Skip to main content

Pathophysiologie der Koronardurchblutung

  • Chapter

Part of the book series: Handbuch der inneren Medizin ((INNEREN 9,volume 9 / 3))

Zusammenfassung

Der Ausdruck „Stenose“ beschreibt die Verringerung oder den totalen Verschluß eines Gefäßlumens. Stenosen sind häufig zurückzuführen auf intravaskuläre Ablagerungen, die an der Gefaßwand entstehen und von dort in das Lumen hineinragen (Atherosklerose). Das Auftreten einer arteriellen Stenose führt oft zu einer erheblichen Reduktion des Blutflusses zum distalen Gefaßbett, das von dieser Arterie versorgt wird. Besonders schwerwiegend sind die zirkulatorischen Störungen, die infolge einer verminderten Blutversorgung des Herzmuskels aufgrund einer Koronarstenose (Abb. 1) auftreten können (Angina pectoris, Herzinfarkt). Die vielen Aspekte dieses komplexen Problems sollen im Folgenden reduziert werden auf die Beschreibung der Wechselwirkung zwischen dem Blutfluß durch eine Arterie und der Stenose. Ein besonderes strömungstechnisches Problem hierbei ist die Wirkung einer Stenose auf den regionalen Blutfluß zu den peripheren Gefäßbetten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Azuma T, Fukushima T (1976) Flow patterns in stenotic blood bessel models. Biorheology 13: 337–355

    PubMed  CAS  Google Scholar 

  • Bartel R (1983) Ultrastrukturelle Untersuchungen zur Weiterentwicklung der Bretschneider’schen Lösung zur kardioplegischen Myokardprotektion. Inauguraldissertation, Universität Gießen

    Google Scholar 

  • Benditt EP (1977) The origin of atherosclerosis. Sci Am 236 (2), 76–85

    Google Scholar 

  • Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44: 1–29

    PubMed  CAS  Google Scholar 

  • Berne RM, Imai S, Riley AL (1963) Adenine nucleotides and their derivatives in anoxic cardiac and sceletal muscle. Physiologist 6: 138

    Google Scholar 

  • Borgers M, Schaper J, Schaper W (1973) The origin of subendothelial cells in developing coronary collaterals. A cytochemical approach. Virch Arch [Pathol Anat] 358: 281–294

    Google Scholar 

  • Braunwald E, Maroko P (1979) Protection of the ischemic myocardium. In: Schaper W (ed) The pathophysiolog of myocardial perfusion. Elsevier, Amsterdam New York Oxford, pp 379–413

    Google Scholar 

  • Brown BG, Bolson E, Frimer M, Dodge HT (1978) Angiographic distinction between variant angina and non-vasospastic chest pain. Circulation [Suppl II 57+58: 11–122 (abstr)

    Google Scholar 

  • Brown BG, Bolson E, Petersen RB, Pierce CD, Dodge HT (1981) The mechanisms of nitroglycerin action: stenosis vasodilatation as a major component of the drug response. Circulation 64, 1: 1089–1097

    PubMed  CAS  Google Scholar 

  • Burton AC (1972) Physiology and biophysics of the circulation. 2nd Edn, Year Book Medical Publishers Ine, Chicago

    Google Scholar 

  • Buschmans E (1983) Der Einfluß von Pyruvat und eines Aktivators der Pyruvatdehydro- genase (4-Hydroxyphenylglycin) auf den Stoffwechsel des isolierten Rattenherzens bei milder und schwerer Ischämie. Inauguraldissertation, Universität Gießen

    Google Scholar 

  • Chaturvedi MC (1963) Flow characteristics of axisymmetric expansions. ASCE J Hyd Div 89: 61–92

    Google Scholar 

  • Chmiel H (1973) Zur Blutrheologie in Medizin und Technik, Diss TH Aachen

    Google Scholar 

  • Cohnheim J, Schulthess-Rechberg A von (1881) Über die Folgen der Kranzarterienverschließung auf das Herz, Virchows Arch Pathol Anat] 85: 503

    Google Scholar 

  • Cox JL, McLaughlin VW, Flowers NC, Horan LG (1968) The ischemic zone surrounding acute myocardial infarction: its morphology as detected by dehydrogenase staining. Am Heart J 76: 650

    PubMed  CAS  Google Scholar 

  • Daugherty RL, Ingesol AC (1954) Fluid mechanics with engineering applications. McGraw-Hill, New York

    Google Scholar 

  • Dobson JG, Mayer SE (1973) Mechanism of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ Res 33: 412–420

    PubMed  CAS  Google Scholar 

  • Doerner TC, Brown BG, Frimer M, Dodge HT (1979) Vasodilatory effects of nitroglycerin and nitroprusside in coronary arteries - A comparative analysis. Am J Cardiol 43: 416 (abstr)

    Google Scholar 

  • Eklof B, Schwartz SI (1970) Critical stenosis of the carotid artery in the dog. Scand J Clin Lab Invest 25: 349–353

    PubMed  CAS  Google Scholar 

  • Epstein SE Talbot TL (1981) Dynamic coronary tone in precipitation, exacerbation and relief of angina pectoris. Am J Cardiol 48: 797–803

    PubMed  CAS  Google Scholar 

  • Factor SM, Okun EM, Kirk ES (1981) The histological lateral border of acute canine myocardial infarction. Circ Res 48: 640–649

    PubMed  CAS  Google Scholar 

  • Feldman RL, Conti CR (1981) Relief of myocardial ischemia with nitroglycerin: What is the mechanism? Circulation 64: 1098–1100

    PubMed  CAS  Google Scholar 

  • Feldman R, Pepine C, Conti R (1976) A case against the routine use of nitroglycerin prior to coronary angiography. Circulation 53 + 54 [Suppl II]: 11–232 (abstr)

    Google Scholar 

  • Feldman RL, Nichols WW, Conti CR, Pepine CJ (1977) The influence of sequential coronary narro wings on coronary hemodynamics. Clin Res 25: 4A (abstr)

    Google Scholar 

  • Flameng W (1979) Aorto-coronary bypass grafting. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, Amsterdam New York Oxford, pp 549–580

    Google Scholar 

  • Freudenberg H, Lichtlen P (1981) Das normale Wandsegment bei Koronarstenosen - Eine postmortale Studie. Z Kardiol 70: 863

    PubMed  CAS  Google Scholar 

  • Fulton WFM (1965) The coronary arteries. Thomas, Springfield/Il

    Google Scholar 

  • Gaethgens P (1982) Mikrozirkulation. In: Busse R (ed) Kreislaufphysiologie, Thieme, Stuttgart New York, S 70–102

    Google Scholar 

  • Ganz W (1981) Coronary spasm in myocardial infarction: fact or fiction? Circulation 63: 487–488

    PubMed  CAS  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzen bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwis-senschaften 50: 228–234

    CAS  Google Scholar 

  • Gorlin R (1976) Coronary collaterals. Major problems. Intern Med 11: 59

    CAS  Google Scholar 

  • Gorlin R (1983) Dynamic vascular factors in the genesis of myocardial ischemia. J Am Coll Cardiol 1: 897–906

    PubMed  CAS  Google Scholar 

  • Gottwik MG (1981) Myokardfunktion in Abhängigkeit von Stenosengeometrie und Kollateralbefund. Z Kardiol 70: 317

    Google Scholar 

  • Gottwik M (1982) Myokardprotektion durch Kollateralen. Experimenteller Nachweis und klinische Befunde. Habilitation Fachbereich Humanmedizin der Universität Gießen 1982

    Google Scholar 

  • Gottwik M, Schaper W (1982) Do coronary collaterals have protective potential? J Cardiovasc Med 7: 1272–1275

    Google Scholar 

  • Gottwik M, Wüsten B, Hofmann M, Puschmann S, Nienaber C, Schaper W (1983) Development of collaterals. Application of external subcritical fixed constrictors in a canine model. Basic Res Cardiol 78: 183–192

    Google Scholar 

  • Gould KL (1978) Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during vasodilation. Circ Res 43: 242–253

    PubMed  CAS  Google Scholar 

  • Gould KL (1980) Dynamic coronary stenosis. Am J Cardiol 45: 286–292

    PubMed  CAS  Google Scholar 

  • Gould KL (1982) Collapsing coronary stenosis - a Starling resistor. Int J Cardiol 2: 39–42

    PubMed  CAS  Google Scholar 

  • Gould KL, Kelley KO (1982) Physiological significance of coronary flow velocity and changing stenosis geometry during coronary vasodilation in awake dogs. Circ Res 50: 695–704

    PubMed  CAS  Google Scholar 

  • Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34: 48–55

    PubMed  CAS  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 33: 87–93

    PubMed  CAS  Google Scholar 

  • Gould KL, Lipscomb K, Calvert C (1975) Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51: 1085–1094

    PubMed  CAS  Google Scholar 

  • Gould KL, Kelley KO, Bolson EL (1982) Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 66: 930–937

    PubMed  CAS  Google Scholar 

  • Gregg DE (1950) Coronary circulation in health and disease. Lea & Febiger, Philadelphia

    Google Scholar 

  • Gross L (1921) The Blood Supply to the Heart, Oxford University Press, London Hoeber New York/NY

    Google Scholar 

  • Haynes RH (1960) Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol 198: 1193–1200

    PubMed  CAS  Google Scholar 

  • Haynes RH, Burton AC (1959) Role of the non-Newtonian behaviour of blood in hemodynamics. Am J Physiol 97: 943–950

    Google Scholar 

  • Helfant RH, Yokonas PS, Gorlin G (1971) Functional importance of human coronary collateral circulation, N Engl J Med 284: 1277

    PubMed  CAS  Google Scholar 

  • Hewitt RL, Lolley SM, Adronny GA, Drapanas TH (1973) Protective effect of myocardial glycogen on cardiac function and during anoxia. Surgery 73: 444–453

    PubMed  CAS  Google Scholar 

  • Hirzel HO, Sonnenblick EH, Kirk ES (1977) Absence of a lateral border, zone of intermediate creatine Phosphokinase depletion surrounding a central infarct 24 hours after acute coronary artery occlusion in the dog. Circ Res 41: 673–683

    PubMed  CAS  Google Scholar 

  • Hochachka P, Owen TG, Allen JF, Whittow GC (1975) Multiple end prdducts of anaerobiosis in diving vertebrates. Comp Biochem Physiol 508: 17–22

    Google Scholar 

  • Hofmann M, Hofmann M, Genth K, Schaper W (1980) The influence of reperfusion on infarct size after experimental coronary artery occlusion. Basic Res Cardiol 75: 572–582

    PubMed  CAS  Google Scholar 

  • Holt JP (1969) Flow through collapsible tubes and through in situ veins. IEEE Trans Biomed Eng, BME 16: 274–283

    CAS  Google Scholar 

  • Hort W (1979) Anatomy and physiology of the human coronary circulation. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier, Amsterdam New York Oxford, pp 247–284

    Google Scholar 

  • Ideker RE, Hackel DB, McClees E (1982) Post mortem: Anatomic quantitation. In: Wagner GS (ed) Myocardial infarction. Measurement and intervention. Nyhoff, The Hague Boston London, pp 347–371

    Google Scholar 

  • Ishiara K, Abiko Y (1977) Inhibition of endo- and epicardial glycogenolysis by propranolol in ischemic hearts. Am J Physiol 232: H349 - H353

    Google Scholar 

  • Ishiara K, Ishihara M, Abiko Y (1979) Possible role of beta-adrenergic receptors in myocardial metabolic response to ischemia. In: Winbury MM, Abiko Y (eds) Ischemic myocardium and antianginal drugs. Raven, New York

    Google Scholar 

  • Isselhard W, Hinzen D, Geppert E, Mäurer W (1970) Beeinflussung des post-asphyk- tischen Wiederaufbaus der Adeninnukleotide im Kaninchenherzen in vivo durch Substratangebot. Pfluegers Arch 320: 195–209

    CAS  Google Scholar 

  • Isselhard W, Eitenmüller, J, Mäurer W, DeVreese A, Reineke H, Czerniak A, Stutz J, Herb HG (1980) Increase in myocardial adenine nucleotides induced by adenosine: dosage, mode of application and duration, species differences. J Mol Cell Cardiol 12: 619–634

    PubMed  CAS  Google Scholar 

  • Jamin F, Merkel H (1907) Die Koronararterien des menschlichen Herzens unter normalen und pathologischen Verhältnissen, dargestellt in stereoskopischen Röntgen-Bildern. Fischer, Jena

    Google Scholar 

  • Jugduff BI, Hutchins GM, Bulkley BH, Pitt B, Becker LC (1979) Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 59: 734–743

    Google Scholar 

  • Kalbfleisch H (1975) Eine Methode zur post mortalen Größenbestimmung der Versorgungsgebiete einzelner Koronararterien. Z Kardiol 64: 987

    PubMed  CAS  Google Scholar 

  • Karayannacos E, Talukder N, Nerem RM, Roshon S, Vasko S (1977) The role of multiple noncritical arterial stenoses in the pathogenesis of ischemia. J Thorac Cardiovasc Surg 73: 458–469

    PubMed  CAS  Google Scholar 

  • Katz AM (1977) Physiology of the heart, Raven, New York

    Google Scholar 

  • Kirkeeide RL, Siebes M, Gottwik G, Schaper W. Noch unveröffentlichte Ergebnisse

    Google Scholar 

  • Klein HH, Schaper J, Puschmann S, Nienaber C, Kreuzer H, Schaper W (1981a) Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells. Basic Res Cardiol 76: 612–621

    PubMed  CAS  Google Scholar 

  • Klein HH, Puschmann S, Schaper J, Schaper W (1981b) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch [Pathol Anat] 393: 287–297

    CAS  Google Scholar 

  • Knowlton FP, Starlin EH (1944) The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J Physiol 44: 206–219

    Google Scholar 

  • Kreuzer W, Schenk WG Jr (1973) Effects of local vasodilation on blood flow through arterial stenoses. Eur Surg Res 5: 233–242

    PubMed  CAS  Google Scholar 

  • Kübler W, Spieckermann PG (1970) Regulation of glycolysis in the ischemic and the anoxic myocardium. J Mol Cell Cardiol 1: 351–377

    PubMed  Google Scholar 

  • Levin DC (1974) Pathways and functional significance of the coronary collateral circulation. Circulation 50: 831

    PubMed  CAS  Google Scholar 

  • Lighthill MJ (1972) Physiological fluid dynamics: a survey. J Fluid Mech 52: 475–497

    Google Scholar 

  • Linz W (1982) Beeinflussung eines Zustandes stabiler Ischämie am isolierten Rattenherzen durch Betablocker. Inauguraldissertation, Universität Gießen

    Google Scholar 

  • Lipscomb K, Hooten S (1978) Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses. Am J Cardiol 42: 781–792

    PubMed  CAS  Google Scholar 

  • Logan SE (1975) On the fluid mechanics of human coronary artery stenoses. IEEE Trans Biomed Eng 22: 327–334

    PubMed  CAS  Google Scholar 

  • Lowenstein JM (1972) Ammonia production in muscle and other tissues: the purine

    Google Scholar 

  • nucleotide cycle. Physiol Rev 52:382–414

    Google Scholar 

  • Mann FC, Herrick JF, Essex HE, Baldes EJ (1938) The effect on the blood flow of decreasing the lumen of a blood vessel. Surgery 4: 249–252

    Google Scholar 

  • Maroko PR, Kjekshuis JK, Sobel BE, Watanabe T, Covell JW, Ross J, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 41: 67–82

    Google Scholar 

  • Mates RE, Gupta RL, Bell AC, Klocke RJ (1978) Fluid dynamics of artery stenoses. Circ Res 42: 152–162

    PubMed  CAS  Google Scholar 

  • Mauser M, Hoffmeister HM, Nienaber C, Schaper W (1983) Influence of ribose, adenosine and AICAriboside on the rate of myocardial tissue ATP synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res, submitted for publication

    Google Scholar 

  • May AG, Berg L van den, DeWeese JA (1963) Critical arterial stenosis. Surgery 54: 250–259

    PubMed  CAS  Google Scholar 

  • McGregor M (1982) The nitrates and myocardial ischemia. Circulation 66: 689–692

    PubMed  CAS  Google Scholar 

  • Mudge GH Jr, Mills RM Jr, Taegtmeyer H, Gorlin R, Lesch M (1976) Alterations of myocardial amino-acid metabolism in chronic ischemic heart disease. J Clin Invest 58: 1185–1192

    PubMed  CAS  Google Scholar 

  • Naumann’A (1970) Über Strömungsvorgänge im menschlichen Körper (Teil II). Acta Medicotechnica 18: AM59-AM62

    Google Scholar 

  • Neely JR, Jeffrey T, Whitmer JT, Rovetto MJ (1975) Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ Res 37: 733–741

    PubMed  CAS  Google Scholar 

  • Nienaber C, Mauser M, Podzuweit T, Schaper W (1982) Postischemic infusion of AICAR increases myocardial adenine nucleotides during reperfusion - comparison with ribose. Circulation 66: 11–331

    Google Scholar 

  • Nienaber C, Mauser M, Schaper W (1983) Stimulation of myocardial adenine nucleotide synthesis by postischemic reperfusion with direct purine precursor AICAR - comparison with ribose. J Am Coll Cardiol 1: 667

    Google Scholar 

  • Nuutinen EM, Peuhkurinen KJ, Pietiläinen EP, Hiltunen JK, Hassinen IE (1981) Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J 194: 867–875

    PubMed  CAS  Google Scholar 

  • Oliver MG (1976) Metabolic interventions in acute ischemia. Proc R Soc Med 69: 207–211

    PubMed  CAS  Google Scholar 

  • Poland JL, Trauner DA (1973) Adrenal influences on the supercompensation of cardiac glycogen following exercise. Am J Physiol 224: 540–542

    PubMed  CAS  Google Scholar 

  • Rafflenbeul W, Lichtlen PR (1982) Zum Konzept der „dynamischen“ Koronarstenose. Z Kardiol 71: 439–444

    PubMed  CAS  Google Scholar 

  • Rafflenbeul W, Urthaler F, Russell RO, Lichtlen P, James TN (1980) Dilatation of coronary artery stenoses after isosorbide dinitrate in man. Br Heart J 43: 546–549

    PubMed  CAS  Google Scholar 

  • Regitz V, Azumi T, Stephan H, Naujocks S, Schaper W (1981) Biochemical mechanism of infarct size reduction by pyruvate.Cardiovasc Res 15: 652–658

    CAS  Google Scholar 

  • Reimer KA, Hill ML, Jennigs RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13: 229–240

    PubMed  CAS  Google Scholar 

  • Robbins SL, Bentov I (1967) The kinetics of viscous flow in a model vessel. Lab Invest 16: 864–874

    PubMed  CAS  Google Scholar 

  • Rodbard S, Saiki H (1953) Flow through collapsible tubes. Am Heart J 46: 715–725

    PubMed  CAS  Google Scholar 

  • Roskamm H (ed) (1981) Myocardial infarction at young age. International Symposium held in Bad Krozingen, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roth AC, Young DF, Cholvin NR (1976) Effect of collateral and peripheral resistance on blood flow through arterial stenoses. J Biomech 9: 367–375

    PubMed  CAS  Google Scholar 

  • Rubinow SI, Keller JB (1972) Flow of a viscous fluid through an elastic tube with applications to blood flow. J Theor Biol 35: 299–313

    PubMed  CAS  Google Scholar 

  • Sabina RL, Kernstine KH, Boyd RL, Holmes EW, Swain JL (1982) Metabolism of 5-amino-4-imidazole carboxamide riboside in cardiac and sceletal muscle. J Biol Chem 257: 10183–10187

    Google Scholar 

  • Sandritter W, Jestädt R (1958) Triphenyltetrazoliumchlorid ( TTC) als Reduktionsindikator zur makroskopischen Diagnose des frischen Herzinfarkts. Verh Dtsch Ges Pathol 41: 165–168

    Google Scholar 

  • Santamore WP, Walinsky P (1980) Altered coronary flow responses to vasoactive drugs in the presence of coronary arterial stenosis in the dog. Am J Cardiol 45: 276–285

    PubMed  CAS  Google Scholar 

  • Santamore WP, Walinsky P, Wiener L, Brest AN (1978) The effects of isoproterenolol in the partially constricted coronary artery. Fed Proc 137: 468 (abstr)

    Google Scholar 

  • Santamore WP, Bove A, Carey R, Walinsky P, Spann JF (1981) Synergistic relation between vasoconstriction and fixed epicardial vessel stenosis in coronary artery disease. Am Heart J 101: 428–434

    PubMed  CAS  Google Scholar 

  • Santamore WP, Kent RL, Carey RA, Bove AA (1982 a) Synergistic effects of pressure, distal resistance, and vasoconstriction on stenosis. Am J Physiol 243: H236 - H242

    Google Scholar 

  • Santamore WP, Bove A A, Carey RA (1982 b) Tachycardia induced reduction in coronary blood flow distal to a stenosis. Int J Cardiol 2: 23–37

    Google Scholar 

  • Santamore WP, Bove AA, Carey RA (1982 c) Hemodynamics of a stenosis in a compliant artery. Cardiology 69: 1–10

    Google Scholar 

  • Schaper J, Schaper W (1983 a) Ultrastructural correlates of reduced cardiac function in human heart disease. Eur Heart J [Suppl A] 5: 35–42

    Google Scholar 

  • Schaper J, Schaper W ( 1983 b) Reperfusion of ischemic myocardium. Ultrastructural and histochemical aspects. J Am Coll Cardiol 1: 1037–1046

    Google Scholar 

  • Schaper J, König R, Franz D, Schaper W (1976) The endothelial surface of growing coronary collateral arteries. Virch Arch [Pathol Anat] 370: 193–205

    CAS  Google Scholar 

  • Schaper W (1967) Tangential wall stress as a molding force in the development of collateral vessels in the canine heart. Experientia 23: 595

    PubMed  CAS  Google Scholar 

  • Schaper W (1971a) The collateral circulation of the heart. North Holland, Amsterdam London

    Google Scholar 

  • Schaper W (1971b) Collateral pressure-flow relationships in acute and chronic coronary artery occlusion. In: Schaper W (ed) The collateral circulation of the heart. North Holland, Amsterdam, pp 151–179

    Google Scholar 

  • Schaper W (1982) Influence of physical exercise on coronary collateral blood flow in chronic experimental two-vessel occlusion. Circulation 65: 905–912

    PubMed  CAS  Google Scholar 

  • Schaper W (1983) Natural defense mechanism during ischemia. Eur Heart J [Suppl D] 4: in press

    Google Scholar 

  • Schaper W, Wüsten B (1979) Collateral circulation. In: Schaper W (ed) The pathophysio-logy of myocardial perfusion. Elsevier, Amsterdam New York Oxford, pp 415–470

    Google Scholar 

  • Schaper W, Schaper J, Xhonneux R, Vandesteene R (1969) The morphology of intercoronary anastomoses in chronic coronary artery occlusion. Cardio vase Res 3: 315

    CAS  Google Scholar 

  • Schaper W, DeBrabander M, Lewi P (1971) DNA-synthesis and mitosis in coronary

    Google Scholar 

  • collateral vessels of the dog. Circ Res 28:671–679

    Google Scholar 

  • Schaper W, Flameng W, Winkler B, Wüsten B, Türschmann W, Neugebauer G, Carl M (1976 a) Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 39: 371–377

    Google Scholar 

  • Schaper W, Frenzel H, Hort W (1979a) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74: 46–53

    Google Scholar 

  • Schaper W, Hofmann M, Müller KD, Genth K, Carl M ( 1979 b) Experimental occlusion of two small coronary arteries in the same heart. A new validation method for infarct size manipulation. Basic Res Cardiol 74: 224–229

    Google Scholar 

  • Schaper W, Frenzel H, Hort W, Winkler B ( 1979 c) Experimental coronary artery occlusion. II. Spatial and temporal evolution of infarcts in the dog heart. Basic Res Cardiol 74: 233–239

    Google Scholar 

  • Schlesinger MJ (1938) An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J 15: 528

    Google Scholar 

  • Schoop W, Jahn W (1961) Entwicklungsstadien arterieller Kollateralen und ihre begriffliche Definition. Z Kreislaufforsch 50: 249

    PubMed  CAS  Google Scholar 

  • Schwarz F (1979) Correlation between the degree of coronary artery obstruction and myocardial dysfunction. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Amsterdam, New York Oxford, pp 305–344

    Google Scholar 

  • Schwarz F, Flameng W, Ensslen R, Sesto M, Thormann J (1978) Effect of coronary collaterals on left ventricular function at rest and during stress. Am Heart J 95:570

    PubMed  CAS  Google Scholar 

  • Schwartz JS, Carlyle PF, Cohn JN (1977) Distal coronary pressure as a determinant of resistance and flow in stenotic coronary arteries. Am J Cardiol 39: 328 (abstr)

    Google Scholar 

  • Schwartz JS, Carlyle PF, Cohn JN (1979) Effect of dilatation of the distal coronary bed on flow and resistance in severely stenotic arteries in dog. Am J Cardiol 43: 219–224

    PubMed  CAS  Google Scholar 

  • Schwartz JS, Carlyle PF, Cohn JN (1980) Effect of coronary arterial pressure on coronary stenosis resistance. Circulation 61: 70–76

    PubMed  CAS  Google Scholar 

  • Seely BD, Young DF (1976) Effect of geometry on pressure losses across models of arterial stenoses. J Biomech 9: 439–448

    Google Scholar 

  • Shapiro AH (1977) Steady flow in collapsible tubes. Trans ASME. J Biomech Eng 9: 126–147

    Google Scholar 

  • Shipley RE, Gregg DE (1944) The effect of external constriction of a blood vessel on blood flow. Am J Physiol 141: 289–296

    Google Scholar 

  • Shrago E, Shug AL, Sul H, Bittar N, Folts JD (1976) Control of energy production in myocardial ischemia. Circ Res [Suppl I] 38: 1–75

    Google Scholar 

  • Siebes M (1981) Quantitative Angiografie: In vitro Experimente zur Überprüfung eines FORTRAN-Programmes für die geometrische und hämodynamische Auswertung von Stenosen aus Angiogrammen. Diplomarbeit Fachhochschule Gießen-Friedberg 1981

    Google Scholar 

  • Siebes M, Gottwik M, Schlepper M (1983) Hemodynamic effect of sequence and severity of serial stenoses. J Am Coll Cardiol 1: 684 (abstr)

    Google Scholar 

  • Spalteholz W (1924) Die Arterien der Herzwand. Hirzel, Leipzig

    Google Scholar 

  • Strandness DE, Sumner DS (eds) (1975) Hemodynamics for Surgeons. Grüne & Stratton, New York San Francisco London

    Google Scholar 

  • Taegtmeyer H (1978) Metabolie responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscle. Circ Res 43: 808–815

    PubMed  CAS  Google Scholar 

  • Talukder N, Karayannacos PE, Nerem RM, Vasko JS (1977) An experimental study of the fluid dynamics of multiple noncritical stenoses. J Biomech Eng Trans ASME [Ser K] 99: 74–82

    Google Scholar 

  • Vlodaver Z, Edwards JE (1971) Pathology of coronary atherosclerosis. Prog Cardiovasc Dis 14: 256

    PubMed  CAS  Google Scholar 

  • Vlodaver Z, Amplatz K, Burchell HB, Edwards JE (eds) (1976) Coronary heart disease. Clinical, angiographic & pathologic profiles. Springer, New York Heidelberg Berlin

    Google Scholar 

  • Vonruden WJ, Blaisdell FW, Hall AD, Thomas AN (1964) Multiple arterial stenoses: effect on blood flow. Arch Surg 89: 307–315

    PubMed  CAS  Google Scholar 

  • Walinsky P, Santamore WP, Wiener L, Brest A (1979) Dynamic changes in the haemodynamic severity of coronary artery stenosis in a canine model. Cardiovasc Res 13: 113–118

    PubMed  CAS  Google Scholar 

  • Walinsky P, Santamore W, Wiener L, Cho SY, Brest AN (1980) Effect of norepinephrine on coronary hemodynamics in coronary stenotic canine model. Am Heart J 99: 494–502

    PubMed  CAS  Google Scholar 

  • Whitmore RF (1968) Rheology of the Circulation, Pergamon, Oxford, pp 91–99

    Google Scholar 

  • Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng 101: 157–175

    Google Scholar 

  • Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenosis. I. Steady flow. J Biomech 6:395–410. II. Unsteady flow. J Biomech 6: 547–559

    Google Scholar 

  • Young DF, Cholvin NR, Roth AC (1975) Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 36: 735–743

    PubMed  CAS  Google Scholar 

  • Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flowrates. Circ Res 41: 99–107

    PubMed  CAS  Google Scholar 

  • Zimmer HG (1980) Restitution of myocardial adenine nucleotides: acceleration by admiAllnistration of ribose. J Physiol (Paris) 76: 769–775

    CAS  Google Scholar 

  • Zimmer HG, Gerlach E (1972) Isoproterenol-induced changes of myocardial adenine nucleotides and protein synthesis. Pfluegers Arch 335: R5

    Google Scholar 

  • Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De novo synthesis of myocardial adenine nucleotides in the rat. Circ Res 32: 635–642

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaper, W. (1984). Pathophysiologie der Koronardurchblutung. In: Roskamm, H., et al. Koronarerkrankungen. Handbuch der inneren Medizin, vol 9 / 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69451-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69451-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69452-3

  • Online ISBN: 978-3-642-69451-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics