís C, Salas M (1982) Nucleotide sequence of the early genes 3 and 4 of bacteriophage Φ 29. Nucleic Acids Res 10: 5785–5798PubMedCrossRefGoogle Scholar
  13. García J A, Pastrana R, Prieto I, Salas M (1983 a) Cloning and expression inEscherichia coliof the gene coding for the protein linked to the ends ofBacillus subtilisphage Φ 29 DNA. Gene 21: 65–76Google Scholar
  14. García E, Gómez A, Ronda C, Escarmís C, López R (1983 b) Pneumococcal bacteriophage Cp-1 contains a protein tightly bound to the 5’ termini of its DNA. Virology 128: 92–104Google Scholar
  15. García J A, Peñalva MA, Blanco L, Salas M, Template requirements for the initiation of phage Φ 29 DNA replication in vitro. Proc Natl Acad Sci USA, in pressGoogle Scholar
  16. Hagen EW, Reilly BE, Tosi ME, Anderson DL (1976) Analysis of gene function of bacteriophage Φ 29 ofBacillus subtilis: identification of cistrons essential for viral assembly. J Virol 19: 501–517PubMedGoogle Scholar
  17. Harding NE, Ito J (1980) DNA replication of bacteriophage Φ 29: characterization of the intermediates and location of the termini of replication. Virology 104: 323–338PubMedCrossRefGoogle Scholar
  18. Harding NE, Ito J, David GS (1978) Identification of the protein firmly bound to the ends of bacteriophage Φ 29 DNA. Virology 84: 279–292PubMedCrossRefGoogle Scholar
  19. Hermoso JM, Salas M (1980) Protein p3 is linked to the DNA of phage Φ 29 through a phosphoester bond between serine and 5’–dAMP. Proc Natl Acad Sci USA 77: 6425–6428PubMedCrossRefGoogle Scholar
  20. Hirokawa H (1972) Transfecting deoxyribonucleic acid of Bacillus bacteriophage Φ 29 that is protease sensitive. Proc Natl Acad Sci USA 69: 1555–1559PubMedCrossRefGoogle Scholar
  21. Horwitz MS, Ariga H (1981) Multiple rounds of denovirus DNA synthesis in vitro. Proc Natl Acad Sci USA 78: 1476–1480PubMedCrossRefGoogle Scholar
  22. Ikeda JE, Enomoto T, Hurwitz J (1982) Adenoviral protein-primed initiation of DNA chains in vitro. Proc Natl Acad Sci USA 79: 2442–2446PubMedCrossRefGoogle Scholar
  23. Inciarte MR, Salas M, Sogo JM (1980) Structure of replicating DNA molecules ofBacillus subtilisbacteriophage Φ 29. J Virol 34: 187–199PubMedGoogle Scholar
  24. Ito J (1978) Bacteriophage Φ 29 terminal protein: its association with the 5’ termini of the Φ 29 genome. J Virol 28: 895–904PubMedGoogle Scholar
  25. Lechner RL, Kelly TJ Jr (1977) The structure of replicating adenovirus 2 DNA molecules. Cell 12: 1007–1020PubMedCrossRefGoogle Scholar
  26. Lichy JH, Horwitz MS, Hurwitz J (1981) Formation of a covalent complex between the 80000-dalton adenovirus terminal protein and 5’-dCMP in vitro. Proc Natl Acad Sci USA 78: 2678–2682PubMedCrossRefGoogle Scholar
  27. Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Separation of the adenovirus terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79: 5225–5229PubMedCrossRefGoogle Scholar
  28. McLaughlin JR, Murray CL, Rabinowitz JC (1981) Initiation factor-independent translation of mRNAs from Gram-positive bacteria. J Biol Chem 256: 11283–11291PubMedGoogle Scholar
  29. Mellado RP, Salas M (1982) High-level synthesis in Escherichia coli of the Bacillus subtilis phage Φ 29 proteins p3 and p4 under the control of phage lambda PL promoter. Nucleic Acids Res 10: 5773–5784PubMedCrossRefGoogle Scholar
  30. Mellado RP, Salas M. Initiation of phage Φ 29 DNA replication by the terminal protein modified at the carboxyl end. Nucleic Acids Res, in pressGoogle Scholar
  31. Mellado RP, Peñalva MA, Inciarte MR, Salas M (1980) The protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage Φ 29 is involved in the initiation of DNA replication. Virology 104: 84–96PubMedCrossRefGoogle Scholar
  32. Moreno F, Camacho A, Vinuela E, Salas M (1974) Suppressor-sensitive mutants and genetic map of Bacillus subtilis bacteriophage Φ 29. Virology 62: 1–16PubMedCrossRefGoogle Scholar
  33. Murray CL, Rabinowitz JC (1982) Nucleotide sequences of transcription and translation initiation regions in Bacillus phage Φ 29 early genes. J Biol Chem 257: 1053–1062PubMedGoogle Scholar
  34. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442PubMedCrossRefGoogle Scholar
  35. Ortin J, Vinuela E, Salas M, Vasquez C (1971) DNA-protein complex in circular DNA from phage Φ 29. Nature 234: 275–277CrossRefGoogle Scholar
  36. Peñalva MA, Salas M (1982) Initiation of phage Φ 29 DNA replication in vitro: formation of a covalent complex between the terminal protein, p3, and 5’–dAMP. Proc Natl Acad Sci USA 79: 5522–5526PubMedCrossRefGoogle Scholar
  37. Pincus S, Robertson W, Rekosh D (1981) Characterization of the effect of aphidicolin on adenovirus DNA replication: evidence in support of a protein primer model of initiation. Nucleic Acids Res 9: 4919–4938PubMedCrossRefGoogle Scholar
  38. Rekosh DMK, Russell WC, Bellett AJD (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295PubMedCrossRefGoogle Scholar
  39. Remaut E, Stanssens P, Fiers W (1981) Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15: 81–93PubMedCrossRefGoogle Scholar
  40. Robinson AJ, Younghusband HB, Bellett AJD (1973) A circular DNA–protein complex from adenoviruses. Virology 56: 54–69PubMedCrossRefGoogle Scholar
  41. Ruben M, Bacchetti S, Graham F (1983) Covalently closed circles of adenovirus 5 DNA. Nature 301: 172–174PubMedCrossRefGoogle Scholar
  42. Salas M, Mellado RP, Vinuela E, Sogo JM (1978) Characterization of a protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage Φ 29. J Mol Biol 119: 269–291PubMedCrossRefGoogle Scholar
  43. Salas M, García JA, Peñalva MA, Blanco L, Prieto I, Mellado RP, Lazaro JM, Pastrana R, Escarmis C, Hermoso JM (1983) Requirements for the initiation of phage Φ 29 DNA replication in vitro primed by the terminal protein. In: Cozzarelli NR (ed) Mechanisms of DNA replication and recombination. Liss, New York (UCLA symposia on molecular and cellular biology, new series, vol 10.)Google Scholar
  44. Shih M, Watabe K, Ito J (1982) In vitro complex formation between bacteriophage Φ 29 terminal protein and deoxynucleotide. Biochem Biophys Res Commun 105: 1031–1036PubMedCrossRefGoogle Scholar
  45. Shimatake H, Rosenberg M (1981) Purified X regulatory protein ell positively activates promoters for lysogenic development. Nature 292: 128–132CrossRefGoogle Scholar
  46. Smart JE, Stillman BW (1982) Adenovirus terminal protein precursor. Partial amino acid sequence and the site of covalent linkage to virus DNA. J Biol Chem 257: 13499–13506Google Scholar
  47. Sogo JM, Inciarte MR, Corral J, Vinuela E, Salas M (1979) RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage Φ 29. J Mol Biol 127: 411–436PubMedCrossRefGoogle Scholar
  48. Sogo JM, García JA, Peñalva MA, Salas M (1982) Structure of protein–containing replicative intermediates of Bacillus subtilis phage Φ 29 DNA. Virology 116: 1–18PubMedCrossRefGoogle Scholar
  49. Stillman BW, Tamanoi F, Mathews MB (1982) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623PubMedCrossRefGoogle Scholar
  50. Talavera A, Jimenez F, Salas M, Vinuela E (1971) Temperature-sensitive mutants of bacteriophage Φ 29. Virology 46: 586–595PubMedCrossRefGoogle Scholar
  51. Tamanoi F, Stillman BW (1982) Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci USA 79: 2221–2225PubMedCrossRefGoogle Scholar
  52. Tolun A, Alestrom P, Pettersson U (1979) Sequence of inverted terminal repetitions from different adenoviruses: demonstration of conserved sequences and homology between SA7 termini and SV40 DNA. Cell 17: 705–713PubMedCrossRefGoogle Scholar
  53. Van Bergen BMG, van der Ley PA, van Driel W, van Mansfeld ADM, van der Vliet PC (1983) Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein. Nucleic Acids Res 11: 1975–1989PubMedCrossRefGoogle Scholar
  54. Watabe K, Shih MF, Sugino A, Ito J (1982) In vitro replication of bacteriophage Φ 29 DNA. Proc Natl Acad Sci USA 79: 5245–5248PubMedCrossRefGoogle Scholar
  55. Yanofsky S, Kawamura F, Ito J (1976) Thermolabile transfecting DNA from temperature-sensitive mutant of phage Φ 29. Nature 259: 60–63PubMedCrossRefGoogle Scholar
  56. Yehle CO (1978) Genome–linked protein associated with the 5’ termini of bacteriophage Φ 29 DNA. J Virol 27: 776–783PubMedGoogle Scholar
  57. Yoshikawa H, Ito J (1981) Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes. Proc Natl Acad Sci USA 78: 2596–2600PubMedCrossRefGoogle Scholar
  58. Yoshikawa H, Ito J (1982) Nucleotide sequence of the major early region of bacteriophage Φ 29. Gene 17: 323–335PubMedCrossRefGoogle Scholar
  59. Yoshikawa H, Friedmann T, Ito J (1981) Nucleotide sequences at the termini of Φ 29 DNA. Proc Natl Acad Sci USA 78: 1336–1340PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  1. 1.Centro de Biologia Molecular (CSIC-UAM)Universidad AutönomaE-Madrid-34Mexico

Personalised recommendations